首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Skeletal muscles are characterized as fast and slow muscles, according to the expression pattern of myosin heavy chain (MyHC) isoforms in the muscle fibers. To investigate the relationships between MyHC isoforms and myogenic regulatory factors (MRFs) including MyoD, Myf5, myogenin, and MRF4 in adult skeletal muscles, expressions of these MRFs in the ten muscles of three cows were analyzed by a semi-quantitative RT-PCR. The results showed that MyoD expression was significantly lower in the lingual muscles (TN), masseter (MS) and diaphragm (DP), which lack MyHC-2x (fast glycolytic) expression and abound with MyHC-slow (slow oxidative) and/or MyHC-2a (fast oxidative), than it was in the pectoralis (PP), psoas major (PM), longissimus thoracis (LT), spinnalis (SP), semitendinosus (ST), semimembranosus (SM), and biceps femoris (BF). In contrast, the Myf5 expression in TN, MS, and DP was significantly higher than in PM, LT, ST, SM, and BF. No significant difference was observed in myogenin and MRF4 expression among the muscles tested. The results suggest that MyoD and Myf5 influence the MyHC isoform expression, although the effects are not decisive in specifying the phenotypes of adult muscles.  相似文献   

3.
The osmium-pyroantimonate technique was used for the ultrastructural study of Ca2+-localization in two types of chick embryo skeletal muscles: m. pectoralis and m. soleus. In 8- and 12-day old embryos the pyroantimonate precipitate was found on plasmalemma, condensed chromatine and ribosomes and in N-lines of I-band. During myogenesis (15-, 21-day old embryos) the calcium precipitate is redistributed from the above mentioned sites to terminal cisternae and N-line of I-band. It is proposed that calcium of N-lines may be involved in the glycogenolysis, its association with the muscle contraction occurring particularly at early developmental stages.  相似文献   

4.
Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo   总被引:1,自引:0,他引:1  
The role of Wnt signaling in osteoblastogenesis in the embryo remains to be fully established. Although β-catenin, a multifunctional protein also mediating canonical Wnt signaling, is indispensable for embryonic osteoblast differentiation, the roles of the key Wnt co-receptors Lrp5 and Lrp6 are unclear. Indeed, global deletion of either Lrp5 or Lrp6 did not overtly affect osteoblast differentiation in the mouse embryo. Here, we generated mice lacking both receptors specifically in the embryonic mesenchyme and observed an absence of osteoblasts in the embryo. In addition, the double-deficient embryos developed supernumerary cartilage elements in the zeugopod, revealing an important role for mesenchymal Lrp5/6 signaling in limb patterning. Importantly, the phenotypes of the Lrp5/6 mutant closely resembled those of the β-catenin-deficient embryos. These phenotypes are likely independent of any effect on the adherens junction, as deletion of α-catenin, another component of the complex, did not cause similar defects. Thus, Lrp5 and 6 redundantly control embryonic skeletal development, likely through β-catenin signaling.  相似文献   

5.
Enzymatic heterogeneity of the capillary bed of rat skeletal muscles   总被引:4,自引:0,他引:4  
This study of the capillaries in rat skeletal muscle involved the use of a histochemical method that allows one to distinguish between arterial and venous portions of capillaries. Under controlled staining conditions, the arterial portion of the capillary bed reacts positively for alkaline phosphatase (AP) activity, and the venous portion is positive for dipeptidyl peptidase IV (DPP IV) activity. A short transitional capillary segment is positive for the activity of both enzymes. Capillaries of the normal soleus muscle and the red and white portions of the sternomastoid muscle have been quantitatively analyzed. Quantitative data demonstrated differences in capillary dimensions among the muscles studied. Capillaries of the white part of the sternomastoid were the longest, and they had the shortest DPP IV-positive segment (8% of the total capillary length). Capillaries of the soleus muscle were the shortest, and they also had short DPP IV-positive segments (16%). In contrast, the DPP IV-positive segments of the red part of the sternomastoid occupied 60% of the total capillary length. Survey cross sections reveal a mosaic distribution of patches of capillaries stained for AP and DPP IV activity. This study reveals that within given bundles of muscle fibers, the capillaries that run parallel to the muscle fibers are aligned relative to one another in such a manner that their arterial and venous segments are in register.  相似文献   

6.
Myf5 plays a central role in determination of the myogenic lineage, yet the signalling pathways that control its activation remain unclear. In adult muscle, Myf5 is expressed in satellite cells and muscle spindles but not by myonuclei. However, Myf5 expression is activated in myonuclei in response to muscle denervation. This can be modelled in culture using Myf5nlacZ/+ mice, allowing signalling pathways controlling Myf5 to be readily examined. We found that mitogen-rich medium induces activation of the Myf5 locus through calcium, which interacts with calmodulin to promote calcineurin and calmodulin kinase. Calcineurin activates NFAT to control Myf5 activation, while p38/JNK activity prevents activation by this route. Calmodulin kinase however, acts predominately through ERK signalling to activate Myf5. Interestingly, we found that IGF-1 can substitute for mitogen-rich medium and activates Myf5 through calcium, PI3K and ERK pathways. Together these observations show that Myf5 activation in adult muscle is accomplished by a complex signalling pathway, and provides candidates that can be examined for their role in Myf5 regulation during development.  相似文献   

7.
8.
In the skeletal muscles of the chick embryo from the 10th till the 15th day of embryogenesis, phosphorylase (EC. 2.4.1.1) is represented by two isozymes one of which corresponds, by electrophoretic mobility, to the liver phosphorylase and another to phosphorylase of the skeletal muscles of the adult rat. From the 17th day of embryogenesis on only one isozyme of phosphorylase is found in the skeletal muscles which is identical with that of the skeletal muscles of the adult bird. The isozyme spectrum of phosphorylase of the whole 4 days old embryo contains, besides phosphorylase L, a special "embryonic" isozyme which differs from that of the skeletal muscles by immunochemical characteristics and electrophoretic mobility. From the 10th day of embryogenesis till hatching, the activity of phosphorylase of the skeletal muscles increases more than 50 times and that of glycogen synthetase (EC. 2.4.1.11) only 4 times.  相似文献   

9.
10.
11.
The reaction product of acetylcholinesterase (AChE) activity is known to be specifically localized at a neuromuscular junction and a muscle-tendon junction of the striated skeletal muscles. In addition to the two junctions, we recently found some linear precipitates due to AChE activity running transversely across a fibre of the semitendinosus, rectus abdominis, gastrocnemius, tibialis anterior and diaphragm muscles in mice. Under an electron microscope, the linear precipitates were seen at the extracellular side of the muscle fibre endings. Most of the endings contacted each other to form a junction, which has been called the 'myomyous junction (M-Mj)'. The patterns of the M-Mj were grouped into three types: (1) a junction in which all contacts were firm, without any connective tissue, and invaginated deeply; (2) the ones in which numerous collagen fibres were visible in the space between the two separate opposing muscle fibres; (3) an intermediate type between (1) and (2), i.e. a junction with partial contacts. The muscle fibre ending forming M-Mj was constructed of finger-like processes like that of a muscle-tendon junction. However, the processes of a M-Mj adhered so closely to each other that no collagen fibrils could penetrate into their folds.  相似文献   

12.
J L Plassat  U Boschert  N Amlaiky    R Hen 《The EMBO journal》1992,11(13):4779-4786
Serotonin (5-HT) is a neuromodulator that mediates a wide range of physiological functions by activating multiple receptors. Using a strategy based on amino acid sequence homology between 5-HT receptors that interact with G proteins, we have isolated a cDNA encoding a new serotonin receptor from a mouse brain library. Amino acid sequence comparisons revealed that this receptor was a distant relative of all previously identified 5-HT receptors; we therefore named it 5HT5. When expressed in Cos-7 cells and NIH-3T3 cells, the 5HT5 receptor displayed a high affinity for the serotonergic radioligand [125I]LSD. Surprisingly, its pharmacological profile resembled that of the 5HT1D receptor, which is a 5-HT receptor subtype which has been shown to inhibit adenylate cyclase and which is predominantly expressed in basal ganglia. However, unlike 5HT1D receptors, the 5HT5 receptor did not inhibit adenylate cyclase and its mRNA was not found in basal ganglia. On the contrary, in situ hybridization experiments revealed that the 5HT5 mRNA was expressed predominantly in cerebral cortex, hippocampus, habenula, olfactory bulb and granular layer of the cerebellum. Our results therefore demonstrate that the 5HT1D receptors constitute a heterogeneous family of receptors with distinct intracellular signalling properties and expression patterns.  相似文献   

13.
14.
The pyruvate dehydrogenase activity in the skeletal muscle during chicken embryo-genesis and early postnatal life amounts to 550 +/- 50 mU per g tissue, on the average; electrostimulation (1 Hz) induced a two-fold increase in its activity starting from the 15th day of incubation.  相似文献   

15.
16.
To generate temporally controlled targeted somatic mutations selectively and efficiently in skeletal muscles, we established a transgenic HSA-Cre-ER(T2) mouse line in which the expression of the tamoxifen-dependent Cre-ER(T2) recombinase is under the control of a large genomic DNA segment of the human skeletal muscle alpha-actin gene, contained in a P1-derived artificial chromosome. In this transgenic line Cre-ER(T2) is selectively expressed in skeletal muscles, and Cre-ER(T2)-mediated alteration of LoxP flanked (floxed) target genes is skeletal muscle-specific and strictly tamoxifen-dependent. HSA-Cre-ER(T2) mice should be of great value to analyze gene function in skeletal muscles, and to establish animal models of human skeletal muscle disorders.  相似文献   

17.
Since there are data to indicate that heavy exercise decreases insulin binding to skeletal muscle at a point when glucose uptake is known to be augmented, we tested the hypothesis that insulin-stimulated glucose uptake and metabolism are dissociated from insulin binding after exercise. Therefore, insulin binding, 2-deoxy-d-glucose (2-DOG) uptake and glucose incorporation into glycogen and glycolysis were compared in soleus and EDL muscles of intensively exercised (2-3 h) mice and non-exercised mice. Basal 2-DOG uptake was increased in the exercised EDL (P less than 0.05) but not in the exercised soleus (P greater than 0.05). However, in both muscles intense exercise increased insulin-stimulated (0.1-16 nM) 2-DOG uptake (P less than 0.05). The rates of glycogenesis were increased in both the exercised muscles (P less than 0.05) as was the rate of glycolysis in the exercise soleus (P less than 0.05). Glycolysis was not altered in the EDL (P greater than 0.05). In the face of the increased 2-DOG uptake and glucose metabolism in the exercised muscles, insulin binding was not altered in the exercised soleus muscle (P greater than 0.05) and was decreased in the exercised EDL (P less than 0.05). These results indicate that after intense exercise there is a dissociation of insulin binding from insulin action on glucose uptake and metabolism in skeletal muscles.  相似文献   

18.
Isolation of a gene based on its location, which depends on aligning physical landmarks with the genetic map, can yield basic information about genome structure and organization. As a first step toward isolating the mouse agouti (A) locus, we have begun to define the physical position of this gene relative to genetically linked DNA probes from the Psp, Emv-15, and Src loci. Using a combination of pulsed-field gel techniques that include partial digestion with rare-cutting restriction enzymes and analysis of polymorphic sites present in certain inbred strains, we have constructed long-range restriction maps for each of the probes that span a total of more than 3000 kb. The Src and Emv-15 probes are less than 600 kb apart, but are separated from the Psp probe by at least 1500 kb. By determining the position of a 75-kb deletion that inactivates agouti function, we have localized the A locus to within 500 kb of the Psp probe, but more than 600 kb away from the Emv-15 probe. These physical distances contrast with the known recombination frequencies, 3 +/- 3 cM for A-Psp and less than 0.3 cM for A-Emv-15, and suggest that recombination between A and Emv-15 may be suppressed.  相似文献   

19.
1. Initiation of subsynaptic sarcolemmal specialization and expression of different molecular forms of AChE were studied in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle of the rat under different experimental conditions in order to understand better the interplay of neural influences with intrinsic regulatory mechanisms of muscle cells. 2. Former junctional sarcolemma still accumulated AChE and continued to differentiate morphologically for at least 3 weeks after early postnatal denervation of EDL and SOL muscles. In noninnervated regenerating muscles, postsynaptic-like sarcolemmal specializations with AChE appeared (a) in the former junctional region, possibly induced by a substance in the former junctional basal lamina, and (b) in circumscribed areas along the whole length of myotubes. Therefore, the muscle cells seem to be able to produce a postsynaptic organization guiding substance, located in the basal lamina. The nerve may enhance the production or accumulation of this substance at the site of the future motor end plate. 3. Significant differences in the patterns of AChE molecular forms in EDL and SOL muscles arise between day 4 and day 10 after birth. The developmental process of downregulation of the asymmetric AChE forms, eliminating them extrajunctionally in the EDL, is less efficient in the SOL. The presence of these AChE forms in the extrajunctional regions of the SOL correlates with the ability to accumulate AChE in myotendinous junctions. The typical distribution of the asymmetric AChE forms in the EDL and SOL is maintained for at least 3 weeks after muscle denervation. 4. Different patterns of AChE molecular forms were observed in noninnervated EDL and SOL muscles regenerating in situ. In innervated regenerates, patterns of AChE molecular forms typical for mature muscles were instituted during the first week after reinnervation. 5. These results are consistent with the hypothesis that intrinsic differences between slow and fast muscle fibers, concerning the response of their AChE regulating mechanism to neural influences, may contribute to different AChE expression in fast and slow muscles, in addition to the influence of different stimulation patterns.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号