首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LLC-PK1, an epithelial cellline derived from the kidney proximal tubule, was used to study theability of the G protein -subunit, Gq, to regulate celldifferentiation. A constitutively active mutant protein,qQ209L, was expressed using theLacSwitch-inducible mammalian expression system. Induction ofqQ209L expression with isopropyl--D-thiogalactopyranoside(IPTG) enhanced phospholipase C activity maximally by 6- to 7.5-fold.Increasing concentrations of IPTG progressively inhibited the activityof two differentiation markers,Na+-dependent hexose transport andalkaline phosphatase activity. Induction ofqQ209L expression also caused achange from an epithelial to a spindle-shaped morphology. The effectsof qQ209L expression on celldifferentiation were similar to those observed with12-O-tetradecanoylphorbol 13-acetate(TPA) treatment. However, protein kinase C (PKC) levels weredownregulated in TPA-treated cells but not inqQ209L-expressing cells,suggesting that the regulation of PKC byGq may be different fromregulation by TPA. Interestingly, the PKC inhibitor GF-109203X did notinhibit the effect of IPTG on the development ofNa+-dependent hexose transport inqQ209L-expressing cells. These data implicate PKC and PKC in the pathway used byGq to block the development ofNa+-dependent hexose transport inIPTG-treated cells.

  相似文献   

2.
The Ca2+-independent-isoform of protein kinase C (PKC-) was overexpressed inLLC-PK1 epithelia and placed undercontrol of a tetracycline-responsive expression system. In the absenceof tetracycline, the exogenous PKC- is expressed. Westernimmunoblots show that the overexpressed PKC- is found in thecytosolic, membrane-associated, and Triton-insoluble fractions.Overexpression of PKC- produced subconfluent and confluentepithelial morphologies similar to that observed on exposure ofwild-type cells to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. Transepithelialelectrical resistance(RT) in cellsheets overexpressing PKC- was only 20% of that in cell sheetsincubated in the presence of tetracycline, in which the amount ofPKC- and RTwere similar to those in LLC-PK1 parental cell sheets. Overexpression of PKC- also elicited a significant increase in transepithelial flux ofD-[14C]mannitoland a radiolabeled 2 × 106-molecular-weight dextran,suggesting with theRT decrease that overexpression increased paracellular, tight junctional permeability. Electron microscopy showed that PKC- overexpression results in amultilayered cell sheet, the tight junctions of which are almost uniformly permeable to ruthenium red. Freeze-fracture electron microscopy indicates that overexpression of PKC- results in a moredisorganized arrangement of tight junctional strands. As withLLC-PK1 cell sheets treated with12-O-tetradecanoylphorbol-13-acetate, the reducedRT, increasedD-mannitol flux, and tightjunctional leakiness to ruthenium red that are seen with PKC-overexpression suggest the involvement of PKC- in regulation oftight junctional permeability.

  相似文献   

3.
We investigated theeffects of epidermal growth factor (EGF) on activeNa+ absorption by alveolarepithelium. Rat alveolar epithelial cells (AEC) were isolated andcultivated in serum-free medium on tissue culture-treated polycarbonatefilters. mRNA for rat epithelial Na+ channel (rENaC) -, -,and -subunits and Na+ pump1- and1-subunits were detected inday 4 monolayers by Northern analysisand were unchanged in abundance in day5 monolayers in the absence of EGF. Monolayerscultivated in the presence of EGF (20 ng/ml) for 24 h fromday 4 to day5 showed an increase in both1 and1Na+ pump subunit mRNA but noincrease in rENaC subunit mRNA. EGF-treated monolayers showed parallelincreases in Na+ pump1- and1-subunit protein by immunoblotrelative to untreated monolayers. Fixed AEC monolayers demonstratedpredominantly membrane-associated immunofluorescent labeling withanti-Na+ pump1- and1-subunit antibodies, withincreased intensity of cell labeling for both subunits seen at 24 hfollowing exposure to EGF. These changes inNa+ pump mRNA and protein precededa delayed (>12 h) increase in short-current circuit (measure ofactive transepithelial Na+transport) across monolayers treated with EGF compared with untreated monolayers. We conclude that EGF increases activeNa+ resorption across AECmonolayers primarily via direct effects onNa+ pump subunit mRNA expressionand protein synthesis, leading to increased numbers of functionalNa+ pumps in the basolateralmembranes.

  相似文献   

4.
Serous cells secreteCl and HCO3 and play an importantrole in airway function. Recent studies suggest that aCl/HCO3 anion exchanger (AE) maycontribute to Cl secretion by airway epithelial cells.However, the molecular identity, the cellular location, and thecontribution of AEs to Cl secretion in serous epithelialcells in tracheal submucosal glands are unknown. The goal of thepresent study was to determine the molecular identity, the cellularlocation, and the role of AEs in the function of serous epithelialcells. To this end, Calu-3 cells, a human airway cell line with aserous-cell phenotype, were studied by RT-PCR, immunoblot, andelectrophysiological analysis to examine the role of AEs inCl secretion. In addition, the subcellular location of AEproteins was examined by immunofluorescence microscopy. Calu-3 cellsexpressed mRNA and protein for AE2 as determined by RT-PCR and Westernblot analysis, respectively. Immunofluorescence microscopy identified AE2 in the basolateral membrane of Calu-3 cells in culture and rattracheal serous cells in situ. InCl/HCO3/Na+-containingmedia, the 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate(CPT-cAMP)-stimulated short-circuit anion current (Isc) was reduced by basolateral but not byapical application of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid(50 µM) and 4,4'-dinitrostilbene-2,2'-disulfonic acid [DNDS (500 µM)], inhibitors of AEs. In the absence of Na+ in thebath solutions, to eliminate the contributions of the Na+/HCO3 andNa+/K+/2Cl cotransporters toIsc, CPT-cAMP stimulated a small DNDS-sensitive Isc. Taken together with previous studies, theseobservations suggest that a small component of cAMP-stimulatedIsc across serous cells may be referable toCl secretion and that uptake of Cl acrossthe basolateral membrane may be mediated by AE2.

  相似文献   

5.
Malignantgliomas exhibit alkaline intracellular pH (pHi) and acidicextracellular pH (pHe) compared with nontransformedastrocytes, despite increased metabolic H+ production. Theacidic pHe limits the availability ofHCO3, thereby reducing both passiveand dynamic HCO3-dependent buffering.This implies that gliomas are dependent upon dynamic HCO3-independent H+buffering pathways such as the type 1 Na+/H+exchanger (NHE1). In this study, four rapidly proliferating gliomas exhibited significantly more alkaline steady-state pHi(pHi = 7.31-7.48) than normal astrocytes(pHi = 6.98), and increased rates of recovery fromacidification, under nominallyCO2/HCO3-free conditions.Inhibition of NHE1 in the absence ofCO2/HCO3 resulted inpronounced acidification of gliomas, whereas normal astrocytes wereunaffected. When suspended inCO2/HCO3 medium astrocytepHi increased, yet glioma pHi unexpectedlyacidified, suggesting the presence of anHCO3-dependent acid loadingpathway. Nucleotide sequencing of NHE1 cDNA from the gliomasdemonstrated that genetic alterations were not responsible for thisaltered NHE1 function. The data suggest that NHE1 activity issignificantly elevated in gliomas and may provide a useful target forthe development of tumor-selective therapies.

  相似文献   

6.
We examined the effects of human cytomegalovirus (HCMV)infection on theNa+-K+-Clcotransporter (NKCC) in a human fibroblast cell line. Using the Cl-sensitive dye MQAE, weshowed that the mock-infected MRC-5 cells express a functional NKCC.1) IntracellularCl concentration([Cl]i)was significantly reduced from 53.4 ± 3.4 mM to 35.1 ± 3.6 mMfollowing bumetanide treatment. 2)Net Cl efflux caused byreplacement of external Clwith gluconate was bumetanide sensitive.3) InCl-depleted mock-infectedcells, the Cl reuptake rate(in HCO3-free media) was reduced inthe absence of external Na+ and bytreatment with bumetanide. After HCMV infection, we found that although[Cl]iincreased progressively [24 h postexposure (PE), 65.2 ± 4.5 mM; 72 h PE, 80.4 ± 5.0 mM], the bumetanide andNa+ sensitivities of[Cl]iand net Cl uptake and losswere reduced by 24 h PE and abolished by 72 h PE. Western blots usingthe NKCC-specific monoclonal antibody T4 showed an approximatelyninefold decrease in the amount of NKCC protein after 72 h ofinfection. Thus HCMV infection resulted in the abolition of NKCCfunction coincident with the severe reduction in the amount of NKCCprotein expressed.

  相似文献   

7.
Growth factorsstimulateNa+/H+exchange activity in many cell types but their effects on acidsecretion via this mechanism in renal tubules are poorly understood. Weexamined the regulation of HCO3absorption by nerve growth factor (NGF) in the rat medullary thickascending limb (MTAL), which absorbs HCO3via apical membraneNa+/H+exchange. MTAL were perfused in vitro with 25 mMHCO3 solutions (pH 7.4; 290 mosmol/kgH2O). Addition of 0.7 nMNGF to the bath decreased HCO3absorption from 13.1 ± 1.1 to 9.6 ± 0.8 pmol · min1 · mm1(P < 0.001). In contrast, with1010 M arginine vasopressin(AVP) in the bath, addition of NGF to the bath increasedHCO3 absorption from 8.0 ± 1.6 to12.5 ± 1.3 pmol · min1 · mm1(P < 0.01). Both effects of NGF wereblocked by genistein, consistent with the involvement of tyrosinekinase pathways. However, the AVP-dependent stimulation requiredactivation of protein kinase C (PKC), whereas the inhibition was PKCindependent, indicating that the NGF-induced signaling pathways leadingto inhibition and stimulation of HCO3absorption are distinct. Hypertonicity blocked the inhibition but notthe AVP-dependent stimulation, suggesting that hypertonicity and NGFmay inhibit HCO3 absorption via acommon mechanism. These data demonstrate that NGF inhibitsHCO3 absorption in the MTAL underbasal conditions but stimulates HCO3 absorption in the presence of AVP, effects that are mediated through distinct signal transduction pathways. They also show that AVP is acritical determinant of the response of the MTAL to growth factorstimulation and suggest that NGF can either inhibit or stimulateapical Na+/H+ exchange activitydepending on its interactions with other regulatory factors. Locallyproduced growth factors such as NGF may play a role in regulating renaltubule HCO3 absorption.

  相似文献   

8.
Skeletal muscleNa+-K+-2Cl cotransporter (NKCC)activity provides a potential mechanism for regulated K+uptake. -Adrenergic receptor (-AR) activation stimulatesskeletal muscle NKCC activity in a MAPK pathway-dependent manner. Weexamined potential G protein-coupled pathways for -AR-stimulatedNKCC activity. Inhibition of Gs-coupled PKA blockedisoproterenol-stimulated NKCC activity in both the slow-twitch soleusmuscle and the fast-twitch plantaris muscle. However, thePKA-activating agents cholera toxin, forskolin, and 8-bromo-cAMP(8-BrcAMP) were not sufficient to activate NKCC in the plantaris andpartially stimulated NKCC activity in the soleus.Isoproterenol-stimulated NKCC activity in the soleus was abolished bypretreatment with pertussis toxin (PTX), indicating aGi-coupled mechanism. PTX did not affect the8-BrcAMP-stimulated NKCC activity. PTX treatment also precluded theisoproterenol-mediated ERK1/2 MAPK phosphorylation in the soleus,consistent with NKCC's MAPK dependency. Inhibition ofisoproterenol-stimulated ERK activity by PTX treatment was associatedwith an increase in Akt activation and phosphorylation of Raf-1 on theinhibitory residue Ser259. These results demonstrate anovel, muscle phenotype-dependent mechanism for -AR-mediated NKCCactivation that involves both Gs and Giprotein-coupled mechanisms.

  相似文献   

9.
Investigation of the role ofindividual protein kinase C (PKC) isozymes in the regulation ofNa+ channels has been largely limited by the lack ofisozyme-selective modulators. Here we used a novel peptide-specificactivator (V1-7) of PKC and other peptide isozyme-specificinhibitors in addition to the general PKC activator phorbol12-myristate 13-acetate (PMA) to dissect the role of individual PKCs inthe regulation of the human cardiac Na+ channel hH1,heterologously expressed in Xenopus oocytes. Peptides wereinjected individually or in combination into the oocyte. Whole cellNa+ current (INa) was recorded usingtwo-electrode voltage clamp. V1-7 (100 nM) and PMA (100 nM)inhibited INa by 31 ± 5% and 44 ± 8% (at 20 mV), respectively. These effects were not seen with thescrambled peptide for V1-7 (100 nM) or the PMA analog4-phorbol 12,13-didecanoate (100 nM). However, V1-7-and PMA-induced INa inhibition was abolished byV1-2, a peptide-specific antagonist of PKC. Furthermore,PMA-induced INa inhibition was not altered by100 nM peptide-specific inhibitors for -, -, -, or PKC. PMAand V1-7 induced translocation of PKC from soluble toparticulate fraction in Xenopus oocytes. This translocationwas antagonized by V1-2. In native rat ventricular myocytes,PMA and V1-7 also inhibited INa; thisinhibition was antagonized by V1-2. In conclusion, the resultsprovide evidence for selective regulation of cardiac Na+channels by PKC isozyme.

  相似文献   

10.
Toxin- (T)from the Brazilian scorpion Tityusserrulatus venom caused a concentration- andtime-dependent increase in the release of norepinephrine andepinephrine from bovine adrenal medullary chromaffin cells. T was~200-fold more potent than veratridine judged fromEC50 values, although the maximalsecretory efficacy of veratridine was 10-fold greater than that of T(1.2 vs. 12 µg/ml of catecholamine release). The combination of both toxins produced a synergistic effect that was particularly drastic at 5 mM extracellular Ca2+concentration([Ca2+]o),when 30 µM veratridine plus 0.45 µM T were used. T (0.45 µM) doubled the basal uptake of45Ca2+,whereas veratridine (100 µM) tripled it. Again, a drastic synergism in enhancing Ca2+ entry was seenwhen T and veratridine were combined; this was particularlypronounced at 5 mM[Ca2+]o.Veratridine induced oscillations of cytosolicCa2+ concentration([Ca2+]i)in single fura 2-loaded cells without elevation of basal levels. Incontrast, T elevated basal[Ca2+]ilevels, causing only small oscillations. When added together, T andveratridine elevated the basal levels of[Ca2+]iwithout causing large oscillations. T shifted the current-voltage (I-V) curve forNa+ channel current to the left.The combination of T with veratridine increased the shift of theI-V curve to the left, resulting in agreater recruitment of Na+channels at more hyperpolarizing potentials. This led to enhanced andmore rapid accumulation of Na+ inthe cell, causing cell depolarization, the opening of voltage-dependent Ca2+ channels, andCa2+ entry and secretion.

  相似文献   

11.
This work was undertaken toobtain a direct measure of the stoichiometry ofNa+-independent K+-Cl cotransport(KCC), with rabbit red blood cells as a model system. To determinewhether 86Rb+ can be used quantitatively as atracer for KCC, 86Rb+ and K+effluxes were measured in parallel after activation of KCC with N-ethylmaleimide (NEM). The rate constant for NEM-stimulatedK+ efflux into isosmotic NaCl was smaller than that for86Rb+ by a factor of 0.68 ± 0.11 (SD,n = 5). This correction factor was used in all otherexperiments to calculate the K+ efflux from the measured86Rb+ efflux. To minimize interference from theanion exchanger, extracellular Cl was replaced withSO, and4,4'-diisothiocyanothiocyanatodihydrostilbene-2,2'-disulfonic acid was present in the flux media. The membrane potential was clampednear 0 mV with the protonophore 2,4-dinitrophenol. The Clefflux at 25°C under these conditions is ~100,000-fold smaller thanthe uninhibited Cl/Cl exchange flux and isstimulated ~2-fold by NEM. The NEM-stimulated 36Cl flux is inhibited by okadaic acid andcalyculin A, as expected for KCC. The ratio of the NEM-stimulatedK+ to Cl efflux is 1.12 ± 0.26 (SD,n = 5). We conclude thatK+-Cl cotransport in rabbit red blood cellshas a stoichiometry of 1:1.

  相似文献   

12.
The cerebrospinalfluid (CSF)-generating choroid plexus (CP) has manyV1 binding sites for argininevasopressin (AVP). AVP decreases CSF formation rate and choroidal bloodflow, but little is known about how AVP alters ion transport across theblood-CSF barrier. Adult rat lateral ventricle CP was loaded with36Cl,exposed to AVP for 20 min, and then placed in isotope-free artificial CSF to measure release of36Cl.Effect of AVP at 1012 to107 M on theCl efflux rate coefficient(in s1) was quantified.Maximal inhibition (by 20%) ofCl extrusion at109 M AVP was prevented bythe V1 receptor antagonist[-mercapto-,-cyclopentamethyleneproprionyl1,O-Me-Tyr2,Arg8]vasopressin.AVP also increased by more than twofold the number of dark and possiblydehydrated but otherwise morphologically normal choroid epithelialcells in adult CP. The V1 receptorantagonist prevented this AVP-induced increment in dark cell frequency.In infant rats (1 wk) with incomplete CSF secretory ability,109 M AVP altered neitherCl efflux nor dark cellfrequency. The ability of AVP to elicit functional and structuralchanges in adult, but not infant, CP epithelium is discussed in regardto ion transport, CSF secretion, intracranial pressure, and hydrocephalus.

  相似文献   

13.
Protons regulateelectrogenic sodium absorption in a variety of epithelia, including thecortical collecting duct, frog skin, and urinary bladder. Recently,three subunits (, , ) coding for the epithelial sodium channel(ENaC) were cloned. However, it is not known whether pH regulatesNa+ channels directly byinteracting with one of the three ENaC subunits or indirectly byinteracting with a regulatory protein. As a first step to identifyingthe molecular mechanisms of proton-mediated regulation of apicalmembrane Na+ permeability inepithelia, we examined the effect of pH on the biophysical propertiesof ENaC. To this end, we expressed various combinations of -, -,and -subunits of ENaC in Xenopusoocytes and studied ENaC currents by the two-electrode voltage-clampand patch-clamp techniques. In addition, the effect of pH on the-ENaC subunit was examined in planar lipid bilayers. We report that ,,-ENaC currents were regulated by changes in intracellular pH(pHi) but not by changes inextracellular pH (pHo).Acidification reduced and alkalization increased channel activity by avoltage-independent mechanism. Moreover, a reduction ofpHi reduced single-channel openprobability, reduced single-channel open time, and increased single-channel closed time without altering single-channel conductance. Acidification of the cytoplasmic solution also inhibited ,-ENaC, ,-ENaC, and -ENaC currents. We conclude thatpHi but notpHo regulates ENaC and that the-ENaC subunit is regulated directly bypHi.  相似文献   

14.
We have examined the mechanisms regulatingprostacyclin (PGI2) synthesis after acute exposure of humanumbilical vein endothelial cells (HUVEC) to interleukin-1 (IL-1).IL-1 evoked an early (30 min) release of PGI2 and[3H]arachidonate that was blocked by the cytosolicphospholipase A2 (cPLA2) inhibitorarachidonyl trifluoromethyl ketone. IL-1-mediated activationof extracellular signal-regulated kinase 1/2 (ERK1/2; p42/p44mapk) coincided temporally with phosphorylation ofcPLA2 and with the onset of PGI2synthesis. The mitogen-activated protein kinase (MAPK) kinase (MEK)inhibitors, PD-98059 and U-0126, blocked IL-1-induced ERKactivation and partially attenuated cPLA2phosphorylation and PGI2 release, suggesting thatERK-dependent and -independent pathways regulate cPLA2phosphorylation. SB-203580 treatment enhanced IL-1-induced MEK,p42/44mapk, and cPLA2 phosphorylation butreduced thrombin-stimulated MEK and p42/44mapk activation.IL-1, but not thrombin, activated Raf-1 as assessed byimmune-complex kinase assay, as did SB-203580 alone. These results showthat IL-1 causes an acute upregulation of PGI2generation in HUVEC, establish a role for theMEK/ERK/cPLA2 pathway in this early release, and provideevidence for an agonist-specific cross talk between p38mapkand p42/44mapk that may reflect receptor-specificdifferences in the signaling elements proximal to MAPK activation.

  相似文献   

15.
-Adrenergic receptor (AR) activationand/or increases in cAMP regulate growth and proliferation of a varietyof cells and, in some cells, promote cell death. In the current studieswe addressed the mechanism of this growth reduction by examiningAR-mediated effects in the murine T-lymphoma cell line S49.Wild-type S49 cells, derived from immature thymocytes(CD4+/CD8+) undergo growth arrest andsubsequent death when treated with agents that increase cAMP levels(e.g., AR agonists, 8-bromo-cAMP, cholera toxin, forskolin).Morphological and biochemical criteria indicate that this cell death isa result of apoptosis. In cyc and kin S49cells, which lack Gs and functional protein kinase A(PKA), respectively, AR activation of Gs and cAMPaction via PKA are critical steps in this apoptotic pathway. S49 cellsthat overexpress Bcl-2 are resistant to cAMP-induced apoptosis. Weconclude that AR activation induces apoptosis in immature Tlymphocytes via Gs and PKA, while overexpression ofBcl-2 prevents cell death. AR/cAMP/PKA-mediated apoptosis mayprovide a means to control proliferation of immature T cells in vivo.

  相似文献   

16.
The effects ofhuman cytomegalovirus (HCMV) infection onCl/HCO3exchanger activity in human lung fibroblasts (MRC-5 cells) were studiedusing fluorescent, ion-sensitive dyes. The intracellular pH(pHi) of mock- and HCMV-infectedcells bathed in a solution containing 5%CO2-25 mMHCO3 were nearly the same. However,replacement of external Clwith gluconate caused anH2DIDS-inhibitable (100 µM)increase in the pHi ofHCMV-infected cells but not in mock-infected cells. Continuous exposureto hyperosmotic external media containing CO2/HCO3caused the pHi of both cell typesto increase. The pHi remainedelevated in mock-infected cells. However, in HCMV-infected cells, thepHi peaked and then recoveredtoward control values. This pHirecovery phase was completely blocked by 100 µMH2DIDS. In the presence ofCO2/HCO3, there was an H2DIDS-sensitivecomponent of net Cl efflux(external Cl wassubstituted with gluconate) that was less in mock- than in HCMV-infected cells. When nitrate was substituted for external Cl (in the nominal absenceofCO2/HCO3),the H2DIDS-sensitive netCl efflux was much greaterfrom HCMV- than from mock-infected cells. In mock-infected cells,H2DIDS-sensitive, netCl efflux decreased aspHi increased, whereas forHCMV-infected cells, efflux increased aspHi increased. All these resultsare consistent with an HCMV-induced enhancement ofCl/HCO3exchanger activity.

  相似文献   

17.
We screened rat brain cDNA libraries and used 5'rapid amplification of cDNA ends to clone two electrogenicNa+-HCO3 cotransporter(NBC) isoforms from rat brain (rb1NBC and rb2NBC). At the amino acidlevel, one clone (rb1NBC) is 96% identical to human pancreas NBC. Theother clone (rb2NBC) is identical to rb1NBC except for 61 uniqueCOOH-terminal amino acids, the result of a 97-bp deletion near the3' end of the open-reading frame. Using RT-PCR, we confirmed thatmRNA from rat brain contains this 97-bp deletion. Furthermore, wegenerated rabbit polyclonal antibodies that distinguish between theunique COOH-termini of rb1NBC (rb1NBC) and rb2NBC (rb2NBC).rb1NBC labels an ~130-kDa protein predominantly from kidney, andrb2NBC labels an ~130-kDa protein predominantly from brain.rb2NBC labels a protein that is more highly expressed in corticalneurons than astrocytes cultured from rat brain; rb1NBC exhibits theopposite pattern. In expression studies, applying 1.5%CO2/10 mM HCO3 toXenopus oocytes injected with rb2NBC cRNA causes 1)pHi to recover from the initial CO2-inducedacidification and 2) the cell to hyperpolarize. Subsequently,removing external Na+ reverses the pHi increaseand elicits a rapid depolarization. In the presence of 450 µM DIDS,removing external Na+ has no effect on pHi andelicits a small hyperpolarization. The rate of the pHidecrease elicited by removing Na+ is insensitive toremoving external Cl. Thus rb2NBC is aDIDS-sensitive, electrogenic NBC that is predominantly expressed inbrain of at least rat.

  相似文献   

18.
In the estrogen-treated rat myometrium, carbachol increased thegeneration of inositol phosphates by stimulating the muscarinic receptor-Gq/G11-phospholipaseC-3 (PLC-3) cascade. Exposure to carbachol resulted in a rapidand specific (homologous) attenuation of the subsequent muscarinicresponses in terms of inositol phosphate production, PLC-3translocation to membrane, and contraction. Refractoriness wasaccompanied by a reduction of membrane muscarinic binding sites and anuncoupled state of residual receptors. Protein kinase C (PKC) alteredthe functionality of muscarinic receptors and contributed to theinitial period of desensitization. A delayed phase of the muscarinicrefractoriness was PKC independent and was associated with adownregulation ofGq/G11.Atropine failed to induce desensitization as well asGq/G11downregulation, indicating that both events involve active occupancy ofthe receptor. Prolonged exposure toAlF4 reduced subsequent AlF4 as well as carbachol-mediatedinositol phosphate responses and similarly induced downregulation ofGq/G11. Data suggest that a decrease in the level ofGq/G11is subsequent to its activation and may account forheterologous desensitization.

  相似文献   

19.
We examined the effects ofH2O2on Cl secretion acrosshuman colonic T84 cells grown on permeable supports and mounted in modified Ussing chambers. Forskolin-induced short-circuit current, ameasure of Cl secretion,was inhibited in a concentration-dependent fashion when monolayers werepretreated withH2O2for 30 min (30-100% inhibition between 500 µM and 5 mM).Moreover,H2O2inhibited 76% of the Clcurrent across monolayers when the basolateral membranes were permeabilized with nystatin (200 µg/ml). When the apical membrane waspermeabilized with amphotericin B,H2O2inhibited the Na+ current (ameasure ofNa+-K+-ATPaseactivity) by 68% but increased theK+ current more than threefold. Inaddition to its effects on ion transport pathways,H2O2also decreased intracellular ATP levels by 43%. We conclude that theprincipal effect ofH2O2on colonic Cl secretion isinhibitory. This may be due to a decrease in ATP levels followingH2O2treatment, which subsequently results in an inhibition of the apicalmembrane Cl conductance andbasolateral membraneNa+-K+-ATPaseactivity. Alternatively,H2O2may alter Cl secretion bydirect action on the transporters or alterations in signal transductionpathways.

  相似文献   

20.
Corneal endothelial function is dependent onHCO3 transport. However, the relativeHCO3 permeabilities of the apical andbasolateral membranes are unknown. Using changes in intracellular pHsecondary to removingCO2-HCO3 (at constant pH) or removing HCO3alone (at constant CO2) fromapical or basolateral compartments, we determined the relative apicaland basolateral HCO3 permeabilities and their dependencies on Na+ andCl. Removal ofCO2-HCO3from the apical side caused a steady-state alkalinization (+0.08 pHunits), and removal from the basolateral side caused an acidification(0.05 pH units). Removal ofHCO3 at constantCO2 indicated that the basolateralHCO3 fluxes were about three to fourtimes the apical fluxes. Reducing perfusateNa+ concentration to 10 mM had noeffect on apical flux but slowed basolateralHCO3 flux by one-half. In the absence of Cl, there was anapparent increase in apical HCO3 fluxunder constant-pH conditions; however, no net change could be measuredunder constant-CO2 conditions.Basolateral flux was slowed ~30% in the absence ofCl, but the net flux wasunchanged. The steady-state alkalinization after removal ofCO2-HCO3apically suggests that CO2diffusion may contribute to apicalHCO3 flux through the action of amembrane-associated carbonic anhydrase. Indeed, apicalCO2 fluxes were inhibited by theextracellular carbonic anhydrase inhibitor benzolamide and partiallyrestored by exogenous carbonic anhydrase. The presence ofmembrane-bound carbonic anhydrase (CAIV) was confirmed byimmunoblotting. We conclude that theNa+-dependent basolateralHCO3 permeability is consistent withNa+-nHCO3cotransport. Changes inHCO3 flux in the absence ofCl are most likely due toNa+-nHCO3cotransport-induced membrane potential changes that cannot bedissipated. Apical HCO3 permeabilityis relatively low, but may be augmented byCO2 diffusion in conjunction witha CAIV.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号