首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue factor pathway inhibitor (TFPI) is a factor Xa-dependent inhibitor for the factor VIIa-tissue factor complex. We isolated cDNA for rat TFPI by screening a lambda gt10 rat liver cDNA library. We determined the 1,228 bp nucleotide sequence, comprising a 88 bp 5' non-coding region, a 906 bp open reading frame, and a 234 bp 3' non-coding region, which encodes a protein of 302 amino acid residues. On Northern blot analysis of rat TFPI mRNA, rat TFPI mRNA was detected as two forms with different molecular sizes, 4.0 and 1.4 kb, which were expressed abundantly in heart, lung, kidney, and aortic endothelial cells. The homology of the amino acid sequence of rat TFPI with those of human and rabbit TFPI was found to be 60.7 and 57.4%, respectively. The lengths of the three tandem Kunitz-type inhibitor domains were strictly conserved not only among TFPI from the three species, but also among other proteins containing Kunitz-type inhibitor domains. The homology of the Kunitz-type domains in TFPI among the three species was 57, 86, and 69% in the 1st, 2nd, and 3rd domains, respectively. There was no significant difference in hydropathy profiles of TFPI from man, rabbit, and rat.  相似文献   

2.
Tissue factor pathway inhibitor (TFPI) is a Kunitz-type protease inhibitor that regulates tissue factor-triggered blood coagulation. It has previously been reported that TFPI inhibits the proliferation of human umbilical vein endothelial cells (HUVECs), suggesting that TFPI may act as more than just a mediator of coagulation through changes in gene expression. By using DNA-array techniques and Northern blot analysis, we here revealed that TFPI transiently induced the mRNA expression of JUNB and GADD45B. The inducible effects were not observed in TFPIdeltaC (lacking the C-terminal basic region) or antithrombin (heparin-binding anticoagulant protease inhibitor). Moreover, the TFPI-induced expression of GADD45B was blocked by receptor-associated protein, which masks the ligand-binding domain of very low density lipoprotein receptor (VLDL-R). In conclusion, this is the first report to show an effect of TFPI on mRNA expression, and suggests that TFPI modulates cellular functions by inducing JUNB and GADD45B expression through binding to VLDL-R.  相似文献   

3.
Tissue factor pathway inhibitor (TFPI) is a multivalent Kunitz-type protease inhibitor that primarily inhibits the extrinsic pathway of blood coagulation. It is synthesized by various cells and its expression level increases in inflammatory environments. Mast cells and neutrophils accumulate at sites of inflammation and vascular disease where they release proteinases as well as chemical mediators of these conditions. In this study, the interactions between TFPI and serine proteinases secreted from human mast cells and neutrophils were examined. TFPI inactivated human lung tryptase, and its inhibitory activity was stronger than that of antithrombin. In contrast, mast cell chymase rapidly cleaved TFPI even at an enzyme to substrate molar ratio of 1:500, resulting in markedly decreased TFPI anticoagulant and anti-(factor Xa) activities. N-terminal amino-acid sequencing and MS analyses of the proteolytic fragments revealed that chymase preferentially cleaved TFPI at Tyr159-Gly160, Phe181-Glu182, Leu89-Gln90, and Tyr268-Glu269, in that order, resulting in the separation of the three individual Kunitz domains. Neutrophil-derived proteinase 3 also cleaved TFPI, but the reaction was much slower than the chymase reaction. In contrast, alpha-chymotrypsin, which shows similar substrate specificities to those of chymase, resulted in a markedly lower level of TFPI degradation. These data indicate that TFPI is a novel and highly susceptible substrate of chymase. We propose that chymase-mediated proteolysis of TFPI may induce a thrombosis-prone state at inflammatory sites.  相似文献   

4.
Tissue factor pathway inhibitor (TFPI) is a Kunitz-type serine proteinase inhibitor that down-regulates tissue factor-initiated blood coagulation. The most biologically active pool of TFPI is associated with the vascular endothelium, however, the biochemical mechanisms responsible for its cellular binding are not entirely defined. Proposed cellular binding sites for TFPI include nonspecific association with cell surface glycosaminoglycans and binding to glycosyl phosphatidylinositol-anchored proteins. Here, we report that TFPI binds specifically and saturably to thrombospondin-1 (TSP-1) purified from platelet alpha-granules with an apparent K(D) of approximately 7.5 nm. Binding is inhibited by polyclonal antibodies against TFPI and partially inhibited by the B-7 monoclonal anti-TSP-1 antibody. TFPI bound to immobilized TSP-1 remains an active proteinase inhibitor. Additionally, in solution phase assays measuring TFPI inhibition of factor VIIa/tissue factor catalytic activity, the rate of factor Xa generation was decreased 55% in the presence of TSP-1 compared with TFPI alone. Binding experiments done in the presence of heparin and with altered forms of TFPI suggest that the basic C-terminal region of TFPI is required for TSP-1 binding. The data provide a mechanism for the recruitment and localization of TFPI to extravascular surfaces within a bleeding wound, where it can efficiently down-regulate the procoagulant activity of tissue factor and allow subsequent aspects of platelet-mediated healing to proceed.  相似文献   

5.
The ability to regulate proteolytic functions is critical to cell biology. We describe events that regulate the initiation of the coagulation cascade on endothelial cell surfaces. The transmembrane protease receptor tissue factor (TF) triggers coagulation by forming an enzymatic complex with the serine protease factor VIIa (VIIa) that activates substrate factor X to the protease factor Xa (Xa). Feedback inhibition of the TF-VIIa enzymatic complex is achieved by the formation of a quaternary complex of TF-VIIa, Xa, and the Kunitz-type inhibitor tissue factor pathway inhibitor (TFPI). Concomitant with the downregulation of TF-VIIa function on endothelial cells, we demonstrate by immunogold EM that TF redistributes to caveolae. Consistently, TF translocates from the Triton X-100-soluble membrane fractions to low- density, detergent-insoluble microdomains that inefficiently support TF- VIIa proteolytic function. Downregulation of TF-VIIa function is dependent on quaternary complex formation with TFPI that is detected predominantly in detergent-insoluble microdomains. Partitioning of TFPI into low-density fractions results from the association of the inhibitor with glycosyl phosphatidylinositol anchored binding sites on external membranes. Free Xa is not efficiently bound by cell-associated TFPI; hence, we propose that the transient ternary complex of TF-VIIa with Xa supports translocation and assembly with TFPI in glycosphingolipid-rich microdomains. The redistribution of TF provides evidence for an assembly-dependent translocation of the inhibited TF initiation complex into caveolae, thus implicating caveolae in the regulation of cell surface proteolytic activity.  相似文献   

6.
7.
A mitogen for growth-arrested cultured bovine aortic smooth muscle cells was purified to homogeneity from the supernatant of cultured human umbilical vein endothelial cells by heparin affinity chromatography and reverse-phase high performance liquid chromatography. This mitogen was revealed to be tissue factor pathway inhibitor-2 (TFPI-2), which is a Kunitz-type serine protease inhibitor. TFPI-2 was expressed in baby hamster kidney cells using a mammalian expression vector. Recombinant TFPI-2 (rTFPI-2) stimulated DNA synthesis and cell proliferation in a dose-dependent manner (1-500 nM). rTFPI-2 activated mitogen-activated protein kinase (MAPK) activity and stimulated early proto-oncogene c-fos mRNA expression in smooth muscle cells. MAPK, c-fos expression and the mitogenic activity were inhibited by a specific inhibitor of MAPK kinase, PD098059. Thus, the mitogenic function of rTFPI-2 is considered to be mediated through MAPK pathway. TFPI has been reported to exhibit antiproliferative action after vascular smooth muscle injury in addition to the ability to inhibit activation of the extrinsic coagulation cascade. However, structurally similar TFPI-2 was found to have a mitogenic activity for the smooth muscle cell.  相似文献   

8.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a membrane-bound serine proteinase inhibitor having two extracellular Kunitz-type proteinase inhibitor domains (KD) namely KD-1 and KD-2. It efficiently inhibits hepatocyte growth factor activator, matriptase, hepsin, prostasin and trypsin. We have previously reported that the expression of HAI-1 suppresses the in vitro invasive capability of human glioblastoma cells. In this study we examined the role of each KD in the anti-invasive effect of HAI-1. Engineered over-expression of the mature membrane-form HAI-1 suppressed in vitro fibrin gel invasion of two human glioblastoma cell lines, U251 and YKG-1. The migratory activity on type IV collagen was also suppressed by the HAI-1 expression. These effects were not affected by the deletion of intracytoplasmic domain of HAI-1. A truncated secreted form of HAI-1 also suppressed in vitro invasion of the cells, indicating that the extracellular portion of HAI-1 was responsible for the anti-invasive effect. To determine the roles of each KD in the anti-invasive effect of HAI-1 in vitro, we constructed expression plasmids for HAI-1 with or without mutation at the P1 position of the reactive site of each KD. The results revealed that the proteinase inhibitor activity of N-terminal KD (KD-1) is responsible for the anti-invasion effect of HAI-1.  相似文献   

9.
10.
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is an integral membrane Kunitz-type serine proteinase inhibitor initially identified as a potent inhibitor of hepatocyte growth factor activator (HGFA). HGFA is a serum proteinase that is critically involved in the activation of hepatocyte growth factor/scatter factor (HGF/SF) in injured tissue. Previous studies have shown that HAI-1 is expressed on the basolateral surface of various epithelial cells. In this study, we analyzed the expression of HAI-1 in human endothelial cells. Immunohistochemically, HAI-1 protein was observed in the endothelial cells of capillaries, venules and lymph vessels. On the other hand, arterial endothelial cells were poorly stained for HAI-1. Mesothelial cells on the serous surface were also positively immunostained. The endothelial expression of HAI-1 was also examined in cultured human endothelial cells of various origins, such as umbilical vein, microvessels and aorta. Notably, in accordance with the results of immunohistochemistry, HAI-1 mRNA and protein levels were high in the endothelial cells derived from umbilical vein and were hardly detectable in those derived from aorta. A low but distinct level of HAI-1 expression was also observed in endothelial cells from microvessels. As these HAI-1-positive endothelial cells also expressed MET tyrosine kinase, the specific receptor of HGF/SF, it is conceivable that HAI-1 might have an important regulatory role in the HGF/SF-MET signaling axis of endothelial cells, which could be involved in the process of angiogenesis.  相似文献   

11.
Human tissue factor pathway inhibitor-2 (TFPI-2) is a matrix-associated Kunitz-type serine proteinase inhibitor that is secreted by all cells of the vasculature, and presumably plays a role in the regulation of plasmin-mediated matrix remodeling. In this report, we describe the cloning and expression of a full-length cDNA for bovine TFPI-2 that exhibits 72% sequence identity with that of human TFPI-2. Following a 22 residue signal peptide, the mature protein contains 212 amino acids with 18 cysteines, three putative N-glycosylation sites, and one putative O-glycosylation site. The deduced sequence of mature bovine TFPI-2 revealed a short acidic amino-terminal region, three tandem Kunitz-type domains, and a carboxy-terminal tail highly enriched in basic amino acids. Recombinant bovine TFPI-2 was expressed in HEK 293 cells and resolved into two isoforms, designated as alpha-TFPI-2 (M(r) 33 kDa) and beta-TFPI-2 (M(r) 31 kDa), which presumably represent differentially glycosylated forms of the inhibitor. Similar to human TFPI-2, both bovine TFPI-2 isoforms exhibited strong inhibitory activity towards trypsin and plasmin, and weak inhibitory activity towards the factor VIIa-tissue factor complex.  相似文献   

12.
13.
Lipoprotein lipase (LPL), the major enzyme responsible for the hydrolysis of circulating lipoprotein triglyceride molecules, is synthesized in myocytes and adipocytes but functions while bound to heparan sulfate proteoglycans (HSPGs) on the luminal surface of vascular endothelial cells. This requires transfer of LPL from the abluminal side to the luminal side of endothelial cells. Studies were performed to investigate the mechanisms of LPL transcytosis using cultured monolayers of bovine aortic endothelial cells. We tested whether HSPGs and members of the low density lipoprotein (LDL) receptor superfamily were involved in transfer of LPL from the basolateral to the apical side of cultured endothelial cells. Heparinase/heparinitase treatment of the basolateral cell surface or addition of heparin to the basolateral medium decreased the movement of LPL. This suggested a requirement for HSPGs. To assess the role of receptors, we used either receptor-associated protein, the 39-kDa inhibitor of ligand binding to the LDL receptor-related protein and the very low density lipoprotein (VLDL) receptor, or specific receptor antibodies. Receptor-associated protein reduced (125)I-LPL and LPL activity transfer across the monolayers. When the basolateral surface of the cells was treated with antibodies, only anti-VLDL receptor antibodies inhibited transcytosis. Moreover, overexpression of the VLDL receptor using adenoviral-mediated gene transfer increased LPL transcytosis. Thus, movement of active LPL across endothelial cells involves both HSPGs and VLDL receptor.  相似文献   

14.
15.
In the present study, we explored the active components in oxidized low-density lipoprotein (ox-LDL) that reduce the catalytic activity of tissue factor pathway inhibitor (TFPI), a Kunitz-type protease inhibitor of the extrinsic blood coagulation pathway. The active fraction was extracted from the phospholipid fraction of ox-LDL and separated. The oxidation products of 1- and/or 2-oleoyl phosphatidylcholine (PC) or phosphatidylethanolamine were the most potent compounds, while those of arachidonyl PC possessed only a weak inhibitory effect on the TFPI activity. These oxidized phospholipids associated strongly with rTFPI containing the carboxyl-terminal domain. When rTFPI was incubated with purified oxononanoyl PC (9CHO-PC) and its carboxylic form (9COOH-PC), the catalytic activity was specifically impaired, though neither oxovaleroyl PC (5CHO-PC) nor lyso-phospholipids reduced the TFPI activity. We conclude that the oxidation products of delta-9 unsaturated phospholipid in the lipoproteins are the active components that impair the anti-coagulation activity of TFPI.  相似文献   

16.
Tissue factor pathway inhibitor 2 (TFPI2) is a serine protease inhibitor critical for the regulation of extracellular matrix remodeling and atherosclerotic plaque stability. Previously, we demonstrated that TFPI2 expression is increased in monocytes from patients with familial combined hyperlipidemia (FCH). To gain insight into the molecular mechanisms responsible for this upregulation, we examined TFPI2 expression in THP-1 macrophages exposed to lipoproteins and thrombin. Our results showed that TFPI2 expression was not affected by treatment with very low density lipoproteins (VLDL), but was induced by thrombin (10 U/ml) in THP-1 (1.9-fold increase, p < 0.001) and human monocyte-derived macrophages (2.3-fold increase, p < 0.005). The specificity of the inductive effect was demonstrated by preincubation with the thrombin inhibitors hirudin and PPACK, which ablated thrombin effects. TFPI2 induction was prevented by pre-incubation with MEK1/2 and JNK inhibitors, but not by the EGF receptor antagonist AG1478. In the presence of parthenolide, an inhibitor of NFκB, but not of SR-11302, a selective AP-1 inhibitor, thrombin-mediated TFPI2 induction was blunted. Our results also show that thrombin treatment increased ERK1/2, JNK and IκBα phosphorylation. Finally, we ruled out the possibility that TFPI2 induction by thrombin was mediated by COX-2, as preincubation with a selective COX-2 inhibitor did not prevent the inductive effect. In conclusion, thrombin induces TFPI2 expression by a mechanism involving ERK1/2 and JNK phosphorylation, leading finally to NFkB activation. In the context of atherosclerosis, thrombin-induced macrophage TFPI2 expression could represent a means of avoiding excessive activation of matrix metalloproteases at sites of inflammation.  相似文献   

17.
Tissue factor (TF) serving as the receptor for coagulation factor VII (FVII) initiates the extrinsic coagulation pathway. We previously demonstrated that progesterone increases TF, coagulation and invasion in breast cancer cell lines. Herein, we investigated if tissue factor pathway inhibitor (TFPI) could down-regulate progesterone-increased TF activity in these cells. Classically, TFPI redistributes TF-FVII-FX-TFPI in an inactive quaternary complex to membrane associated lipid raft regions. Herein, we demonstrate that TF increased by progesterone is localized to the heavy membrane fraction, despite progesterone-increased coagulation originating almost exclusively from lipid raft domains, where TF levels are extremely low. The progesterone increase in coagulation is not a rapid effect, but is progesterone receptor (PR) dependent and requires protein synthesis. Although a partial relocalization of TF occurs, TFPI does not require the redistribution to lipid rafts to inhibit coagulation or invasion. Inhibition by TFPI and anti-TF antibodies in lipid raft membrane fractions confirmed the dependence on TF for progesterone-mediated coagulation. Through the use of pathway inhibitors, we further demonstrate that the TF up-regulated by progesterone is not coupled to the progesterone increase in TF-mediated coagulation. However, the progesterone up-regulated TF protein may be involved in progesterone-mediated breast cancer cell invasion, which TFPI also inhibits.  相似文献   

18.
19.
TFPI (tissue factor pathway inhibitor) is an anticoagulant protein that prevents intravascular coagulation through inhibition of fXa (Factor Xa) and the TF (tissue factor)-fVIIa (Factor VIIa) complex. Localization of TFPI within caveolae enhances its anticoagulant activity. To define further how caveolae contribute to TFPI anticoagulant activity, CHO (Chinese-hamster ovary) cells were co-transfected with TF and membrane-associated TFPI targeted to either caveolae [TFPI-GPI (TFPI-glycosylphosphatidylinositol anchor chimaera)] or to bulk plasma membrane [TFPI-TM (TFPI-transmembrane anchor chimaera)]. Stable clones had equal expression of surface TF and TFPI. TX-114 cellular lysis confirmed localization of TFPI-GPI to detergent-insoluble membrane fractions, whereas TFPI-TM localized to the aqueous phase. TFPI-GPI and TFPI-TM were equally effective direct inhibitors of fXa in amidolytic assays. However, TFPI-GPI was a significantly better inhibitor of TF-fVIIa than TFPI-TM, as measured in both amidolytic and plasma-clotting assays. Disrupting caveolae by removing membrane cholesterol from EA.hy926 cells, which make TFPIα, CHO cells transfected with TFPIβ and HUVECs (human umbilical vein endothelial cells) did not affect their fXa inhibition, but significantly decreased their inhibition of TF-fVIIa. These studies confirm and quantify the enhanced anticoagulant activity of TFPI localized within caveolae, demonstrate that caveolae enhance the inhibitory activity of both TFPI isoforms and define the effect of caveolae as specifically enhancing the anti-TF activity of TFPI.  相似文献   

20.
Tissue factor pathway inhibitor (TFPI) produced by endothelial cells contains sulfated Asn-linked oligosaccharides. We have determined that greater than 70% of the oligosaccharides on recombinant TFPI expressed in 293 cells terminate with the sequence SO4-4GalNAc beta 1, 4GlcNAc beta 1, 2Man alpha. Oligosaccharides terminating with this sequence have previously been described on lutropin, thyrotropin, and pro-opiomelanocortin: glycoproteins synthesized in the anterior pituitary. A GalNAc-transferase that recognizes the tripeptide motif Pro-Xaa-Arg/Lys 6-9 residues N-terminal to Asn glycosylation sites accounts for the specific addition of GalNAc to the oligosaccharide acceptor on these glycoproteins, whereas a GalNAc beta 1,4GlcNAc beta 1, 2Man alpha-4-sulfotransferase accounts for the addition of sulfate. The sulfated oligosaccharides present on these hormones are responsible for their rapid clearance from plasma by a receptor in hepatic reticuloendothelial cells. GalNAc- and sulfotransferase activities with the same properties as those expressed in the pituitary are detected at high levels in 293 cells and at lower levels in endothelial cells. Chinese hamster ovary (CHO) cells do not contain detectable levels of either transferase and rTFPI expressed in CHO cells does not contain sulfated Asn-linked oligosaccharides. TFPI contains the sequence Pro-Phe-Lys, 9 residues N-terminal to the glycosylation site at position 228; this tripeptide may act as the recognition sequence for the GalNAc-transferase. rTFPI produced by 293 cells, but not that produced by CHO cells, is bound by the receptor on hepatic reticuloendothelial cells suggesting the sulfated structures play a role in the biologic behavior of TFPI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号