首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, dynamic light scattering (DLS), turbidity, and rheo-small angle light scattering (rheo-SALS) methods have been utilized to examine the impact of pH (1 < or = pH < or = 7) on aqueous solutions of noncommercial purified pig gastric mucin. The asymmetric flow field-flow fractionation (AFFFF) measurements established that the mucin sample has a high molecular weight and is polydisperse. DLS measurements on dilute solutions of mucin disclosed large interchain aggregates at pH 2, where the polymer has a low charge density or is uncharged. At lower or higher values of pH, mucin is charged and the tendency of forming interpolymer complexes is affected. In the semidilute concentration regime, pronounced junction zones ('lumps' of polymer) are evolved and a heterogeneous connected network is formed at pH 2, whereas the association structures are disintegrated (smaller 'lumps') at lower or higher pH values due to electrostatic repulsive interactions, and a more homogeneous network is evolved. The DLS and viscosity results at pH 1 indicate the development of a fragmented network, composed of contracted chains that are decorated by some positive charges. The effect of shear flow on the structure of semidilute solutions of mucin was investigated with the aid of rheo-SALS methods. The scattered intensity revealed a strong upturn at low values of the wave vector (q) for mucin solutions at pH 2 and pH 4, which suggests the evolution of large association domains. At these pH values, a flow-induced anisotropy in the 2D SALS patterns in the form of elliptical shapes was observed at high shear rates.  相似文献   

2.
Mammalian gastric mucin, at high concentration, is known to form a gel at low pH, behavior essential to the protection of the stomach from auto-digestion. Atomic force microscopy (AFM) measurements of dilute solutions of porcine gastric mucin in an aqueous environment in the pH range 6-2 provide a direct visualization of extended fiberlike molecules at pH 6 that aggregate at pH 4 and below forming well-defined clusters at pH 2. The clusters consist of 10 or less molecules. AFM images of mucin at high concentration at pH 2 reveal clusters similar to those seen in the dilute solutions at low pH. We also imaged human gastric mucus revealing a network having a "pearl necklace" structure. The "pearls" are similar in size to the clusters found in the purified porcine gastric mucin gels. AFM images of deglycosylated mucin reveal that the deglycosylated portions of the molecule re-fold into compact, globular structures suggesting that the oligosaccharide chains are important in maintaining the extended conformation of mucin. However, the oligosaccharides do not appear to be directly involved in the aggregation at low pH, as clusters of similar size are observed at pH 2 in both native and deglycosylated mucin.  相似文献   

3.
Animal hairs consist of aggregates of dead cells filled with keratin protein gel. We succeeded in preparing water-soluble hard-keratin proteins and reconstructing the keratin gels by heat-induced disulfide linkages in vitro. Here, the roles of intermolecular hydrophobic interaction and disulfide bonding between the proteins in the gel were discussed. Water-soluble keratin proteins consisting of mixtures of type I ( approximately 48 kDa) and type II ( approximately 61 kDa) were prepared from wool fibers as S-carboxymethyl alanyl disulfide keratin (CMADK). The gelation was achieved by heating an aqueous solution containing at least 0.8 wt % CMADK at 100 degrees C. CMADK solutions with different urea or N-ethylmaleimide concentrations or pH were exposed to dynamic light scattering (DLS) and circular dichroism (CD). DLS clarified the gelation point of CMADK solutions and provided information on the changes in keratin cluster size. DLS suggested two types of gelation mechanism. One was the regenerated chemical disulfide bonding between keratins from CMAD parts of chains. After the gel formed, this bond became important to maintain the gel structure. The other was the physical assembly due to hydrophobic interaction between alpha-helix parts of keratin chains. This hydrophobic assembly also played an important role during gelation. CD confirmed a conformational change in the keratin protein, resulting heat-induced gelation. CD clarified the relationship between keratin protein conformation and gelation, i.e., a rodlike conformation with many alpha-helix structures was necessary to associate keratin chains and form a gel network.  相似文献   

4.
Gastric mucin, a high molecular weight glycoprotein, is responsible for providing the gel-forming properties and protective function of the gastric mucus layer. Bulk rheology measurements in the linear viscoelastic regime show that gastric mucin undergoes a pH-dependent sol-gel transition from a viscoelastic solution at neutral pH to a soft viscoelastic gel in acidic conditions, with the transition occurring near pH 4. In addition to pH-dependent gelation behavior in this system, further rheological studies under nonlinear deformations reveal shear thinning and an apparent yield stress in this material which are also highly influenced by pH.  相似文献   

5.
The current accepted model for high-molecular-weight gastric mucins of the MUC family is that they adopt a polydisperse coil conformation in bulk solutions. We develop this model using well-characterized highly purified porcine gastric mucin Orthana that is genetically close to the human MUC6 type. It has short side chains and low levels of sialic acid residues and includes minute amounts of cysteine residues that, if abundant, can be responsible for the self-polymerization of mucin. We have established that the mucin structure in bulk solutions corresponds to a daisy-chain random coil. Dynamic light scattering experiments probe the internal dynamics of globular subunits (individual daisies) at the approximately 9 nm length scale, whereas viscosity and light scattering measurements indicate that the size of the whole mucin chains is much larger, approximately 50 nm. The bulk viscosity (eta) scales with mucin concentration (c) in a manner similar to that found for short-side-chain synthetic comb polyelectrolytes and is characterized by a transition between semidilute (eta approximately c1/2) and entangled (eta approximately c3/2) regimes.  相似文献   

6.
The purpose of this work was to establish ultrasonic storage modulus (G') as a novel parameter for characterizing protein-protein interactions (PPI) in high concentration protein solutions. Using an indigenously developed ultrasonic shear rheometer, G' for 20-120 mg/ml solutions of a monoclonal antibody (IgG(2)), between pH 3.0 and 9.0 at 4 mM ionic strength, was measured at frequency of 10 MHz. Our understanding of ultrasonic rheology indicated decrease in repulsive and increase in attractive PPI with increasing solution pH. To confirm this behavior, dynamic (DLS) and static (SLS) light scattering measurements were conducted in dilute solutions. Due to technical limitations, light scattering measurements could not be conducted in concentrated solutions. Mutual-diffusion coefficient, measured by DLS, increased with IgG(2) concentration at pH 4.0 and this trend reversed as pH was increased to 9.0. Second virial coefficient, measured by SLS, decreased with increasing pH. These observations were consistent with the nature of PPI understood from G' measurements. Ultrasonic rheology, DLS, and SLS measurements were also conducted under conditions of increased ionic strength. The consistency between rheology and light scattering analysis under various solution conditions established the utility of ultrasonic G' measurements as a novel tool for analyzing PPI in high protein concentration systems.  相似文献   

7.
Gastric mucin is a glycoprotein known to undergo a pH-dependent sol-gel transition that is crucial to the protective function of the gastric mucus layer in mammalian stomachs. We present microscope-based dynamic light scattering data on porcine gastric mucin at pH 6 (solution) and pH 2 (gel) with and without the presence of tracer particles. The data provide a measurement of the microscale viscosity and the shear elastic modulus as well as an estimate of the mesh size of the gel formed at pH 2. We observe that the microscale viscosity in the gel is about 100-fold lower than its macroscopic viscosity, suggesting that large pores open up in the gel reducing frictional effects. The data presented here help to characterize physiologically relevant viscoelastic properties of an important biological macromolecule and may also serve to shed light on diffusive motion of small particles in the complex heterogeneous environment of a polymer gel network.  相似文献   

8.
The current accepted model for high-molecular-weight gastric mucins of the MUC family is that they adopt a polydisperse coil conformation in bulk solutions. We develop this model using well-characterized highly purified porcine gastric mucin and examine the molecules' charge and interfacial adsorption. "Orthana" mucin has short side-chains, low levels of sialic acid residues, and includes minute amounts of cystine residues that can be responsible for the self-polymerization of mucin. Atomic force microscopy and transmission electron microscopy are used to examine the interfacial behavior of the mucin and clearly demonstrate the existence of discrete spherical subunits within the mucin molecules, with sizes in agreement with static light scattering, dynamic light scattering, and zeta potential measurements. Furthermore images indicate the combs are assembled with a beads on a string conformation; the daisy chain model. Zeta potential measurements establish the polyampholyte nature of the mucin molecules, which is used to explain their adsorption behavior on similarly charged surfaces.  相似文献   

9.
For the first time, Pulsed Field Gradient-Nuclear Magnetic Resonance, a powerful noninvasive tool for studying the dynamics and structure of complex gels, has been used to measure diffusion of probe molecules in aqueous solutions/gels of noncommercial purified pig gastric mucin (PGM), in a concentration range up to 5 wt %. Complementary data were obtained from rheology measurements. The combination of techniques revealed a strong pH dependency of the structure of the PGM samples while changes in concentration, ionic strength, and temperature appeared to induce less pronounced alterations. Viscosity was found to vary in a nonmonotonous way with pH, with the more viscous solutions found at intermediate pH. We propose that this finding is due to a reduced charge density at lower pH, which is expected to continuously increase the relative importance of hydrophobic associations. The results suggest a loose network of expanded fully charged PGM molecules with considerable mobility at neutral pH (pH 7.4). At intermediate pH (pH 4), a three-dimensional expanded network is favored. At pH 1, the charge density is low and microphase separation occurs since hydrophobic associations prevail. This leads to the formation of clusters concentrated in PGM molecules separated by regions depleted in PGM. The results obtained increase our knowledge about the gastric mucosal layer, which in vivo contains mucin in the same concentration range as that of the samples investigated here.  相似文献   

10.
Time-resolved small-angle X-ray scattering (TR-SAXS) was used to study the kinetics of a large conformational change that occurs during the maturation of an icosahedral virus. Virus-like particles (VLPs) of the T=4 non-enveloped RNA virus Nudaurelia capensis omega virus (NomegaV) were shown to undergo a large pH-dependent conformational change. Electron cryo-microscopy (cryoEM) and X-ray solution scattering were used to show that the precursor VLP (procapsid) was 16 % larger in diameter than the resulting capsid, which was shown by the cryoEM study to closely resemble the infectious mature virion. The procapsid form of the VLPs was observed at pH 7.5 and was converted to the capsid form at pH 5.0. Static SAXS measurements of the VLPs in solutions ranging between these pH values determined that the half-titration point of the transition was pH 6.0. Time-resolved SAXS experiments were performed on VLP solutions by initiating a pH change from 7.5 to 5.0 using a stopped-flow device, and the time-scale of the conformational change occurred in the subsecond range. Using a less drastic pH change (lowering the pH to 5.8 or 5.5), the conformational change occurred more slowly, on the subminute or minute time-scale, with the detection of a fast-forming intermediate in the transition. Further characterization using static SAXS measurements showed that the conformational change was initially reversible but became irreversible after autoproteolytic maturation was about 15 % complete. In addition to characterizing the large quaternary conformational change, we have been able for the first time to demonstrate that it takes place on the subsecond time-scale, a regime comparable to that observed in other multisubunit assemblies.  相似文献   

11.
12.
The interactions and complexation process of the amphiphilic phenothiazine fluphenazine hydrochloride with human serum albumin in aqueous buffered solutions of pH 3.0 and 7.4 have been examined by zeta-potential, isothermal titration calorimetry (ITC), UV-vis spectroscopy, and dynamic light scattering (DLS) techniques with the aim of analyzing the effect of hydrophobic and electrostatic forces on the complexation process and the alteration of protein conformation upon binding. Thus, the energetics and stoichiometry of the binding process were derived from ITC data. The enthalpies of binding obtained are small and exothermic, so the Gibbs energies of binding are dominated by large increases in entropy, consistent with hydrophobic interactions at a acidic pH. However, at physiological pH, binding to the first class of binding sites is dominated by an enthalpic contribution due to the existence of electrostatic interactions and probably some hydrogen bonding. Binding isotherms were obtained from microcalorimetric data by using a theoretical model based on the Langmuir isotherm. zeta-Potential data showed a reversal in the sign of the protein charge at pH 7.4, as a consequence of the binding of the drug to the protein. Gibbs energies of drug binding per mole of drug were also derived from zeta-potential data. On the other hand, binding of the phenothiazine that causes a conformational transition on the protein structure was followed as a function of drug concentration using UV-vis spectroscopy, and the data were analyzed to obtain the Gibbs energy of the transition in water (deltaG(degree)w) and in a hydrophobic environment (deltaG(degree)hc). Finally, the population distribution of the different species in solution and the size of the complexes were analyzed through dynamic light scattering. The existence of an aggregation process of drug/protein complexes, as a consequence of the expanded structure of the protein induced by the drug and subsequent further binding, is in agreement with ITC data. In addition, detection of drug aggregates at concentrations below the drug critical micelle concentration was also detected by this technique.  相似文献   

13.
The Tanford transition is a conformational change of bovine beta-lactoglobulin (betaLG) occurring at around pH 7, identified originally on the basis of optical rotatory dispersion and the accessibility of a thiol group. X-ray analysis has suggested that a conformational change to the EF-loop is responsible for the Tanford transition, with the loop closing the hydrophobic cavity of the beta-barrel of the betaLG molecule below pH 7 and flipping to open the cavity above pH 7. To clarify the dynamics of this conformational change, NMR measurements were made at neutral pH. Since severe signal broadening due to monomer-dimer equilibrium prevented NMR measurements of wild-type betaLG at neutral pH, we searched for optimal sample conditions, finding that a disulfide bond-linked dimer of the mutant A34C gives an HSQC spectrum without signal broadening. The HSQC and CD spectra indicated that in overall conformation A34C is similar to wild-type betaLG, suggesting that the A34C dimer is a good model with which to study the structure and dynamics of the wild-type at neutral pH. The pH-dependent HSQC signal changes and Lipari-Szabo type relaxation analyses of the A34C dimer revealed that the conformational change to the EF-loop occurs above pH 7. We observed two types of motions in the EF-loop region; relatively fast (micro- to milliseconds) and slow (milliseconds or slower) conformational exchanges of the residues located in the hinge and top of the EF-loop regions, respectively. Furthermore, the GH-loop adjacent to the EF-loop exhibited conformational change at a pH slightly lower than that at which the EF-loop motions occurred. From these observations, we propose a three-step mechanism of conformational change in the EF-loop leading to the Tanford transition, in which the GH-loop conformational change, the cleavage of the hydrogen bonds at the hinge, and the flip of the EF-loop occur sequentially.  相似文献   

14.
GM1-induced structural transitions of native and unfolded conformers of bovine serum albumin (BSA) have been studied where in the unfolded conformers, the secondary structures were disrupted either chemically by 8 M urea or thermally by heating at 65 degrees C. With decreasing protein:ganglioside ratio at pH 7.0, the native BSA partially unfolds and expands, while the urea-denatured BSA forms an alpha-helical structural pattern with shrinking in the conformational space. However, a continuous loss of alpha-helicity with minor increase in size was observed for the thermally altered protein in the presence of the GM1 micelle. The changes in the secondary structural content were followed by far-UV circular dichroism (CD) analysis. The dynamic light scattering (DLS) experiments were used to study the variation of the size of the protein-GM1 complexes with increasing concentration of the GM1. Fluorescence experiments show that tryptophan residues of BSA experience a more hydrophobic environment in the presence of the GM1 micelle with a decreasing protein:ganglioside ratio at pH 7.0. The present study shows that GM1 has a strong effect on the conformation of BSA depending on the conformational states of the protein that would relate to a physiological function of GM1 such as acting as the receptor of proteins in the cell membrane.  相似文献   

15.
Investigation of the dynamic behavior of irradiated kappa carrageenan (in KCl) as a function of irradiation dose and temperature was done by dynamic light scattering (DLS). The intensity correlation function (ICF) shifted towards shorter relaxation times with increasing radiation dose as a result of radiolysis. The characteristic decay time distribution function, G(gamma), indicates the presence of fast and slow mode peaks respectively at around 0.1-10 ms and 100-1000 ms. A peak broadening of the fast mode peak in G(gamma) appeared with decreasing temperature, indicating that coil-to-helical conformational transition took place. The conformation transition temperature (CTT) decreased with increasing radiation dose. No transition was observed for kappa-carrageenan irradiated at 200 kGy. A new faster relaxation mode appeared at around 0.1-1 ms at temperatures below the CTT. This peak is found in kappa-carrageenan irradiated at doses exclusively between 75 and 175 kGy. The peak height of this mode is largest at 100 kGy which corresponds to the optimum biologic activity of kappa-carrageenan reported previously.  相似文献   

16.
The change in surface tension of solutions of poly-L -lysine in water has been studied as a function of temperature at various pH values. The changes at various temperatures have been correlated with changes in the circular dichroic spectra reflecting conformational change. In addition to the major transition at 50°C attributed to the conversion of the α-helical → β conformation, two other transitions have been observed at 30°C and 80°C. A minimum in the surface tension value was observed at pH 10, near the pK value for poly-L -lysine. It was concluded that at this pH the concentration of hydrophobic groups at the surface was a maximum.  相似文献   

17.
On the basis of measurements of enthalpy of dissociation and of dilution, an interamolecular conformational transition induced by pH change is shown for pectic acid in aqueous solution. Additional evidence is given by potentiometic, viscometric, and chiroptical results. The transition from a more rigid, probably H-bonded, structure prevailing at low pH to a more extended one at around neutrality is accompanied by a ΔH value of about 500 cal/equiv and a ΔS value of 1.6 cal/equiv K in water at 25°C. The addition of salts increases the stability of the rigid conformation without changing the general features of the phenomenon. Dilatometric measurements suggest that the transition is accompanied by practically no change in the overall solvation of the polymer chain.  相似文献   

18.
Poly-L -lysine exists as an α-helix at high pH and a random coil at neutral pH. When the α-helix is heated above 27°C, the macromolecule undergoes a conformational transition to a β-sheet. In this study, the stability of the secondary structure of poly-L -lysine in solutions subjected to shear flow, at temperatures below the α-helix to β-sheet transition temperature, were examined using Raman spectroscopy and CD. Solutions initially in the α-helical state showed time-dependent increases in viscosity with shearing, rising as much as an order of magnitude. Visual observation and turbidity measurements showed the formation of a gel-like phase under flow. Laser Raman measurements demonstrated the presence of small amounts of β-sheet structure evidenced by the amide I band at 1666 cm−1. CD measurements indicated that solutions of predominantly α-helical conformation at 20°C transformed into 85% α-helix and 15% β-sheet after being sheared for 20 min. However, on continued shearing the content of β-sheet conformation decreased. The observed phenomena were explained in terms of a “zipping-up” molecular model based on flow enhanced hydrophobic interactions similar to that observed in gel-forming flexible polymers. © 1998 John Wiley & Sons, Inc. Biopoly 45: 239–246, 1998  相似文献   

19.
Aggregation phenomena in aqueous solutions of purified human tracheobronchial mucin have been studied by rheological methods, steady-state fluorescence, quasielastic light scattering, and spin probe techniques. At temperatures below 30 degrees C and concentrations above 15 mg/mL and in the absence of chaotropic agents, mucin solutions are viscoelastic gels. A gel-sol transition is observed at temperatures above 30 degrees C that is manifested by the diminishing storage modulus and a loss tangent above unity throughout the studied frequency range of the oscillatory shear. No decline in the mucin molecular weight is observed by size-exclusion chromatography above 30 degrees C in the absence of redox agents or proteolytic enzymes. Aggregation of hydrophobic protein segments of the mucin chains at 37 degrees C is indicated by QELS experiments. The decreasing polarity of the microenvironment of pyrene solubilized into mucin solutions at temperatures above 30 degrees C, concomitant with the gel-sol transition, shows the hydrophobicity of the formed aggregates. ESR spectra of the fatty acid spin probe, 16-doxylstearic acid indicate that the aggregate-aqueous interface becomes more developed at elevated temperatures.  相似文献   

20.
The disorder-order transition, which takes place at the gelpoint of κ-carrageenan solutions was monitored by optical rotation and light scattering measurements. The coincidence of both sets of experimental data affords good evidence that the sol-gel transition is accompanied by a conformational change. Transition temperatures were observed to be linearly dependent on the logarithm of the salt concentration and this result is explained by the formation of double helices.Heats of gelation were measured by differential scanning calorimetry. It was found that the enthalpy increases with ionic strength, which was ascribed to the occurrence of a secondary process in which double helices are assembled into larger aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号