首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local application of the agonists of serotonin receptors of third type 5-HTQ, SR57277A and quipazine into the interblastomere cleft of the sea urchin Paracentrotus lividus embryo during first cleavage division, evokes specific membrane currents, whereas application of these drugs out of contact area show currents of lower amplitude and longer latent period. At the same time 5-HT3-receptor agonist quipazine imitates interblastomere signal in half embryos, but corresponding antagonists prevent it. Present data develop the hypothesis of protosynapse, demonstrating that the distribution of membrane serotonin receptors is limited to the period of cleavage division and localized in the interblastomere contact area. A possible role of spatial-temporal restriction of receptors at the interblastomere contact area is discussed in relation to the subsequent embryo development.  相似文献   

2.
Forty serotonin-related neurochemicals were tested on embryos and larvae of Lytechinus variegatus and other sea urchin species. Some of these substances (agonists of 5-HT1 receptors, antagonists of 5-HT2, 5-HT3 or 5-HT4 receptors, and inhibitors of the serotonin transporter, SERT) perturbed post-blastulation development, eliciting changes in embryonic/larval phenotypes typical for each class of receptor ligand. These developmental malformations were prevented completely or partially by serotonin (5-HT) or 5-HT analogs (5-HTQ, AA-5-HT), providing evidence for the putative localization of cellular targets. Immunoreactive 5-HT, 5-HT receptors and SERT were found in pre-nervous embryos and larvae of both L. variegatus and Strongylocentrotus droebachiensis. During gastrulation, these components of the serotonergic system were localized to the archenteron (primary gut), mesenchyme-like cells, and often the apical ectoderm. These results provide evidence that pre-nervous 5-HT may regulate early events of sea urchin embryogenesis, mediated by 5-HT receptors or the 5-HT transporter.  相似文献   

3.
It was shown that local application of agonists of the 3rd type receptors 5-HTQ and quipazine into the interblastomere cleft of Paracentrotus lividus embryos evoked specific membrane currents. At the same time, ligands of 5-HT3-receptors specifically affected the cleavage patterns of half-embryos, i.e., imitated or avoided the interblastomere signal. In the view of the data obtained, we discuss a more precise concept of protosynapse, where the distribution of membrane serotonin receptors is restricted to the period of blastomere formation during cleavage and localized in the area of interblastomere contact.  相似文献   

4.
Two low-molecular-weight compounds were isolated from the parotid gland secret of the toad Bufo bufo, which by absorption spectra and HPLC-MS/MS chromatography data correspond to di- and trimethyl derivatives of serotonin (5-hydorxytryptamine): bufotenine (confirmed by counter synthesis) and bufotenidine (5-HTQ). In experiments on competitive radioligand binding, these compounds showed a higher affinity and selectivity for neuronal α7 nicotinic acetylcholine receptors compared with the muscular cholinergic receptors. The most efficient compound in terms of binding value was bufotenine, the efficiency of 5-HTQ was an order of magnitude lower, and the minimal activity was exhibited by serotonin.  相似文献   

5.
A classical neurotransmitter serotonin (5-HT) was detected immunochemically using laser scanning microscopy at the early stages of Tritonia diomedea development. At the one- to eight-cell stages, immunolabeling suggested the presence of 5-HT in the cytoplasm close to the animal pole. At the morula and blastula stages, a group of micromeres at the animal pole showed immunoreactivity. At the gastrula stage no immunoreactive cells were detected, but they arose again at the early veliger stage. Antagonists of 5-HT(2) receptors, ritanserin and cyproheptadine, as well as lipophilic derivatives of dopamine blocked cleavage divisions or distorted their normal pattern. These effects were prevented by 5-HT and its highly lipophilic derivates, serotoninamides of polyenoic fatty acids, but not by the hydrophilic (quaternary) analog of 5-HT, 5-HTQ. The results confirm our earlier suggestion that endogenous 5-HT in pre-nervous embryos acts as a regulator of cleavage divisions in nudibranch molluscs.  相似文献   

6.
Intracellular signaling mediated by calcium ions has been implicated as important in controlling cell activity. The ability of calcium ionophore (A23187), which causes an increase in calcium ion concentration in the cytoplasm, to alter the pattern of differentiation of cells during sea urchin development was examined. The addition of A23187 to embryos for 3h during early cleavage causes dramatic changes in their development during gastrulation. Using tissue-specific cDNA probes and antibodies, it was shown that A23187 causes the disruption of oral–aboral ectoderm differentiation of sea urchin embryos. The critical period for A23187 to disturb the oral–aboral ectoderm differentiation is during the cleavage stage, and treatment of embryos with A23187 after that time has little effect. The A23187 does not affect the formation of the three germ layers. These results indicate that intracellular signals mediated by calcium ions may play a key role in establishment of the oralaboral axis during sea urchin development.  相似文献   

7.
Possible interaction of the serotonergic system with intracellular calcium mechanisms was investigated using techniques of ratio imaging measurement of intracellular Ca2+ and confocal microscopy in cleaving embryos of sea urchin Lytechinus pictus. Some serotonin antagonists specifically increase free intracellular Ca2+ and evoke transient regression of the first cleavage furrow, suggesting possible linkage of serotonergic and calcium mechanisms in the regulation of cellular events during cleavage divisions. These effects were more pronounced in the experiments with hydrophilic 5-HT-antagonists, quarternary ammonium salts that do not penetrate the cell membrane. Thus, it appears that 5-HT-receptors which mediate these effects are localised on the cell membrane, whereas previously studied receptors mediating the cytostatic action of lipophilic 5-HT-antagonists are localised intracellularly.  相似文献   

8.
I E Sadokova 《Ontogenez》1989,20(1):63-69
Abnormal cleavage, decrease in the intracellular cAMP and cGMP content and a trend for increase of extracellular cAMP content were observed in sea urchin embryos incubated with KIuR-14 serotoninolytic substance. The addition of serotonin leads to normalization of cleavage and cAMP and cGMP content. It suggests serotonin-specific effect of KIuR-14 and functional relations between serotonin and cyclic nucleotides.  相似文献   

9.
Embryonic differentiation is believed to be due to a programmed expression of genes, which includes their time of activation, sequence of appearance, and amount transcribed into the immediate gene product, RNA. Differential synthesis of the major RNA classes, such as the ribosomal RNAs (28S, 18S, 5S) and transfer RNA (tRNA), characterizes many animal developing systems, including the sea urchin embryological system. Previous work has shown that the genes for 5S RNA and tRNA are active during early cleavage in sea urchin embryos. The present study focused on quantitatively measuring and comparing the rate of 5S RNA and tRNA synthesis in cleavage, early blastula, and early pluteus embryos of Arbacia punctulata. At each stage, embryos were labeled for 3 h with [8-3H]-guanosine. Total cellular RNA was extracted using the cold (4°C)-phenol-sodium dodecyl sulfate method and purified (LiCl-soluble) RNA preparations were fractionated by electrophoresis on 10% polyacrylamide gels. The amount of 5S RNA and tRNA synthesized at each stage was calculated from the radioactivity coincident with the 5S RNA and with the tRNA absorbance peaks (A260 nm) on each gel, from the known guanosine monophosphate (GMP) compositions of sea urchin 5S RNA and tRNA and from the average specific radioactivity of the GTP precursor pool during each 3 h labeling period. The results showed that on a per embryo basis the rates of 5S RNA and tRNA synthesis increased slightly (about 1.4-fold) from cleavage through pluteus stages, while on a per cell basis the rates declined severalfold (about 3-fold) during embryogenesis. The rates of 5S RNA and tRNA synthesis determined here parallel previously-reported levels of RNA polymerase III in sea urchin embryos, suggesting that cellular levels of RNA polymerase III may exert some positive control over 5S RNA and tRNA synthesis during sea urchin embryogenesis.  相似文献   

10.
11.
The cell cycle is driven by the activity of cyclin/cdk complexes. In somatic cells, cyclin E/cdk2 oscillates throughout the cell cycle and has been shown to promote S-phase entry and initiation of DNA replication. In contrast, cyclin E/cdk2 activity remains constant throughout the early embryonic development of the sea urchin and localizes to the sperm nucleus following fertilization. We now show that cyclin E localization to the sperm nucleus following fertilization is not unique to the sea urchin, but also occurs in the surf clam, and inhibition of cyclin E/cdk2 activity by roscovitine inhibits the morphological changes indicative of male pronuclear maturation in sea urchin zygotes. Finally, we show that inhibition of cyclin E/cdk2 activity does not block DNA replication in the early cleavage cycles of the sea urchin. We conclude that cyclin E/cdk2 activity is required for male pronuclear maturation, but not for initiation of DNA replication in early sea urchin development.  相似文献   

12.
The dated treatment of the early embryos of an irregular (flat) sea urchin Scaphechinus mirabilis by neuropharmacological drugs (anti-neurotransmitters) during one of the first four cleavage divisions results in the impairment of intercellular connections and leads to the formation of twin embryos, dwarf embryos, embryos of the dumb-bell shape etc. In the experiments with some of the drugs under study such developmental abnormalities were not seen or were expressed much more weakly when serotonin or bufotenin (N,N-dimethylserotonin) were added to the medium. A suggestion is put forward that the early embryos possess an intracellular mechanism participating in the interaction between the cells and operating via endogenous monoamines, primarily serotonin.  相似文献   

13.
14.
1. The presence of serotonin binding sites in blastula, gastrula, prism, and pluteus embryos of the sea urchin, Arbacia punctulata, was investigated by the binding of radiolabelled serotonin to dissociated embryo cells. 2. [3H]serotonin binding sites were identified in prism, early pluteus, and advanced pluteus larvae, but not in blastula or gastrula embryos. 3. The ontogeny of [3H]serotonin binding activity closely parallels that of serotonin content as previously reported in Paracentrotus lividus embryos (Toneby, 1977a). 4. Results of this study support a regulatory role of serotonin in developmental processes in postgastrula sea urchin embryos.  相似文献   

15.
The presence of serotonin in sea urchin eggs has been ascertained by high-performance liquid chromatography and thin-layer chromatography analysis of tissue-free bioamines. The results show the presence of both serotonin and 5-methoxytryptamine. The role of these substances in the cell division process has been studied by using the serotonin antagonists, gramine and metergoline. Both antagonists cause a significant delay of the cell division which, however, can be prevented by the addition of either 5-hydroxytryptophane, serotonin, or 5-methoxytryptamine. The effect of gramine on the different stages of the cell division process has also been investigated. Neither S phase nor mitosis are affected by the serotonin antagonist, while cleavage is delayed. The effect of serotonin seems mediated by calcium ions and cAMP. Gramine causes a marked increase in radio-calcium efflux from the fertilized egg, and at the same time lowers the cAMP level.  相似文献   

16.
1. Methiodide derivatives of serotonin blockers—inmecarb and K.Yur-14 which poorly penetrate the cells specifically affect the pattern of cleavage division in half-embryos of Paracentrotus lividus and Scaphechinus mirabilis.2. Specific [3H]8-OH-DPAT binding under conditions strictly limiting penetration of the ligand into the cells of Strongylocentrotus intermedius was also shown (Kd ∼ 3 × 10−10M for a site with the greatest affinity).3. On the basis of the data obtained it is concluded that neurotransmitter-specific membrane receptors may be present in sea urchin embryos during cleavage divisions. The “protosynapse” hypothesis is proposed which suggests the existence of a specific structure responsible for early blastomere interaction involving transmitters.  相似文献   

17.
18.
Protein kinase C (PKC) has been implicated as important in controlling cell differentiation during embryonic development. We have examined the ability of 12-O-tetradecanoyl phorbol-13-acetate (TPA), an activator of PKC, to alter the differentiation of cells during sea urchin development. Addition of TPA to embryos for 10-15 min during early cleavage caused dramatic changes in their development during gastrulation. Using tissue-specific antibodies, we have shown that TPA causes the number of cells that differentiate as endoderm and mesoderm to increase relative to the number that differentiate as ectoderm. cDNA probes show that treatment with TPA causes an increase in accumulation of RNAs specific to endoderm and mesoderm with a concomitant decrease in RNAs specific to ectoderm. Treatment of isolated prospective ectodermal cells with TPA causes them to differentiate into endoderm and mesoderm. The critical period for TPA to alter development is during early to mid cleavage, and treatment of embryos with TPA after that time has little effect. These results indicate that PKC may play a key role in determining the fate of cells during sea urchin development.  相似文献   

19.
DNA polymerase activity was measured in mouse embryos at stages before implantation to determine whether it increases in proportion to the amount of DNA synthesis, as it does in populations of differentiated mammalian cells, or remains constant, as it does in early sea urchin embryos. Total enzyme activity was found to be relatively unchanged following fertilization and in the first few cleavage stages. However, between the 12- and 120-cell (blastocyst) stage, the amount of activity increased by several-fold. These results indicate that the relationship between amount of DNA polymerase activity and DNA synthesis in mouse embryos exhibits two phases: in the early cleavage phase it is similar to that in sea urchin embryos, whereas, in the blastocyst phase, it is similar to that in differentiated mammalian cells.  相似文献   

20.
In Xenopus and Drosophila, the nucleocytoplasmic ratio controls many aspects of cell-cycle remodeling during the transitory period that leads from fast and synchronous cell divisions of early development to the slow, carefully regulated growth and divisions of somatic cells. After the fifth cleavage in sea urchin embryos, there are four populations of differently sized blastomeres, whose interdivision times are inversely related to size. The inverse relation suggests nucleocytoplasmic control of cell division during sea urchin development as well. To investigate this possibility, we developed a mathematical model based on molecular interactions underlying early embryonic cell-cycle control. Introducing the nucleocytoplasmic ratio explicitly into the molecular mechanism, we are able to reproduce many physiological features of sea urchin development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号