首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of species-richness and endemism in the Gulf of Guinea reflect the region's biogeographic history. Bioko is a continental-shelf island that was recently connected to the African mainland, whereas Príncipe, São Tomé and Annobón are truly oceanic and have never been connected with each other or with the mainland. As a result, Bioko supports a much more diverse flora and fauna but with relatively low levels of endemism at the species level, whereas the oceanic islands are relatively depauperate because of their isolation but rich in endemic taxa. Species endemism is 0–3% on Bioko for angiosperms, bats, birds, reptiles and amphibians, compared with much higher values on Principe for these same taxa of 8% (plants) to 100% (amphibians), on São Tomé between 14% (plants) and 100% (amphibians), and on Annobón 0% (bats) to 71% (reptiles). On a global scale, for their size both Príncipe and São Tomé support unusually high numbers of single-island endemic species of birds, reptiles and amphibia. For its tiny size, Annobón is also notable for its endemic birds and reptiles. Among terrestrial molluscs the rates of endemism are in general higher than for plants and vertebrates, from ca 50% on Bioko to ca 80% on the oceanic islands. In contrast and as might be expected, only Bioko supports a rich freshwater fish fauna and it contains many endemic taxa, whereas the oceanic islands support only a few salt-tolerant species. The Gulf of Guinea islands are also important for their marine organisms, amongst which coral reef fish and marginellid molluscs show high levels of endemism, though they are not especially species-rich. The Gulf of Guinea islands are of great interest to conservationists and evolutionary biologists. Each island, of greatly differing size and degree of isolation, has acquired its unique sub-set of plants and animals separately from the neighbouring mainland, followed by adaptive radiations in situ. For this reason the conservation value of the archipelago as a whole is greater than the sum of the biodiversity contained in its individual islands. Conservation initiatives in the Gulf of Guinea should therefore ensure that representative terrestrial, freshwater and marine habitats and groups of organisms are targeted in a co-ordinated manner among the islands.  相似文献   

2.
Quantitative analyses of areas of endemism have rarely considered higher taxa. This paper discusses aspects related to the use of higher taxa in the analysis of areas of endemism, and computer implementations. An example of the application of the method is provided, with a data set for Nearctic mammals, showing that some of the areas recognized by species‐level taxa also adjust well to the distribution of other taxa of higher level (genera, monophyletic groups).  相似文献   

3.
Aim  To illustrate problems in the methods proposed by B. Vilenkin and V. Chikatunov to study levels of endemism and species–area relationships.
Location  The study used data on the distribution of tenebrionid beetles (Coleoptera, Tenebrionidae) on the Aegean Islands (Greece).
Methods  A total of 32 islands and 170 taxa (species and subspecies) were included in this study. Levels of endemism were evaluated both as the proportion of endemic taxa, and according to the methods proposed by Vilenkin and Chikatunov, which are based on the number of non-endemic taxa and various relationships with area. A model of the species–area relationship proposed by these authors was also analysed.
Results  The number of endemic taxa was positively correlated with the number of taxa with different distribution types, but this positive correlation did not influence the estimation of the level of endemism. In fact, the commonly used estimate of endemicity as a percentage was strongly correlated with the endemism values calculated according to the method of Vilenkin and Chikatunov. The usual power function fitted the species–area relationship as well as the most complicated method of Vilenkin and Chikatunov.
Main conclusions  As hypothesized by Vilenkin and Chikatunov, the number of endemic taxa was influenced both by the number of taxa of other biogeographical ranks, and by an island's area. However, explanations for the positive relationship between the number of endemic taxa and taxa of different biogeographical ranks are equivocal. Importantly, this relationship did not necessarily influence the level of endemism, which could be expressed adequately by percentages. The method proposed by Vilenkin and Chikatunov to estimate the species–area relationship cannot be clearly justified on theoretical grounds and is of questionable practical utility.  相似文献   

4.
The richness of flowering plants (1666 native taxa) and the originality of the flora of the islands of the Gulf of Guinea are remarkable. The flora of Bioko shows the highest diversity in terms of families, genera and species of angiosperms but, due to its proximity to the mainland, the level of endemism is relatively low. The number of endemics in the four islands has suffered a decrease in the last years, due to taxonomic changes. Currently, 176 endemic taxa of angiosperms are recognized. Most of the endemic taxa are under-collected and information is lacking on their biology and distribution, hence the need for inventory work on the flora of the islands. A measure of the similarity between the floras of the islands can be given by determination of genera in common. The results are comparable to those obtained with Exell and Wild's quotient of affinity and show a great similarity between neighbouring islands. The presence of afromontane elements and several palaeoendemics in the mountain rain forest of the islands is notable and makes the study of its flora a priority for research.  相似文献   

5.
Patterns of distribution and processes of differentiation haveoften been contrasted between terrestrial and marine biotas.The islands of Oceania offer an excellent setting to explorethis contrast, because the geographic setting for terrestrialand shallow-water, benthic, marine organisms are the same: themyriad islands strewn across the vast Pacific. The size of speciesranges and the geographic distribution of endemism are two biogeographicattributes that are thought to differ markedly between terrestrialand marine biotas in the Pacific. While terrestrial speciesare frequently confined to single islands or archipelagoes throughoutOceania, marine species tend to have wide to very wide distributions,and are rarely restricted to single island groups except forthe most isolated archipelagoes. We explore the conditions underwhich species can reach an island by dispersal and differentiate.Genetic differentiation can occur either through founder speciationor vicariance; these processes are requisite ends of a continuum.We show that founder speciation is most likely when few propagulesenter the dispersal medium and survive well while they travelfar. We argue that conditions favorable to founder speciationare common in marine as well as terrestrial systems, and thatterrestrial-type, archipelagic-level endemism is likely commonin marine taxa. We give examples of marine groups that showarchipelagic level endemism on most Pacific island groups aswell as of terrestrial species that are widespread. Thus boththe patterns and processes of insular diversification are variable,and overlap more between land and sea than previously considered.  相似文献   

6.
The Philippine archipelago is recognized as a biodiversity hotspot because of its high levels of endemism and numerous threatened species. Avian lineages in the Philippines feature morphologically distinct allopatric taxa, which have been variably treated either as species or subspecies depending on species concepts and recognition criteria. To understand how alternative species limits would alter diversity metrics and patterns of endemism in the Philippines, we selected 19 focal lineages of birds, each containing multiple described taxa within the Mindanao Island Group. We delimited species in an integrative, lineage-based framework using three operational criteria: species must (1) form well-supported, geographically circumscribed clades, (2) be monophyletic with significant genetic differentiation identified by a coalescent model, and (3) feature fixed differences in phenotypic characters. Our criteria identified 40 species from the original 19 focal lineages, a 50–74% increase over recent comprehensive taxonomic treatments. Genetic criteria in isolation identified an additional 10 populations that could be cryptic species in need of further study. We identified fine-scale endemism within the Mindanao Island Group, with multiple unrecognized avian endemics restricted to Samar/Leyte, Bohol Island, and the Zamboanga Peninsula. Genetic and phenotypic information support the hypothesis that polytypic bird species in the Philippines tend to be composed of evolutionarily distinct, range-restricted, allopatric replacements rather than widespread and variable “superspecies”. We conclude that lack of species recognition has resulted in underestimates of species diversity and overlooked fine-scale endemism in the Philippines. Recognizing this diversity would alter conservation priorities, shifting efforts to protect microendemics on smaller islands and finer scale endemic areas within larger islands.  相似文献   

7.
Extinction and endemism in the New Zealand avifauna   总被引:5,自引:0,他引:5  
Aim Species belonging to higher taxa endemic to islands are more likely to go extinct following human arrival. This selectivity may occur because more highly endemic island species possess features that make them uniquely vulnerable to impacts associated with human arrival, specifically: (1) restricted distribution (2) reduced predator escape response, including loss of flight, and (3) life history traits, such as large body mass, associated with greater susceptibility to hunting or habitat loss. This study aims to identify which of these features can explain the selective extinction of more highly endemic bird species in New Zealand. Location North and South Island, New Zealand. Methods Bird species breeding in New Zealand prior to human arrival were classified according to whether they became extinct or not during two periods of human settlement, prehistoric (post‐Maori but pre‐European arrival) and historic (post‐European arrival). We modelled the relationships between extinction probability, level of endemism and life history traits in both periods. Results The prehistoric extinction–endemism relationship can be explained entirely by the selective extinction of large‐bodied species, whereas the historic extinction–endemism relationship appears due to increased susceptibility to introduced predators resulting from the loss of predator escape responses, including loss of flight. Conclusions These features may explain extinction–endemism relationships more generally, given that human hunting and predator introductions are major impacts associated with human arrival on islands.  相似文献   

8.
Body size trends in a Holocene island bird assemblage   总被引:1,自引:0,他引:1  
Despite the robust observation in macroecology that there are many small-bodied species, recent comparative studies have found little evidence for elevated net rates of diversification among small-bodied species within taxa. Here we examine the relationship between body size and species richness using the New Zealand land bird fauna, a well resolved palaeoecological Holocene assemblage. We test whether there is any evidence that net cladogenesis depended on body size in an assemblage prior to the impact of human-induced extinction. We also test whether net cladogenesis depends on the level at which taxa are endemic to New Zealand, to see whether there is evidence for bursts of cladogenesis following taxon establishment, and examine how the body sizes of New Zealand land birds relate to those in Australia, the most likely source pool for colonising taxa. Most New Zealand land bird species are small-bodied. We find no evidence, however, that this is due to higher net cladogenesis in small-bodied taxa. The body mass distributions of endemic and recent colonist species do not differ statistically, but recent colonists tend to be smaller-bodied than their closest endemic relative. This tendency is more marked for small-bodied than large-bodied taxa. More endemic taxa do not tend to be more species rich in New Zealand, although there is a positive relationship between level of endemism and species richness for forest taxa. The body mass distribution of New Zealand birds is very similar to that for Australia. Body mass does not dictate the likelihood that a family has colonised New Zealand from Australia, but the number of species in the family does: it is the species rich Australian families that have successfully colonised. We discuss the implications of these results for the evolution of body size distributions, and for the "island rule" of body size evolution on islands.  相似文献   

9.

Functionally and evolutionarily distinct species have traits or an evolutionary history that are shared by few others in a given set, which make them priority species for biodiversity conservation. On islands, life in isolation has led to the evolution of many distinct forms and functions as well as to a high level of endemism. The aim of this study is to assess the evolutionary and functional distinctiveness of insular monocotyledons and their distribution across 126 islands worldwide. We show that evolutionary and functional distinctiveness are decoupled but that both are higher on islands than on continental areas. Anagenesis on islands followed by extinctions and/or diversification on the mainland may have led to highly evolutionarily distinct species while functionally distinct species may have arisen from ecological niche shift or niche expansion. Insular endemic species with high evolutionary distinctiveness but not with high functional distinctiveness are significantly range-restricted compared to less distinct species, possibly indicating differences in dispersal potential. By showing that distinctiveness is high on islands and that the most distinct species are range-restricted, our study has important conservation implications. Indeed, islands are among the most threatened systems of the world, and extinctions of the most distinct species could lead to significant loss of phylogenetic and functional diversity.

  相似文献   

10.
Biogeography of the marine birds of a confined sea, the Mediterranean   总被引:3,自引:0,他引:3  
Aim The Mediterranean sea is a winter productive oligotrophic basin where Atlantic water replaces water lost through evaporation, this influx being a major source of productivity and fertility. The long coastlines and the large number of islands cause high oceanographic heterogeneity. Moreover, during its geological history, it has dried out several times. So we describe the consequences of these particular features on species richness, distribution, and breeding ecology of marine birds. Location The Mediterranean sea (including the Black Sea and the Sea of Azov) communicates with the Atlantic Ocean only through a 14 km wide channel (Straits of Gibraltar), and since 1869, with the Red Sea through the Suez Canal. Methods The Mediterranean was subdivided into different areas, according to physical oceanographic entities and productivity, linked to numbers and distribution of both breeding and wintering marine birds (defined as species strongly dependent on marine resources, breeding only on islands and/or the coastline). Results The total marine bird biomass, and species diversity, are lower in the Mediterranean than in the near Atlantic. The eastern Mediterranean, with lowest primary productivity, contains fewer marine bird taxa than the more productive western part. Taxa which mainly occur in the western and southern parts of the Mediterranean migrate through the Straits of Gibraltar to winter in the southern Atlantic, while those inhabiting the northern and eastern parts are sedentary, as a result of differences in species composition. Northern coastal basin communities (i.e. the Tyrrhenian and the Balearic Seas), are composed of less pelagic, and earlier breeding species, that rear chicks during the productive season. These latter taxa are actually the most typical Mediterranean taxa, in terms of endemism. Main conclusions The Mediterranean marine bird community is not tropical, but rather, shows the highest affinity with the Atlantic temperate community. Its level of endemism is however high and comparable to other confined basins such as the Red Sea.  相似文献   

11.
Segers  Hendrik 《Hydrobiologia》2003,500(1-3):103-114
An analysis of distribution patterns reveals a unique group of Nearctic endemics in Trichocerca Lamarck, 1801. This group, comprising 13.4% of all taxa analysed in the genus, is of diverse origin. A glacial origin is postulated for one species. The observed biogeographic pattern of eight others, and possibly two New World taxa, suggests a pre-Pleistocene origin followed by differential extinctions during glaciations in the Nearctic and Palaearctic. In general, endemism in Trichocerca is strongly biased towards the Northern hemisphere, with no endemism in tropical regions. This suggests a Laurasian origin of the genus. The analysis further reveals a majority (65.7%) of widely distributed taxa, with strict cosmopolitanism in more than a third of the species analysed. Latitudinal variation is evident in 26.9% of Trichocerca, and a warm-water preference appears to be indicated for a majority of these. Although the results should be interpreted with caution due to confused taxonomy, a Southern hemisphere, warm-water and Northern hemisphere, cold water component appear to be present. Comments on the taxonomy and distribution of several species are provided, along with illustrations of poorly known species. Suggestions include elevating T. maior (Hauer, 1936) to species rank, and several new cases of synonymy.  相似文献   

12.
Malaysia has approximately 15,000 species of vascular plants. Its flora is distributed between two major geographical regions; Peninsular Malaysia on mainland Asia and the states of Sabah and Sarawak on the island of Borneo. Peninsular Malaysia has over 8,300 plant species and Sabah and Sarawak in a recent estimate have about 12,000 species. Total species endemism for Peninsular Malaysia is about 30%; its tree endemism is 26.3%. For Sabah and Sarawak, the endemism level is higher, recently revised figures gave a tree species endemism of 42.1%. Malaysia has recently published its national strategy for plant conservation, which now forms the basis of conservation activities for the country. Since 2004, we have been running a project entitled “Conservation Monitoring of Rare and Threatened Plants of Peninsular Malaysia”, in which conservation status assessment is scored for a number of families. Results of the assessment of 458 taxa included 46.1% in some threat category. Detailed conservation studies are in progress for 33 species of threatened plants. Initial work on these species include spatial distribution studies at regional level based on herbarium records, and at a more local level, population studies to determine demography of populations. Regular phenological observations were also made for many of the species.  相似文献   

13.
An unusual geological setting and a high level of endemism makes the Philippine islands of great interest to biogeography. These islands lie adjacent to the continental (Sunda) shelf, yet the majority of the islands have never been directly attached to the mainland. Existing hypotheses of colonization and diversification processes have been tested across multiple taxa, but only in ahistorical contexts. We present explicit phylogenetic predictions based on these hypotheses, and then test them using new molecular datasets for four Philippine birds. Two proposed colonization routes to the northern Philippines (from mainland Asia and Palawan) are difficult to differentiate from each other, except on the basis of outgroup, as are the two routes from the south (Sulu archipelago and Sulawesi). We find unique colonization and diversification patterns for each taxon. These results contrast with expectations from Pleistocene geography, with Luzon and Mindoro indistinguishable genetically, and Negros and Panay are often nonsister taxa. Combining these data with a literature search for studies addressing these patterns, Philippine organisms shows some evidence for each proposed colonization route but the greatest support is for the two routes from Borneo. Many taxa exhibit multiple colonization events using several of these routes, contrasting with past assumptions of single colonization events. Island‐by‐island differentiation within the Philippines follows, with patterns reflecting colonization patterns rather than Pleistocene geography, particularly for highland species. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 620–639.  相似文献   

14.
Road edge effects cover extensive areas and exert a wide range of ecological influences on nearby plants and animals. Most studies have focused on individual and population level effects of the road edge; less is known about how communities and their functionality are altered in proximity to roads. Here, we studied the effect of road edges on species richness, rarity, endemism, composition, and functional (trophic) classification of communities of plants, ground-dwelling arthropods (beetles, spiders, scorpions, diplopods), and small mammals. The study, conducted in a Mediterranean ecosystem in central Israel, included sampling of these taxa in 10 plots adjacent to a regional road, and in 12 nearby control plots located in a typical shrubland habitat. We found a variety of community level road edge effects on the structure, composition, and function of the studied communities. The extent of effects varied among taxa, but they were generally positive or neutral. For the species-rich taxa (plants, beetles, and spiders), distinct road edge communities characterized by higher richness and altered species composition were found. Rarity and endemism were lower, and the proportion of disturbance-associated plant species was higher at the road edge. Among the species-poor taxa, scorpions and small mammals were more abundant along road edges than in control plots, while diplopods, the only negatively affected taxon, showed decreased abundance along the road. No ecologically meaningful changes in richness or composition were detected for the species-poor taxa along the road edge. Road edges profoundly affect floral and faunal communities, with possible implications for biodiversity conservation.  相似文献   

15.
Islands are particularly suited to testing hypotheses about the ecological and evolutionary mechanisms underpinning community assembly. Yet the complex spatial arrangements of real island systems have received little attention from both empirical studies and theoretical models. Here, we investigate the extent to which the spatial structure of archipelagos affects species diversity and endemism. We start by proposing a new spatially structured neutral model that explicitly considers archipelago structure, and then investigate its predictions under a diversity of scenarios. Our results suggest that considering the spatial structure of archipelagos is crucial to understanding their diversity and endemism, with structured island systems acting both as “museums” and “cradles” of biodiversity. These dynamics of diversification may change the traditionally expected pattern of decrease in species richness with distance from the mainland, even potentially leading to increasing patterns for taxa with high speciation rates in archipelagos off species‐poor continental areas. Our results also predict that, within spatially structured archipelagos, metapopulation dynamics and evolutionary processes can generate higher diversity on islands more centrally placed than at the periphery. We derive from our results a set of theoretical predictions, potentially testable with empirical data.  相似文献   

16.
Speciation and phylogeography of Hawaiian terrestrial arthropods   总被引:8,自引:2,他引:6  
The Hawaiian archipelago is arguably the world's finest natural laboratory for the study of evolution and patterns of speciation. Arthropods comprise over 75% of the endemic biota of the Hawaiian Islands and a large proportion belongs to species radiations. We classify patterns of speciation within Hawaiian arthropod lineages into three categories: (i) single representatives of a lineage throughout the islands; (ii) species radiations with either (a) single endemic species on different volcanoes or islands, or (b) multiple species on each volcano or island; and (iii) single widespread species within a radiation of species that exhibits local endemism. A common pattern of phylogeography is that of repeated colonization of new island groups, such that lineages progress down the island chain, with the most ancestral groups (populations or species) on the oldest islands. While great dispersal ability and its subsequent loss are features of many of these taxa, there are a number of mechanisms that underlie diversification. These mechanisms may be genetic, including repeated founder events, hybridization, and sexual selection, or ecological, including shifts in habitat and/or host affiliation. The majority of studies reviewed suggest that natural selection is a primary force of change during the initial diversification of taxa.  相似文献   

17.
Aim We examined phytogeographical patterns of West Indian orchids, and related island area and maximum elevation with orchid species richness and endemism. We expected strong species–area relationships, but that these would differ between low and montane island groups. In so far as maximum island elevation is a surrogate for habitat diversity, we anticipated a strong relationship with maximum elevation and both species richness and endemism for montane islands. Location The West Indies. Methods Our data included 49 islands and 728 species. Islands were classified as either montane (≥ 300 m elevation) or low (< 300 m). Linear and multivariate regression analyses were run to detect relationships between either area or maximum island elevation and species richness or the number of island endemic species. Results For all 49 islands, the species–area relationship was strong, producing a z‐value of 0.47 (slope of the regression line) and explaining 46% of the variation. For 18 relatively homogeneous, low islands we found a non‐significant slope of z = −0.01 that explained only 0.1% of the variation. The 31 montane islands had a highly significant species–area relationship, with z = 0.49 and accounting for 65% of the variation. Species numbers were also strongly related to maximum island elevation. For all islands < 750 km2, we found a small‐island effect, which reduced the species–area relationship to a non‐significant z = 0.16, with only 5% of the variation explained by the model. Species–area relationships for montane islands of at least 750 km2 were strong and significant, but maximum elevation was the best predictor of species richness and accounted for 79% of the variation. The frequency of single‐island endemics was high (42%) but nearly all occurred on just nine montane islands (300 species). The taxonomic distribution of endemics was also skewed, suggesting that seed dispersability, while remarkable in some taxa, is very limited in others. Montane island endemics showed strong species–area and species–elevation relationships. Main conclusions Area and elevation are good predictors of orchid species diversity and endemism in the West Indies, but these associations are driven by the extraordinarily strong relationships of large, montane islands. The species richness of low islands showed no significant relationship with either variable. A small‐island effect exists, but the montane islands had a significant relationship between species diversity and maximum elevation. Thus, patterns of Caribbean orchid diversity are dependent on an interplay between area and topographic diversity.  相似文献   

18.
Many oceanic islands are notable for their high endemism, suggesting that islands may promote unique assembly processes. However, mainland assemblages sometimes harbour comparable levels of endemism, suggesting that island biotas may not be as unique as is often assumed. Here, we test the uniqueness of island biotic assembly by comparing the rate of species turnover among islands and the mainland, after accounting for distance decay and environmental gradients. We modelled species turnover as a function of geographical and environmental distance for mainland (M-M) communities of Anolis lizards and Terrarana frogs, two clades that have diversified extensively on Caribbean islands and the mainland Neotropics. We compared mainland-island (M-I) and island-island (I-I) species turnover with predictions of the M-M model. If island assembly is not unique, then the M-M model should successfully predict M-I and I-I turnover, given geographical and environmental distance. We found that M-I turnover and, to a lesser extent, I-I turnover were significantly higher than predicted for both clades. Thus, in the first quantitative comparison of mainland-island species turnover, we confirm the long-held but untested assumption that island assemblages accumulate biodiversity differently than their mainland counterparts.  相似文献   

19.
Abstract.— The vascular‐plant flora of the Hawaiian Islands is characterized by one of the highest rates of species endemism in the world. Among flowering plants, approximately 89% of species are endemic, and among pteridophytes, about 76% are endemic. At the single‐island level, however, rates of species endemism vary dramatically between these two groups with 80% of angiosperms and only 6% of pteridophytes being single‐island endemics. Thus, in many groups of Hawaiian angiosperms, it is possible to link studies of phylogeny, evolution, and biogeographic history at the interspecific and interisland levels. In contrast, the low level of single‐island species endemism among Hawaiian pteridophytes makes similar interspecific and interisland studies nearly impossible. Higher levels of interisland gene flow may account for the different levels of single‐island endemism in Hawaiian pteridophytes relative to angiosperms. The primary question we addressed in the present study was: Can we infer microevolutionary patterns and processes among populations within widespread species of Hawaiian pteridophytes wherein gene flow is probably common? To address this broad question, we conducted a population genetic study of the native Hawaiian colonizing species Odontosoria chinensis. Data from allozyme analyses allowed us to infer: (1) significant genetic differentiation among populations from different islands; (2) historical patterns of dispersal between particular pairs of islands; (3) archipelago‐level patterns of dispersal and colonization; (4) founder effects among populations on the youngest island of Hawaii; and, (5) that this species primarily reproduces via outcrossing, but may possess a mixed‐mating system.  相似文献   

20.
Aim Amphibians are a model group for studies of the biogeographical origins of salt‐intolerant taxa on oceanic islands. We used the Gulf of Guinea islands to explore the biogeographical origins of island endemism of one species of frog, and used this to gain insights into potential colonization mechanisms. Location São Tomé and Príncipe, two of the four major islands in the Gulf of Guinea, West Africa, are truly oceanic and have an exceptionally high biodiversity. Methods Mitochondrial DNA is used to test the endemic status of a frog from São Tomé and compare it with congeneric taxa from tropical Africa. Existing data on surface currents, surface salinity, atmospheric circulation and bird migration in the Gulf of Guinea are summarized to address hypotheses concerning colonization mechanisms. Results The endemic status of Ptychadena newtoni (Bocage) is supported here by mitochondrial DNA sequences, and analysis of this and other molecular data indicates that an East African species close to Ptychadena mascareniensis (Duméril and Bibron) is its nearest relative. We refute the possibility that this population was anthropogenically introduced, in favour of a natural dispersal mechanism. Main conclusions With six endemic frogs and one caecilian, the Gulf of Guinea islands harbour a diverse amphibian fauna. Five of these species appear to have their closest relatives in East Africa. Insufficient evidence exists for transportation by storms, birds or rafts alone. However, we propose a synergy of rafting, favourable surface currents and a reduction in salinity of surface waters. Catastrophic events, or wet periods in climatic history, could allow freshwater paths to open far enough to enable continental flora and fauna to reach these and other isolated oceanic islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号