首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunochemistry, genuine size and tissue localization of collagen VI   总被引:19,自引:0,他引:19  
Collagen VI was solubilized with pepsin from human placenta and used for preparing rabbit antisera. Major antigenic determinants were located in the central region of the antigen including triple-helical and globular structures. Antisera prepared against a constituent-chain showed preferential reactions with unfolded structures. Antibodies were purified by affinity chromatography and failed to cross-react with other collagen types I-V and with fibronectin. These antibodies demonstrated intracellular and extracellular collagen VI in fibroblast and smooth muscle cell cultures. Immunoblotting identified a disulfide-bonded constituent chain about twice as large as those of the pepsin fragments in both cell cultures and tissue extracts. Rotary shadowing electron microscopy indicated that the increase in mass is due to larger globular domains present at both ends of collagen VI monomers. Indirect immunofluorescence demonstrated a wide occurrence of collagen VI in connective tissue particularly of large vessels, kidney, skin, liver and muscle. Collagen VI is apparently not a typical constituent of cartilage or of basement membranes. Ultrastructural studies using the immunoferritin technique showed collagen VI along thin filaments or in amorphous regions of aortic media or placenta but not in association with thick, cross-striated collagen fibrils or elastin. This supports previous suggestions that collagen VI is a constituent of microfibrillar structures of the body.  相似文献   

2.
Summary The structure of elastic cartilage in the external ear of the rat was investigated by transmission and scanning electron microscopy.The narrow subperichondrial, boundary zone contains predominantly ovoid cells rich in cell organelles: mitochondria, Golgi complex, granular endoplasmic reticulum and small (40–100 nm) vesicles. Scarce glycogen granules and bundles of 6–7 nm cytoplasmic filaments are also present. Deeper in the boundary zone, one or more cytoplasmic lipid droplets appear and cytofilaments become more abundant.Fully differentiated chondrocytes in the central zone of the cartilage plate resemble white adipose cells. They are globular and contain a single, large cytoplasmic lipid droplet. The cytoplasm is reduced to a thin peripheral rim; it contains a flattened nucleus, few cytoplasmic organelles and abundant, densely packed, cytoplasmic filaments.The intercellular matrix is very sparse. The pericellular ring consists of collagen fibrils about 20 nm in diameter and a proteoglycan cartilage matrix in the form of a stellate reticulum. The complex of these two structures appears in the scanning electron micrographs as a network of randomly oriented, ca 100 nm thick fibrils. Spaces between pericellular rings of matrix also contain thick elastic fibers or plates, apparently devoid of microfibrils. In scanning electron micrographs elastic fibers could be detected only in a few areas, in which they were not obscured by other constituents of the matrix. Immature forms of elastic fibers, oxytalan (pre-elastic) and elaunin fibers, were found in the perichondrial and boundary zones.  相似文献   

3.
Summary The three-dimensional structure of synaptic ribbons in photoreceptor cells of the frog retina was studied with freeze-etching and freeze-substitution methods, combined with a rapid-freezing technique. Although the synaptic ribbon consisted of two electron-dense plaques bisected by an electron-lucent layer in conventional thin sections, such lamellar nature was not so evident in freeze-etched replicas. The cytoplasmic surfaces of the synaptic ribbon presented an extremely regular arrangements of small particles 4–6 nm in diameter. Fine filaments 8–10 nm in diameter and 30–50 nm in length connected synaptic vesicles and the ribbon surface. These connections were mediated by large particles on both ends of the filaments. Approximately 3–5 filaments attached to one synaptic vesicle. Synaptic ribbons were anchored to a characteristic meshwork underlying the presynaptic membrane via another group of similar fine filaments. The meshwork seemed to be an etched replicated image of the presynaptic archiform density observed in thin sections.  相似文献   

4.
The pericellular fibronectin-containing matrices of human foreskin fibroblasts cultured in ascorbate-supplemented medium were examined using surface replicas. An extensive filamentous network is present over and between adjacent cells, with a considerable amount at points of cell-to-cell contact. Indirect immunocytochemical localization of the distribution of fibronectin and procollagen type III within the matrix was done using the peroxidase-antiperoxidase (PAP) sandwich technique. The PAP molecule with the surrounding diaminobenzidine reaction product appears as a globular particle of approximately 39 nm in surface replicas. The apparent size of the marker was larger (60-80 nm) when bound to pericellular fibronectin, due presumably to the binding of more than one PAP complex to each fibronectin molecule. The immunocytochemical data suggest that fibronectin is a component of most, if not all, matrix fibrils. Some of the smallest filaments of the matrix (5-10 nm) exhibit a periodic, beaded appearance, with a repeat distance of approximately 70-100 nm. After either anti-fibronectin or anti-procollagen type III labeling, the filaments were decorated at regular 70-100 nm intervals with the globular marker. We suggest that the periodicity may be due to fibronectin molecules bound to collagen microfibrils at regular intervals. Our results demonstrate the usefulness of combined surface replica and immunocytochemical techniques for analysis of matrix components of cultured cells.  相似文献   

5.
Immunofluorescence microscopic and electron microscopic investigations revealed components of the matrix and of the basal lamina (collagen type I, III, IV and V, BL-heparan sulfate and fibronectin) in the sinus wall (Disse's space) of the livers of newborn and adult marmosets (Callithrix jacchus). Collagen type I was missing in both the two age groups. Small amounts of laminin were present in the livers of newborn and absent in those of adult animals, whereas collagen type III occurred in the form of delicate fibres. Light microscopic inspection showed a continuous distribution of all other components in the sinus wall. The amount of collagen type III and V increased depending on the age. Electron microscopic investigations revealed single or bundled fibrils (20-30 nm) and filaments (10-12 nm). After addition of tannic acid, plaques of a fine-filamentous network and incorporated granules were observed. After addition of resting Ruthenium Red, electron-dense granules (20-60 nm) were irregularly distributed in the structureless space, resting on collagenous fibrils and cell membranes. The fibrils were allocated to collagen type III, the filaments to collagen type V. The plaques were supposed to contain heparan sulfate, collagen type IV and fibronectin. The absence of a Lamina densa of the basal lamina was attributed to the absence of laminin which probably plays an important role in the formation of this layer. Differences in the distribution pattern of the matrix components and thus a functional mosaic of the permeability of Disse's space were assumed. The complete absence of collagen type I and laminin in the lobules makes the adult marmoset liver especially suited for studies on the importance of this collagen type under pathological conditions, since both components are expressed in this way.  相似文献   

6.
Bovine corneal endothelial cells deposit an extracellular matrix in short-term cultures, which contains various morphologically distinct structures when analysed by electron microscopy after negative staining. Amongst these were long-spacing fibers with a 150 nm periodicity, which appeared also to be assembled into more complex hexagonal lattices. Another structure was fine filaments, 10-40 nm in diameter, which occasionally exhibited 67 nm periodic cross-striation. Non-striated 10-20 nm filaments sometimes formed radially oriented bundles arranged in networks and fuzzy granular material was associated with the filaments in the bundles. Often, these bundles extended into solitary filaments, 10-20 nm in diameter, with a smooth surface. In addition, amorphous patches were seen, which contained dense aggregates of fibrillar and granular material. In longer-term cultures, some of the structures coalesced to form large fibrillar bundles. By using specific antibodies to various extracellular matrix components and immunolabeling with gold some of these structures could be identified as to their protein composition. Whereas fibronectin antibodies labeled a variety of structures--fine filaments with granular materials, radially oriented bundles, patchy amorphous aggregates and small granular material scattered throughout the background--type III collagen antibody predominantly labeled filaments with periodic banding (10-40 nm in diameter). A small amount of type III specific labeling was also observed over the networks of radially oriented fibrils and fine filaments associated with granular material. Type IV collagen and laminin antibodies localized in areas of the patchy amorphous aggregates. Type VI collagen antibodies, on the other hand, labeled fine filaments and the gold particles showed a pattern of 100 nm periodicity. Many of the fine 10-20 nm filaments exhibited a tubular appearance on cross-section, but they were not reactive with any of the antibodies used. Also negative were the long-spacing fibers and assemblies--including hexagonal lattices--containing this structural element.  相似文献   

7.
Fibronectin is one of the main components of the extracellular matrix and associates with a variety of other matrix molecules including collagens. We demonstrate that the absence of secreted type VI collagen in cultured primary fibroblasts affects the arrangement of fibronectin in the extracellular matrix. We observed a fine network of collagen VI filaments and fibronectin fibrils in the extracellular matrix of normal murine and human fibroblasts. The two microfibrillar systems did not colocalize, but were interconnected at some discrete sites which could be revealed by immunoelectron microscopy. Direct interaction between collagen VI and fibronectin was also demonstrated by far western assay. When primary fibroblasts from Col6a1 null mutant mice were cultured, collagen VI was not detected in the extracellular matrix and a different pattern of fibronectin organization was observed, with fibrils running parallel to the long axis of the cells. Similarly, an abnormal fibronectin deposition was observed in fibroblasts from a patient affected by Bethlem myopathy, where collagen VI secretion was drastically reduced. The same pattern was also observed in normal fibroblasts after in vivo perturbation of collagen VI-fibronectin interaction with the 3C4 anti-collagen VI monoclonal antibody. Competition experiments with soluble peptides indicated that the organization of fibronectin in the extracellular matrix was impaired by added soluble collagen VI, but not by its triple helical (pepsin-resistant) fragments. These results indicate that collagen VI mediates the three-dimensional organization of fibronectin in the extracellular matrix of cultured fibroblasts.  相似文献   

8.
Summary In previous studies on plant cells, antibodies directed against intermediate filaments (IFs) have shown that IF antigens are distributed in one of two quite distinct forms. The first co-distributes with each of the four microtubule arrays (cortical, preprophase band, spindle and phragmoplast), while the second form is associated with cytoplasmic paracrystalline fibrillar bundles (FBs) of 10 nm filaments. Conditions allowing one form to be labelled with antibody have generally proved unsuitable for labelling of the other; this has prevented the simultaneous visualization of the two forms of IF antigen in plants and the study of any possible physical relationships between them at the electron microscopic level. In this paper, we show that ME 101, which recognizes an epitope in the N-terminal portion of all classes of intermediate filaments, stains both forms of plant IF antigen simultaneously in tobacco suspension cells using immunofluorescence or immunogold labelling techniques. These cells contain in their cortex short (ca. l m) fibrillar bundles which stain with ME 101. These bundles appear to be independent of the microtubule-associated epitope which stains in a continuous linear manner with ME 101. When protoplasts are either cleaved open on grids or sequentially extracted with detergents prior to critical point drying, the short fibrillar bundles are specifically labelled by ME 101 tagged with colloidal gold. ME 101 also co-distributed with underlying linear filaments, which appeared to be microtubules. In addition to these structures, the cortex also contains a meshwork of variably-sized fine filaments but these are not labelled with ME 101 nor with an antibody raised against the plant cytoskeleton, which recognizes cytokeratin 8. These results confirm that the fibrillar bundles and the microtubule-associated form of plant IF antigens are present simultaneously rather than experimentally-interconvertible, and that they appear to be physically unconnected.Abbreviations DAPI 4,6-diamidino-2-phenylindole - FB fibrillar bundle - FITC fluorescein isothiocyanate - IF intermediate filaments - MTSB microtubule stabilizing buffer - TBS Tris-buffered-saline  相似文献   

9.
Summary Post-embedding immunocytochemical staining methods using gold have so far failed to label intermediate filament antigens in situ in epon or araldite embedded tisue. We have now applied the post-embedding immuno gold staining (IGS) technique for LR White embedded tissue. Glial fibrillary acidic (GFA) protein immunoreactivity was clearly demonstrated electron microscopically on astrocytie filaments of rat cerebellum in situ.Abbreviations BSA Bovine serum albumin - DAB 3,3-diaminobenzidine - GAM G10 Goat anti-mouse IgG gold particle size 10 nm - GFAP Glial fibrillary acidic (GFA) protein - IGS Immuno gold staining - PBS Phosphate buffered saline - TRITC Tetramethylrhodamine isothiocyanate  相似文献   

10.
Summary Electron microscopy of Noctiluca scintillans reveals that the cytoskeleton of the tentacle involved in the motor action of the prey capture consists of three characteristic elements: a deformable peripheral fibrillo-granular ectosarc, abundant underlying microtubules organized in several rows on the convex side, and helicoid filaments about 8 nm in diameter organized into striated myonemes. Microtubules of the external row are crossed-linked with each other by fibrous elements 5 nm in diameter and 10–15 nm long, their links with the second row result in a Y-shaped binding. Bonds of the other rows are linked to each other irregularly between those of the same row. Striated myonemes are regularly inserted between the rows of microtubules on the ectosarc and between its pleats, joining together in a knot of disarrayed filaments with multidirectional orientation in the central axis of the tentacle. Striation of myonemes is based on an alternation of thick striae (TS) 40 nm wide with a periodicity of about 200 nm, and of some intermediary fine striae (FS) 10 nm wide. The events during tentacle contraction are: (1) Rotation of the tentacle, bringing the convex side to the inner side of it. Here, large numbers of microtubules have been visualized by optical immunocytochemistry after labelling with Paramecium antitubulin antiserum. (2) Increase of pleat amplitude (200–300 nm to 600 nm) in concomitance with a decrease of its period (500–700 nm to 250 nm). (3) Apparent modification of the microtubule orientation. (4) Transformation of some TS in several FS without modification of the striation periodicity.Near the cytostome, the cytoskeleton consists of a number quantity of microtubules underlying a non-pleated ectosarc and long tracts of contractile myonemes formed by 6-nm helicoid filaments linking the internal side of the cytostome of the supporting rod. Semirelaxed myonemes show an alternation of fine striae (FS) 35 nm wide between two clear areas (CA) with a periodicity of about 300 nm, plus an incipient dark area (DA) lying between them; together they are transformed into a thick stria (TS) during maximal contraction; the striation periodicity thus decreases by one half. These two systems are compared with one another and with other motile systems.  相似文献   

11.
The localization of proteoglycans in rat epiphyseal growth plate cartilage was investigated immunoelectron microscopically by the post-embedding method, using mouse monoclonal antibody (2-B-6) which specifically recognizes 4-sulphated chondroitin or dermatan sulphate after digestion of proteoglycans with chondroitinase ABC. Fixation with ruthenium hexamine trichloride (RHT) and embedding in LR White served to preserve chondrocytes in the expanded state and matrix proteoglycans were observed as a reticular network of filaments. Immunoelectron microscopy revealed gold labelling of the secondary antibodies for the demonstration of proteoglycans on these filamentous structures and in elements of the Golgi apparatus. Filaments associated with matrix vesicles were also labelled. After fixation in the presence of RHT, it was clearly demonstrated that cartilage matrix proteoglycans are retained approximately in their original spatial distribution and their antigenicity is well preserved.  相似文献   

12.
We localized collagen types III, IV, and VI in normal rat lung by light and electron immunohistochemistry. Type IV collagen was present in every basement membrane examined and was absent from all other structures. Although types III and VI had a similar distribution, being present in the interstitium of major airways, blood vessels, and alveolar septa, as in other organs, they had different morphologies. Type III collagen formed beaded fibers, 15-20 nm in diameter, whereas type VI collagen formed fine filaments, 5-10 nm in diameter. Both collagen types were found exclusively in the interstitium, often associated with thick (30-35 nm) cross-banded type I collagen fibers. Occasionally, type III fibers and type VI filaments could be found bridging from the interstitium to the adventitial aspect of some basement membranes. Furthermore, the association of collagen type VI with types I and III and basement membranes suggests that type VI may contribute to integration of the various components of the pulmonary extracellular matrix into a functional unit.  相似文献   

13.
H Hagiwara 《Histochemistry》1992,98(5):305-309
The localization of proteoglycans in rat epiphyseal growth plate cartilage was investigated immunoelectron microscopically by the post-embedding method, using mouse monoclonal antibody (2-B-6) which specifically recognizes 4-sulphated chondroitin or dermatan sulphate after digestion of proteoglycans with chondroitinase ABC. Fixation with ruthenium hexamine trichloride (RHT) and embedding in LR White served to preserve chondrocytes in the expanded state and matrix proteoglycans were observed as a reticular network of filaments. Immunoelectron microscopy revealed gold labelling of the secondary antibodies for the demonstration of proteoglycans on these filamentous structures and in elements of the Golgi apparatus. Filaments associated with matrix vesicles were also labelled. After fixation in the presence of RHT, it was clearly demonstrated that cartilage matrix proteoglycans are retained approximately in their original spatial distribution and their antigenicity is well preserved.  相似文献   

14.

Background

Articular cartilage is a highly functional tissue which covers the ends of long bones and serves to ensure proper joint movement. A tissue engineering approach that recapitulates the developmental characteristics of articular cartilage can be used to examine the maturation and degeneration of cartilage and produce fully functional neotissue replacements for diseased tissue.

Methodology/Principal Findings

This study examined the development of articular cartilage neotissue within a self-assembling process in two phases. In the first phase, articular cartilage constructs were examined at 1, 4, 7, 10, 14, 28, 42, and 56 days immunohistochemically, histologically, and through biochemical analysis for total collagen and glycosaminoglycan (GAG) content. Based on statistical changes in GAG and collagen levels, four time points from the first phase (7, 14, 28, and 56 days) were chosen to carry into the second phase, where the constructs were studied in terms of their mechanical characteristics, relative amounts of collagen types II and VI, and specific GAG types (chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and hyaluronan). Collagen type VI was present in initial abundance and then localized to a pericellular distribution at 4 wks. N-cadherin activity also spiked at early stages of neotissue development, suggesting that self-assembly is mediated through a minimization of free energy. The percentage of collagen type II to total collagen significantly increased over time, while the proportion of collagen type VI to total collagen decreased between 1 and 2 wks. The chondroitin 6- to 4- sulfate ratio decreased steadily during construct maturation. In addition, the compressive properties reached a plateau and tensile characteristics peaked at 4 wks.

Conclusions/Significance

The indices of cartilage formation examined in this study suggest that tissue maturation in self-assembled articular cartilage mirrors known developmental processes for native tissue. In terms of tissue engineering, it is suggested that exogenous stimulation may be necessary after 4 wks to further augment the functionality of developing constructs.  相似文献   

15.
Summary Cells isolated from ascidian smooth muscle were about 1.5–2 mm in length. Each contained 20–40 nucle in proportion to cell length. The cytoplasm was characterized by the presence of an enormous quantity of glycogen particles, tubular elements of sarcoplasmic reticulum coupled to the cell membrane, and conspicuous contractile elements. Thick and thin filaments had diameters of about 14–16 nm and 6–7 nm, respectively. The population density of the thick filaments was much higher (mean 270/m2 filament area) than in vertebrate smooth muscles. The ratio of thick to thin filaments was about 16. All the thick filaments were surrounded by a single row of 5–9 thin filaments forming a rosette, and cross-bridges with periodicities of 14.5 and 29 nm were found between them. The contractile apparatus consisted of numerous myofibrils which were arranged nearly along the cell axis and were separated from each other by a network of 10-nm filaments. The myofibrils further consisted of many irregularly arranged sarcomerelike structures, each of which was comprised of a small group of thick and thin filaments with attached dense bodies.  相似文献   

16.
Among a superfamily of myosin, class VI myosin moves actin filaments backwards. Here we show that myosin VI moves processively on actin filaments backwards with large ( approximately 36 nm) steps, nevertheless it has an extremely short neck domain. Myosin V also moves processively with large ( approximately 36 nm) steps and it is believed that myosin V strides along the actin helical repeat with its elongated neck domain that is critical for its processive movement with large steps. Myosin VI having a short neck cannot take this scenario. We found by electron microscopy that myosin VI cooperatively binds to an actin filament at approximately 36 nm intervals in the presence of ATP, raising a hypothesis that the binding of myosin VI evokes "hot spots" on actin filaments that attract myosin heads. Myosin VI may step on these "hot spots" on actin filaments in every helical pitch, thus producing processive movement with 36 nm steps.  相似文献   

17.
WARP is a recently identified extracellular matrix molecule with restricted expression in permanent cartilages and a distinct subset of basement membranes in peripheral nerves, muscle, and the central nervous system vasculature. WARP interacts with perlecan, and we also demonstrate here that WARP binds type VI collagen, suggesting a function in bridging connective tissue structures. To understand the in vivo function of WARP, we generated a WARP-deficient mouse strain. WARP-null mice were healthy, viable, and fertile with no overt abnormalities. Motor function and behavioral testing demonstrated that WARP-null mice exhibited a significantly delayed response to acute painful stimulus and impaired fine motor coordination, although general motor function was not affected, suggesting compromised peripheral nerve function. Immunostaining of WARP-interacting ligands demonstrated that the collagen VI microfibrillar matrix was severely reduced and mislocalized in peripheral nerves of WARP-null mice. Further ultrastructural analysis revealed reduced fibrillar collagen deposition within the peripheral nerve extracellular matrix and abnormal partial fusing of adjacent Schwann cell basement membranes, suggesting an important function for WARP in stabilizing the association of the collagenous interstitial matrix with the Schwann cell basement membrane. In contrast, other WARP-deficient tissues such as articular cartilage, intervertebral discs, and skeletal muscle showed no detectable abnormalities, and basement membranes formed normally. Our data demonstrate that although WARP is not essential for basement membrane formation or musculoskeletal development, it has critical roles in the structure and function of peripheral nerves.WARP (von Willebrand A domain-related protein) is a recently described member of the von Willebrand factor type A domain (VWA2 domain) superfamily of extracellular matrix (ECM) molecules, adhesion proteins, and cell surface receptors (for review, see Ref. 1). The WARP protein is encoded by the Vwa1 (von Willebrand factor A domain-containing 1) gene and comprises a single N-terminal VWA domain containing a putative metal ion-dependent adhesion site (MIDAS) motif, two fibronectin type III repeats, and a unique C-terminal domain that contributes to WARP multimer formation (2, 3). Like many other VWA domain-containing extracellular molecules, WARP was predicted to participate in protein-protein interactions and in the formation of supramolecular structures. Recently WARP has been shown to interact with the heparan sulfate proteoglycan perlecan (3), and in the present study we identify type VI collagen as a ligand for WARP.WARP has a restricted distribution in developing cartilage tissues, where it is expressed at sites of joint cavitation and articular cartilage formation rather than cartilage structures that will undergo endochondral ossification (3). In adult tissues, WARP is highly restricted to the chondrocyte pericellular matrix in articular cartilage and fibrocartilages, where it co-localizes with perlecan and collagen VI (3). Several of the major basement membrane components have been found in the chondrocyte pericellular matrix, suggesting that this structure may be the functional equivalent of a basement membrane in cartilage tissues (4). Consistent with this hypothesis, recent data from our laboratory have demonstrated that WARP is a component of the basement membrane in a limited subset of tissues including the apical ectodermal ridge, the endomysium surrounding muscle fibers, the vasculature of the central nervous system, and the endoneurium of peripheral nerves (5). The principal components of basement membranes are type IV collagen, laminins, nidogens, and proteoglycans including perlecan; however, the composition, structure, and biological properties of basement membranes can differ considerably between different tissues (6, 7). Different isoforms of the major components contribute to the heterogeneity of basement membranes, but the contribution of quantitatively minor components to particular subtypes of basement membranes and their interactions with surrounding cells and ECM structures are poorly understood (8, 9).We, therefore, have generated mice with a targeted disruption of the WARP locus to determine the consequences of WARP deficiency on skeletal development and basement membrane formation. The homozygous null mice are viable, fertile, and do not exhibit overt abnormalities compared with wild type littermates. Neurological testing revealed that WARP-null mice exhibit a delayed response to acute painful stimulus and a disturbance in fine motor coordination, although general motor function is not impaired. Consistent with these findings, immunohistochemical analysis of peripheral nerves from WARP-null mice revealed that the collagen VI microfibrillar matrix was severely reduced and mislocalized compared with wild type mice. Furthermore, electron microscopic examination of the sciatic nerve demonstrated a reduction in the collagen I ECM and the unusual partial fusing of the basement membranes of neighboring axons. These data suggest an important role for WARP in organizing the peripheral nerve ECM and provides evidence for tissue-specific differences in the role of WARP in the assembly and/or integration of the ECM. In addition, our studies provide further evidence for the critical role of ECM structure and organization in nerve function.  相似文献   

18.
Type IX collagen is covalently bound to the surface of type II collagen fibrils within the cartilage extracellular matrix. The N-terminal, globular noncollagenous domain (NC4) of the α1(IX) chain protrudes away from the surface of the fibrils into the surrounding matrix and is available for molecular interactions. To define these interactions, we used the NC4 domain in a yeast two-hybrid screen of a human chondrocyte cDNA library. 73% of the interacting clones encoded fibronectin. The interaction was confirmed using in vitro immunoprecipitation and was further characterized by surface plasmon resonance. Using whole and pepsin-derived preparations of type IX collagen, the interaction was shown to be specific for the NC4 domain with no interaction with the triple helical collagenous domains. The interaction was shown to be of high affinity with nanomolar Kd values. Analysis of the fibronectin-interacting clones indicates that the constant domain is the likely site of interaction. Type IX collagen and fibronectin were shown to co-localize in cartilage. This novel interaction between the NC4 domain of type IX collagen and fibronectin may represent an in vivo interaction in cartilage that could contribute to the matrix integrity of the tissue.  相似文献   

19.
Summary Fresh frozen tissue sections of human articular cartilage was treated without and with human testicular hyaluronidase (2×106 units/l) for 60 min at 37° C and stained by the indirect immunoperoxidase technique with rabbit antihuman fibronectin. The rabbit antihuman fibronectin was purified by affinity chromatography on human fibronectin-Sepharose. Fibronectin was only found on the acellular surface of the articular cartilage in tissue sections not treated with hyaluronidase. In this surface layer, probably identical to lamina splendens, the arrangement of fibronectin was as a membrane. No collagen was seen in this area by van Gieson staining. No staining for fibronectin was found in the cartilage matrix or in the chondrocytes. Treatment of the cartilage tissue with hyaluronidase resulted in visualization of high amount of fibronectin in the cartilage matrix, with the highest intensity around the chondrocytes. The staining of the acellular surface layer of the articular cartilage was identical with the results obtained without hyaluronidase treatment. These results indicate that articular cartilage is rich in fibronectin probably in complex with hyaluronic acid, and that the chondrocytes produce fibronectin in situ. It also demonstrates the steric hindrance of hyaluronic acid aggregates in diffusion of the antibody and the value of hyaluronidase treatment of tissue before demonstration of fibronectin.  相似文献   

20.
Summary Coated membranes in two types of gill epithelial cell of adult lamprey, Lampetra japonica, were studied by electron microscopy. The type 3 gill epithelial cells possess well-developed microvilli or microfolds, apical vesicles and abundant mitochondria. The cytoplasmic surface of the microvillous plasma membrane is covered by a coat of regularly spaced particles with a center-to-center distance of about 15 nm. Each particle consists of a bulbous free end, about 10 nm in diameter, and a connecting piece, about 5 nm long. Apical vesicles are covered by a surface coat which consists of fine filamentous material but lack any special coating on their cytoplasmic surface.The type 4 cells (chloride cells) are characterized by apical vesicles, abundant mitochondria and cytoplasmic tubules. These tubules possess a coat on their luminal surface which consists of spirally wound parallel rows of electron-dense materials. The rows are about 16 nm apart and wound at a pitch of about 45°. The cytoplasmic surface of these tubules does not display a special coat. These coated membranes are assumed to be the sites of active ion transport across the plasma membrane. In particular, particles in type 3 cells and linear coat materials in chloride cells may be either loci of transport enzymes or energy generating systems. Apical vesicles lack any coating on their cytoplasmic surface but a fine filamentous coat is present on their luminal surface. They contain intraluminal vesicles and are continuous with apical ends of cytoplasmic tubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号