共查询到20条相似文献,搜索用时 15 毫秒
1.
Robakis T Bak B Lin SH Bernard DJ Scheiffele P 《The Journal of biological chemistry》2008,283(52):36369-36376
Precursor proteolysis is a crucial mechanism for regulating protein structure and function. Signal peptidase (SP) is an enzyme with a well defined role in cleaving N-terminal signal sequences but no demonstrated function in the proteolysis of cellular precursor proteins. We provide evidence that SP mediates intraprotein cleavage of IgSF1, a large cellular Ig domain protein that is processed into two separate Ig domain proteins. In addition, our results suggest the involvement of signal peptide peptidase (SPP), an intramembrane protease, which acts on substrates that have been previously cleaved by SP. We show that IgSF1 is processed through sequential proteolysis by SP and SPP. Cleavage is directed by an internal signal sequence and generates two separate Ig domain proteins from a polytopic precursor. Our findings suggest that SP and SPP function are not restricted to N-terminal signal sequence cleavage but also contribute to the processing of cellular transmembrane proteins. 相似文献
2.
Iwatsubo T 《Current opinion in neurobiology》2004,14(3):379-383
Gamma-secretase is a membrane protease complex that possesses presenilin as a catalytic subunit. Presenilin generates amyloid beta peptides in the brains of Alzheimer's patients and is indispensable to Notch signaling in tissue development and renewal. Recent studies have revealed how presenilin is assembled with its cofactor proteins and acquires the gamma-secretase activity: Aph-1 and nicastrin initially form a subcomplex to bind and stabilize presenilin, and then Pen-2 confers the gamma-secretase activity and facilitates endoproteolysis of presenilin. Understanding the mechanism of gamma-secretase cleavage will help to clarify how intercellular cell signaling through transmembrane proteins is regulated by intramembrane proteolysis, and will hopefully eventually lead to a cure for Alzheimer's disease. 相似文献
3.
Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)‐based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite‐mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. 相似文献
4.
5.
Intramembrane-cleaving proteases (I-CLiPs) are membrane embedded proteolytic enzymes. All substrates identified so far are also membrane proteins, involving a number of critical cellular signaling as well as human diseases. After synthesis and assembly at the endoplasmic reticulum, membrane proteins are exported to the Golgi apparatus and transported to their sites of action. A number of studies have revealed the importance of the intracellular membrane trafficking in i-CLiP-mediated intramembrane proteolysis, not only for limiting the unnecessary encounter between i-CLiPs and their substrate but also for their cleavage site preference. In this review, we will discuss recent advances in our understanding of how each i-CLiP proteolysis is regulated by intracellular vesicle trafficking. This article is part of a Special Issue entitled: Intramembrane Proteases. 相似文献
6.
Rhomboid, a seven-transmembrane domain protein, has been shown genetically to potentiate EGFR signaling via the TGFalpha-like ligand Spitz. Here we discuss recently published papers that identify Rhomboid as a novel serine protease, cleaving Spitz within its transmembrane domain. 相似文献
7.
Substrate requirements for regulated intramembrane proteolysis of Bacillus subtilis pro-sigmaK 下载免费PDF全文
During sporulation of Bacillus subtilis, pro-sigmaK is activated by regulated intramembrane proteolysis (RIP) in response to a signal from the forespore. RIP of pro-sigmaK removes its prosequence (amino acids 1 to 20), releasing sigmaK from the outer forespore membrane into the mother cell cytoplasm, in a reaction catalyzed by SpoIVFB, a metalloprotease in the S2P family of intramembrane-cleaving proteases. The requirements for pro-sigmaK to serve as a substrate for RIP were investigated by producing C-terminally truncated pro-sigmaK fused at different points to the green fluorescent protein (GFP) or hexahistidine in sporulating B. subtilis or in Escherichia coli engineered to coexpress SpoIVFB. Nearly half of pro-sigmaK (amino acids 1 to 117), including part of sigma factor region 2.4, was required for RIP of pro-sigmaK-GFP chimeras in sporulating B. subtilis. Likewise, pro-sigmaK-hexahistidine chimeras demonstrated that the N-terminal 117 amino acids of pro-sigma(K) are sufficient for RIP, although the N-terminal 126 amino acids, which includes all of region 2.4, allowed much better accumulation of the chimeric protein in sporulating B. subtilis and more efficient processing by SpoIVFB in E. coli. In contrast to the requirements for RIP, a much smaller N-terminal segment (amino acids 1 to 27) was sufficient for membrane localization of a pro-sigmaK-GFP chimera. Addition or deletion of five amino acids near the N terminus allowed accurate processing of pro-sigmaK, ruling out a mechanism in which SpoIVFB measures the distance from the N terminus to the cleavage site. A charge reversal at position 13 (substituting glutamate for lysine) reduced accumulation of pro-sigmaK and prevented detectable RIP by SpoIVFB. These results elucidate substrate requirements for RIP of pro-sigmaK by SpoIVFB and may have implications for substrate recognition by other S2P family members. 相似文献
8.
The key effector proteins of apoptosis are a family of cysteine proteases termed caspases. Following activation of caspases, biochemical events occur that lead to DNA degradation and the characteristic morphological changes associated with apoptosis. Here we show that cytoplasmic extracts activated in vitro by proteinase K were able to cleave the caspase substrate DEVD-7-amino-4-methylcoumarin, while neither proteinase K nor nonactivated extracts were able to do so alone. Caspase-like activity was inhibited by the specific caspase inhibitor DEVD-aldehyde and by the protease inhibitor iodoacetamide, but not by N-ethylmaleimide. When added to isolated nuclei, the activated extracts caused internucleosomal DNA degradation and morphological changes typical of apoptosis. As DNA cleavage and morphological changes could be inhibited by N-ethylmaleimide but not by iodoacetamide, we conclude that during apoptosis, caspase activation causes activation of another cytoplasmic enzyme that can be inhibited by N-ethylmaleimide. Activity of this enzyme is necessary for activation of endonucleases, DNA cleavage, and changes in nuclear morphology. 相似文献
9.
A C-terminal region of signal peptide peptidase defines a functional domain for intramembrane aspartic protease catalysis 总被引:1,自引:0,他引:1
Intramembrane proteolysis is now firmly established as a prominent biological process, and structure elucidation is emerging as the new frontier in the understanding of these novel membrane-embedded enzymes. Reproducing this unusual hydrolysis within otherwise water-excluding transmembrane regions with purified proteins is a challenging prerequisite for such structural studies. Here we show the bacterial expression, purification, and reconstitution of proteolytically active signal peptide peptidase (SPP), a membrane-embedded enzyme in the presenilin family of aspartyl proteases. This finding formally proves that, unlike presenilin, SPP does not require any additional proteins for proteolysis. Surprisingly, the conserved C-terminal half of SPP is sufficient for proteolytic activity; purification and reconstitution of this engineered fragment of several SPP orthologues revealed that this region defines a functional domain for an intramembrane aspartyl protease. The discovery of minimal requirements for intramembrane proteolysis should facilitate mechanistic and structural analysis and help define general biochemical principles of hydrolysis in a hydrophobic environment. 相似文献
10.
Mouse mammary tumor virus (MMTV) encodes a Rev-like protein, Rem, which is involved in the nuclear export and expression of viral RNA. Previous data have shown that all Rev-like functions are localized to the 98-amino-acid signal peptide (SP) at the N terminus of MMTV Rem or envelope proteins. MMTV-SP uses endoplasmic reticulum-associated degradation (ERAD) for protein trafficking. Rem cleavage by signal peptidase in the ER is necessary for MMTV-SP function in a reporter assay, but many requirements for trafficking are not known. To allow detection and localization of both MMTV-SP and the C-terminal cleavage product, we prepared plasmids expressing green fluorescent protein (GFP) tags. N-terminal Rem tagging led to protein accumulation relative to untagged Rem and allowed signal peptidase cleavage but reduced its specific activity. C-terminal tagging also led to Rem accumulation yet dramatically reduced cleavage, GFP fluorescence, and activity relative to N-terminally tagged Rem (GFPRem). Substitutions of an invariant leucine at position 71 between the known RNA-binding and nuclear export sequences interfered with GFPRem accumulation and activity but not cleavage. Similarly, deletion of 100 or 150 C-terminal amino acids from GFPRem dramatically reduced both Rem and MMTV-SP levels and function. Removal of the entire C terminus (203 amino acids) restored both protein levels and activity of MMTV-SP. Only C-terminal GFP tagging, and not other modifications, appeared to trap Rem in the ER membrane. Thus, Rem conformation in both the ER lumen and cytoplasm determines cleavage, retrotranslocation, and MMTV-SP function. These mutants further characterize intermediates in Rem trafficking and have implications for all proteins affected by ERAD. 相似文献
11.
12.
Intramembrane proteases have the unusual property of cleaving peptide bonds within the lipid bilayer, an environment not obviously suited to a water-requiring hydrolysis reaction. These enzymes include site-2 protease, gamma-secretase/presenilin, signal peptide peptidase and the rhomboids, and they have a wide range of cellular functions. All have multiple transmembrane domains and, because of their high hydrophobicity, have been difficult to purify. We have now developed an in vitro assay to monitor rhomboid activity in the detergent solubilised state. This has allowed us to isolate for the first time a highly pure rhomboid with catalytic activity. Our results suggest that detergent-solubilised rhomboid activity mimics its activity in biological membranes in many aspects. Analysis of purified mutant proteins suggests that rhomboids use a serine protease catalytic dyad instead of the previously proposed triad. This analysis also suggests that other conserved residues participate in subsidiary functions like ligand binding and water supply. We identify a motif shared between rhomboids and the recently discovered derlins, which participate in translocation of misfolded membrane proteins. 相似文献
13.
14.
Bozóky Z Róna G Klement É Medzihradszky KF Merényi G Vértessy BG Friedrich P 《PloS one》2011,6(5):e19546
Background
Calpain proteases drive intracellular signal transduction via specific proteolysis of multiple substrates upon Ca2+-induced activation. Recently, dUTPase, an enzyme essential to maintain genomic integrity, was identified as a physiological calpain substrate in Drosophila cells. Here we investigate the potential structural/functional significance of calpain-activated proteolysis of human dUTPase.Methodology/Principal Findings
Limited proteolysis of human dUTPase by mammalian m-calpain was investigated in the presence and absence of cognate ligands of either calpain or dUTPase. Significant proteolysis was observed only in the presence of Ca(II) ions, inducing calpain action. The presence or absence of the dUTP-analogue α,β-imido-dUTP did not show any effect on Ca2+-calpain-induced cleavage of human dUTPase. The catalytic rate constant of dUTPase was unaffected by calpain cleavage. Gel electrophoretic analysis showed that Ca2+-calpain-induced cleavage of human dUTPase resulted in several distinctly observable dUTPase fragments. Mass spectrometric identification of the calpain-cleaved fragments identified three calpain cleavage sites (between residues 4SE5; 7TP8; and 31LS32). The cleavage between the 31LS32 peptide bond specifically removes the flexible N-terminal nuclear localization signal, indispensable for cognate localization.Conclusions/Significance
Results argue for a mechanism where Ca2+-calpain may regulate nuclear availability and degradation of dUTPase. 相似文献15.
Elzinga BM Twomey C Powell JC Harte F McCarthy JV 《The Journal of biological chemistry》2009,284(3):1394-1409
Biochemical and genetic studies have revealed that the presenilins interact with several proteins and are involved in the regulated intramembrane proteolysis of numerous type 1 membrane proteins, thereby linking presenilins to a range of cellular processes. In this study, we report the characterization of a highly conserved tumor necrosis factor receptor-associated factor-6 (TRAF6) consensus-binding site within the hydrophilic loop domain of presenilin-1 (PS-1). In coimmunoprecipitation studies we indicate that presenilin-1 interacts with TRAF6 and interleukin-1 receptor-associated kinase 2. Substitution of presenilin-1 residues Pro-374 and Glu-376 by site-directed mutagenesis greatly reduces the ability of PS1 to associate with TRAF6. By studying these interactions, we also demonstrate that the interleukin-1 receptor type 1 (IL-1R1) undergoes intramembrane proteolytic processing, mediated by presenilin-dependent gamma-secretase activity. A metalloprotease-dependent proteolytic event liberates soluble IL-1R1 ectodomain and produces an approximately 32-kDa C-terminal domain. This IL-1R1 C-terminal domain is a substrate for subsequent gamma-secretase cleavage, which generates an approximately 26-kDa intracellular domain. Specific pharmacological gamma-secretase inhibitors, expression of dominant negative presenilin-1, or presenilin deficiency independently inhibit generation of the IL-1R1 intracellular domain. Attenuation of gamma-secretase activity also impairs responsiveness to IL-1beta-stimulated activation of the MAPKs and cytokine secretion. Thus, TRAF6 and interleukin receptor-associated kinase 2 are novel binding partners for PS1, and IL-1R1 is a new substrate for presenilin-dependent gamma-secretase cleavage. These findings also suggest that regulated intramembrane proteolysis may be a control mechanism for IL-1R1-mediated signaling. 相似文献
16.
In this report, infrared (IR) radiation was employed to enhance the efficiency of tryptic proteolysis for peptide mapping. Protein solutions containing trypsin in sealed transparent Eppendorf tubes were allowed to digest under an IR lamp at 37 degrees C. The feasibility and performance of the novel proteolysis approach were demonstrated by the digestion of BSA and myoglobin (MYO) and the digestion time was significantly reduced to 5 min. The obtained digests were identified by MALDI-TOF MS with the sequence coverages of 69% (BSA) and 90% (MYO) that were much better than those obtained by conventional in-solution tryptic digestion. The present IR-assisted proteolysis strategy is simple and efficient, offering great promise for high-throughput protein identification. 相似文献
17.
Regulated intramembrane proteolysis (RIP) is a signaling mechanism through which transmembrane precursor proteins are cleaved to liberate their cytoplasmic and/or luminal/extracellular fragments from membranes so that these fragments are able to function at a new location. Recent studies have indicated that this proteolytic reaction plays an important role in host–virus interaction. On one hand, RIP transfers the signal from the endoplasmic reticulum (ER) to nucleus to activate antiviral genes in response to alteration of the ER caused by viral infection. On the other hand, RIP can be hijacked by virus to process transmembrane viral protein precursors and to destroy transmembrane antiviral proteins. Understanding this Yin and Yang side of RIP may lead to new strategies to combat viral infection. This article is part of a Special Issue entitled: Intramembrane Proteases. 相似文献
18.
Intramembrane-cleaving proteases are members of a novel type of enzyme that hydrolyse substrate proteins within transmembrane regions. The presently known proteases that catalyse such cleavage reactions are membrane proteins of high hydrophobicity and multiple predicted transmembrane regions. A key feature is the positioning of active site residues in hydrophobic segments implying that the catalytic centre is assembled within the plane of the membrane. Nevertheless, all these proteases appear to utilise catalytic mechanisms similar to classic proteases that expose their active site domains in aqueous compartments. In the present review, we will address the mechanism of intramembrane proteolysis on the example of the signal peptide peptidase, and discuss how enzyme-catalysed hydrolysis of peptide bonds within the plane of a cellular membrane might occur. 相似文献
19.