首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activity of the c-myc Replicator at an Ectopic Chromosomal Location   总被引:5,自引:0,他引:5       下载免费PDF全文
DNA replication starts at multiple discrete sites across the human chromosomal c-myc region, including two or more sites within 2.4 kb upstream of the c-myc gene. The corresponding 2.4-kb c-myc origin fragment confers autonomously replicating sequence (ARS) activity on plasmids, which specifically initiate replication in the origin fragment in vitro and in vivo. To test whether the region that displays plasmid replicator activity also acts as a chromosomal replicator, HeLa cell sublines that each contain a single copy of the Saccharomyces cerevisiae FLP recombinase target (FRT) sequence flanked by selectable markers were constructed. A clonal line containing a single unrearranged copy of the transduced c-myc origin was produced by cotransfecting a donor plasmid containing the 2.4-kb c-myc origin fragment and FRT, along with a plasmid expressing the yeast FLP recombinase, into cells containing a chromosomal FRT acceptor site. The amount of short nascent DNA strands at the chromosomal acceptor site was quantitated before and after targeted integration of the origin fragment. Competitive PCR quantitation showed that the c-myc origin construct substantially increased the amount of nascent DNA relative to that at the unoccupied acceptor site and to that after the insertion of non-myc DNA. The abundance of nascent strands was greatest close to the c-myc insert of the integrated donor plasmid, and significant increases in nascent strand abundance were observed at sites flanking the insertion. These results provide biochemical and genetic evidence for the existence of chromosomal replicators in metazoan cells and are consistent with the presence of chromosomal replicator activity in the 2.4-kb region of c-myc origin DNA.  相似文献   

2.
S E Celniker  J L Campbell 《Cell》1982,31(1):201-213
An enzyme system prepared from Saccharomyces cerevisiae carries out the replication of exogenous yeast plasmid DNA. Replication in vitro mimics that in vivo in that DNA synthesis in extracts of strain cdc8, a temperature-sensitive DNA replication mutant, is thermolabile relative to the wild-type, and in that aphidicolin inhibits replication in vitro. Furthermore, only plasmids containing a functional yeast replicator, ARS, initiate replication at a specific site in vitro. Analysis of replicative intermediates shows that plasmid YRp7, which contains the chromosomal replicator ARS1, initiates bidirectional replication in a 100 bp region within the sequence required for autonomous replication in vivo. Plasmids containing ARS2, another chromosomal replicator, and the ARS region of the endogenous yeast plasmid 2 microns circle give similar results, suggesting that ARS sequences are specific origins of chromosomal replication. Used in conjunction with deletion mapping, the in vitro system allows definition of the minimal sequences required for the initiation of replication.  相似文献   

3.
ARS replication during the yeast S phase   总被引:43,自引:0,他引:43  
A 1.45 kb circular plasmid derived from yeast chromosome IV contains the autonomous replication element called ARS1. Isotope density transfer experiments show that each plasmid molecule replicates once each S phase, with initiation depending on two genetically defined steps required for nuclear DNA replication. A density transfer experiment with synchronized cells demonstrates that the ARS1 plasmid population replicates early in the S phase. The sequences adjacent to ARS1 on chromosome IV also initiate replication early, suggesting that the ARS1 plasmid contains information which determines its time of replication. The times of replication for two other yeast chromosome sequences, ARS2 and a sequence referred to as 1OZ, indicate that the temporal order of replication is ARS1 leads to ARS2 leads to 1OZ. These experiments show directly that specific chromosome regions replicate at specific times during the yeast S phase. If ARS elements are origins of chromosome replication, then the experiment reveals times of activation for two origins.  相似文献   

4.
During enzymatic replication of plasmids containing the origin of the Escherichia coli chromosome, oriC, formation of an active initiation complex consisting of dnaA, dnaB, dnaC, and HU proteins, requires a supercoiled DNA template. Relaxed covalently closed plasmids are active only if supercoiled by gyrase prior to initiation; nicked and linear DNAs are inactive. Semi-conservative replication proceeds via delta structure as intermediates. Daughter molecules include nicked intermediates. Daughter molecules include nicked monomers and catenated pairs. Elongation is rapid, but late replicative intermediates accumulate because the final elongation and termination steps are slow. Production of covalently closed circular daughter DNA molecules requires removal of ribonucleotide residues (primers) by DNA polymerase I, assisted by ribonuclease H, gap filling, and ligation of nascent strands by ligase. Reconstitution of a complete cycle of oriC plasmid replication, beginning and ending with supercoiled molecules, has been achieved with purified proteins.  相似文献   

5.
The replication of human mitochondrial DNA (mtDNA) is initiated from a pair of displaced origins, one priming continuous synthesis of daughter-strand DNA from the heavy strand (OH) and the other priming continuous synthesis from the light strand (OL). In patients with sporadic large-scale rearrangements of mitochondrial DNA (i.e., partially-deleted [Delta-mtDNA] and partially-duplicated [dup-mtDNA] molecules), the dup-mtDNAs typically contain extra origins of replication, but it is unknown at present whether they are competent for initiation of replication. Using cybrids harboring each of two types of dup-mtDNAs-one containing two OHs and two OLs, and one containing two OHs and one OL-we used ligation-mediated polymerase chain reaction (LMPCR) to measure the presence and relative amounts of nascent heavy strands originating from each OH. We found that the nascent heavy strands originated almost equally from the two OHs in each cell line, indicating that the extra OH present on a partially duplicated mtDNA is competent for heavy strand synthesis. This extra OH could potentially confer a replicative advantage to dup-mtDNAs, as these molecules may have twice as many opportunities to initiate replication compared to wild-type (or partially deleted) molecules.  相似文献   

6.
Soluble nuclear extracts prepared from adenovirus-infected HeLa cells supported adenovirus DNA replication with exogenous DNA-protein complex as template, but protease-treated, phenol-extracted DNA was less active. Replication was enhanced when creatine phosphate and creatine phosphokinase were included in the reaction mixture, rendering the reaction independent of exogenous ATP. Genomic-length, newly synthesized DNA strands were first observed 30 min after initiation of replication and continued to increase in amount for at least 4 h. Thus, the rate of replication is consistent with previous estimates of the rate of replication in vivo. Nascent DNA strands bound to benzoylated, naphthoylated DEAE-cellulose due to their association with protein. The 5' termini of nascent DNA strands were resistant to the 5'- to 3'-specific T7 exonuclease, and the 3' termini of nascent strands were sensitive to the 3'- to 5'-specific exonuclease III. These results suggest that a protein becomes covalently linked to the 5' termini of nascent DNA strands replicated in vitro. Nuclear extracts prepared from adenovirus type 2-infected cells also supported replication of DNA-protein complex prepared from the unrelated type 7 adenovirus. The limited sequence homology between these two viruses at the origin of replication further defines recognition sequences at the origin. These results are discussed in terms of a model for adenovirus DNA replication in which the terminal protein and sequences within the inverted terminal repetition are involved in the formation of an initiation complex that is able to prime DNA replication.  相似文献   

7.
The nature of DNA replication in UV irradiated Syrian hamster embryo cells (HEC) was investigated by measuring the size distribution of nascent daughter strand DNA. During the early mode nascent strands are made in smaller pieces than in nonirradiated cells. The late mode begins when nascent strands recover to normal size. This was observed in HEC 5 h post-UV. When the late mode is operational, nascent strands elongate to parental size in greater than 2 h, whereas less than 3 h are required during early mode function. Evidence from split dose experiments demonstrates that the recovery of the size of nascent strands is not due to enhanced gap filling. Furthermore, pyrimidine dimers are probably recognized differently by the replication complex during early and late mode DNA synthesis. The late mode of replication could account for the ability of HEC to survive UV irradiation even though they are inefficient in both excision and postreplication repair.  相似文献   

8.
Two-dimensional gel electrophoretic method for mapping DNA replicons.   总被引:30,自引:12,他引:18       下载免费PDF全文
We describe in detail a method which allows determination of the directions of replication fork movement through segments of DNA for which cloned probes are available. The method uses two-dimensional neutral-alkaline agarose gel electrophoresis followed by hybridization with short probe sequences. The nascent strands of replicating molecules form an arc separated from parental and nonreplicating strands. The closer a probe is to its replication origin or to the origin-proximal end of its restriction fragment, the shorter the nascent strands that are detected by the probe. The use of multiple probes allows determination of directions of replication fork movement, as well as locations of origins and termini. In this study, we used simian virus 40 as a model to demonstrate the feasibility of the method, and we discuss its applicability to other systems.  相似文献   

9.
Intermediate in adenovirus type 2 replication.   总被引:1,自引:1,他引:0       下载免费PDF全文
Replicating chromosomes, called intermediate DNA, have been extracted from the adenovirus replication complex. Compared to mature molecules, intermediate DNA had a greater buoyant density in CsCl gradients and ethidium bromide-cesium chloride gradients. Digestion of intermediate DNA with S1 endonuclease, but not with RNase, abolished the difference in densities. These properties suggest that replicating molecules contain extensive regions of parental single strands. Although intermediate DNA sedimented faster than marker viral DNA in neutral sucrose gradients, single strands longer than unit length could not be detected after alkaline denaturation. Integral size classes of nascent chains in intermediate DNA suggest a relationship between units of replication and the nucleoprotein structure of the virus chromosome. Adenovirus DNA was replicated at a rate of 0.7 x 10-6 daltons/min. Although newly synthesized molecules had the same sedimentation coefficient and buoyant density as mature chromosomes, they still contained single-strand interruptions. Complete joining of daughter strands required an additional 15 to 20 min.  相似文献   

10.
The organization of the mammalian S phase was studied in synchronized mouse embryo cells in terms of the spatial relationship between replication units whose synthesis is initiated at different times in S phase and the rate of assimilation of replication units into high molecular weight DNA strands.The formation of high molecular weight nascent DNA strands several replication units in length was analyzed by velocity sedimentation in alkaline sucrose gradients and by isopycnic centrifugation in alkaline Cs2SO4/CsCl gradients. Differential labeling with an isotopic and a density label shows that replication units synthesized at different stages of the S phase are not found within the same high molecular weight polynucleotide strand. It is thus concluded that replication units duplicated at different stages of the S phase are spatially organized in clusters along the mammalian genome.The rate of formation of high molecular weight nascent DNA strands is at least 4 to 8 times slower than that predicted from the spatial organization of replication units and the rate of chain growth within replication units. It is concluded that the process of joining of the completed nascent strands of adjacent replication units plays a major role in the rate of completion of high molecular weight strands.  相似文献   

11.
Soluble extracts prepared from the nucleus and cytoplasm of human 293 cells are capable of efficient replication and supercoiling of added DNA templates that contain the origin of simian virus 40 replication. Extracts prepared from human HeLa cells are less active than similarly prepared extracts from 293 cells for initiation and elongation of nascent DNA strands. DNA synthesis is dependent on addition of purified simian virus 40 tumor (T) antigen, which is isolated by immunoaffinity chromatography of extracts from cells infected with an adenovirus modified to produce large quantities of this protein. In the presence of T antigen and the cytoplasmic extract, replication initiates at the origin and continues bidirectionally. Initiation is completely dependent on functional origin sequences; a plasmid DNA containing an origin mutation known to affect DNA replication in vivo fails to replicate in vitro. Multiple rounds of DNA synthesis occur, as shown by the appearance of heavy-heavy, bromodeoxyuridine-labeled DNA products. The products of this reaction are resolved, but are relaxed, covalently closed DNA circles. Addition of a nuclear extract during DNA synthesis promotes the negative supercoiling of the replicated DNA molecules.  相似文献   

12.
Soluble extracts of Escherichia coli capable of carrying out replication of the mini-RK2 derivative pCT461 have been prepared from cells carrying this plasmid or from plasmid-free bacteria. The latter are dependent upon exogenously added plasmid-encoded replication protein (TrfA) and require additional DnaA protein for optimum activity. This dependence upon DnaA was confirmed by the failure of DnaA-deficient cell extracts to support replication of pCT461 in the absence of added DnaA protein. Replication is unidirectional and begins at or near oriV, the vegetative replication origin of RK2. DNase I protection studies with purified TrfA indicate that this protein acts by binding to short (17 base-pairs) directly repeated DNA sequences present in oriV. The in vitro replication is resistant to rifampicin but can be abolished by antibodies against DnaG protein (E. coli primase) or DnaB protein (helicase) and by DNA gyrase inhibitors. Inhibition by arabinosyl-CTP suggests that DNA polymerase III is responsible for elongation of nascent DNA strands. These results are discussed in relation to the mechanism of RK2 replication and in the context of the host range of the plasmid.  相似文献   

13.
G Prelich  B Stillman 《Cell》1988,53(1):117-126
Proliferating cell nuclear antigen (PCNA) is a cell cycle and growth regulated protein required for replication of SV40 DNA in vitro. Its function was investigated by comparison of the replication products synthesized in its presence or absence. In the completely reconstituted replication system that contains PCNA, DNA synthesis initiates at the origin and proceeds bidirectionally on both leading and lagging strands around the template DNA to yield duplex, circular daughter molecules. In contrast, in the absence of PCNA, early replicative intermediates containing short nascent strands accumulate. Replication forks continue bidirectionally from the origin, but surprisingly, only lagging strand products are synthesized. Thus two stages of DNA synthesis have been defined, with the second stage requiring PCNA for coordinated leading and lagging strand synthesis at the replication fork. We suggest that during eukaryotic chromosome replication there is a switch to a PCNA-dependent elongation stage that requires two distinct DNA polymerases.  相似文献   

14.
Autonomously replicating sequence (ARS) elements function as plasmid replication origins. Our studies of the H4 ARS and ARS307 have established the requirement for a DNA unwinding element (DUE), a broad easily-unwound sequence 3' to the essential consensus that likely facilitates opening of the origin. In this report, we examine the intrinsic ease of unwinding a variety of ARS elements using (1) a single-strand-specific nuclease to probe for DNA unwinding in a negatively-supercoiled plasmid, and (2) a computer program that calculates DNA helical stability from the nucleotide sequence. ARS elements that are associated with replication origins on chromosome III are nuclease hypersensitive, and the helical stability minima correctly predict the location and hierarchy of the hypersensitive sites. All well-studied ARS elements in which the essential consensus sequence has been identified by mutational analysis contain a 100-bp region of low helical stability immediately 3' to the consensus, as do ARS elements created by mutation within the prokaryotic M13 vector. The level of helical stability is, in all cases, below that of ARS307 derivatives inactivated by mutations in the DUE. Our findings indicate that the ease of DNA unwinding at the broad region directly 3' to the ARS consensus is a conserved property of yeast replication origins.  相似文献   

15.
16.
Supercoiled plasmid molecules sensitive to nicking by RNase or alkali have been shown to accumulate during replication of colicinogenic factor E1 (ColE1) in Escherichia coli in the presence of chloramphenicol. The possibility that this sensitivity is due to the covalent integration of RNA molecules during the synthesis of plasmid DNA is supported by the demonstration that (a) strands of supercoiled ColE1 newly replicated in the presence of chloramphenicol exhibit sensitivity to RNase and alkali treatment, while (b) RNase- and alkali-resistant circular strands of plasmid DNA synthesized either before or after the addition of chloramphenicol remain resistant during subsequent replication of the plasmid in the presence of chloramphenicol. Furthermore, newly made plasmid DNA strands cannot act as templates for further rounds of replication if they possess an RNA segment. The existence of a repair mechanism for the removal of the RNA segment from supercoiled ColE1 DNA molecules was demonstrated by pulse-chase experiments. It was observed that the proportion of RNase-sensitive molecules is considerably higher in pulse-labeled as compared to continuously labeled ColE1 DNA synthesized in the presence of chloramphenicol, and the proportion of pulse-labeled ColE1 DNA that is RNase sensitive is greatly reduced during a chase period. Removal of the RNA segment is also carried out effectively at the restrictive temperature in temperature-sensitive DNA polymerase I mutants. In a survey of other bacterial mutants defective in the repair of damaged DNA, a substantial increase in the rate of accumulation of RNase-and alkali-sensitive supercoiled ColE1 DNA in the presence of chloramphenicol was observed in recBC and uvrA mutants in comparison with the wild-type strains.  相似文献   

17.
We have previously identified a DNA unwinding element (DUE) in autonomously replicating sequences (ARSs) and demonstrated a correlation between single-strand-specific nuclease hypersensitivity of the DUE and ARS-mediated plasmid replication in yeast. The DUE in the H4 ARS is the most easily unwound sequence in a supercoiled DNA molecule, in the context of the Ylp5 plasmid. To determine whether sequences which are more readily unwound than the ARS can influence replication activity, we have inserted such sequences, called 'torsional sinks', into the plasmids at a site distal to the ARS. We show that the torsional sink sequences effect reduction or elimination of the nuclease hypersensitivity of a variety of H4 ARS derivatives. However, we detect no difference in the in vivo replication activity of an individual ARS plasmid with or without a torsional sink. Thus, the function of the DUE in a yeast replication origin is unaffected by easily unwound sequences present elsewhere on the same plasmid.  相似文献   

18.
We studied the replication of random genomic DNA fragments from Saccharomyces cerevisiae in a long-term assay in human cells. Plasmids carrying large yeast DNA fragments were able to replicate autonomously in human cells. Efficiency of replication of yeast DNA fragments was comparable to that of similarly sized human DNA fragments and better than that of bacterial DNA. This result suggests that yeast genomic DNA contains sequence information needed for replication in human cells. To examine whether DNA replication in human cells would initiate specifically at a yeast origin of replication, we monitored initiation on a plasmid containing the yeast 2-micron autonomously replicating sequence (ARS) in yeast and human cells. We found that while replication initiates at the 2-micron ARS in yeast, it does not preferentially initiate at the ARS in human cells. This result suggests that the sequences that direct site specific replication initiation in yeast do not function in the same way in human cells, which initiate replication at a broader range of sequences.by J.A. Huberman  相似文献   

19.
Single-cell and DNA fiber autoradiography, cytophotometry and velocity sedimentation in alkaline sucrose gradients were used to analyse DNA replication and nascent replicon maturation in 5-fluorodeoxyuridine (FUdR)-synchronized cells of Pisum sativum. The replicon size was not significantly changed by the protracted FUdR treatment. When the synchronized cells were released from the inhibitor, labeled with [3H]TdR for 30 min, and chased in medium containing 1 × 10−6 M or lower concentrations of cold thymidine, DNA replication stopped after approx. 25% of the genome had replicated, and the nascent strands failed to grow above 9–12 × 106 D single-stranded (ss) DNA. When the cells were chased in medium with 1 × 10−5 M cold thymidine, the DNA content of the labeled cells steadily increased with time and the size of the nascent molecules grew continuously until replicon size was achieved; then they were accumulated at replicon size until the cells arrived in late S or G2. When the FUdR-synchronized cells were chased in medium containing 1 × 10−4 M cold thymidine, the size of the nascent strands increased continuously with time, indicating that some neighbouring nascent replicons were joined as soon as they completed their replication. These observations led us to postulate that in FUdR-synchronized cells the rates of chain elongation, cell progression through the S phase and nascent replicon maturation are controlled by thymidine availability.  相似文献   

20.
An extrachromosomally replicating plasmid was used to investigate the specificity by which the origin recognition complex (ORC) interacts with DNA sequences in mammalian cells in vivo. We first showed that the plasmid pEPI-1 replicates semiconservatively in a once-per-cell-cycle manner and is stably transmitted over many cell generations in culture without selection. Chromatin immunoprecipitations and quantitative polymerase chain reaction analysis revealed that, in G1-phase cells, Orc1 and Orc2, as well as Mcm3, another component of the prereplication complex, are bound to multiple sites on the plasmid. These binding sites are functional because they show the S-phase-dependent dissociation of Orc1 and Mcm3 known to be characteristic for prereplication complexes in mammalian cells. In addition, we identified replicative nascent strands and showed that they correspond to many plasmid DNA regions. This work has implications for current models of replication origins in mammalian systems. It indicates that specific DNA sequences are not required for the chromatin binding of ORC in vivo. The conclusion is that epigenetic mechanisms determine the sites where mammalian DNA replication is initiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号