首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactobacillus delbrueckii was grown on sugarcane molasses, sugarcane juice and sugar beet juice in batch fermentation at pH 6 and at 40°C. After 72 h, the lactic acid from 13% (w/v) sugarcane molasses (119 g total sugar l−1) and sugarcane juice (133 g total sugar l−1) was 107 g l−1 and 120 g l−1, respectively. With 10% (w/v) sugar beet juice (105 g total sugar l−1), 84 g lactic acid l−1 was produced. The optical purities of d-lactic acid from the feedstocks ranged from 97.2 to 98.3%.  相似文献   

2.
Summary Azotobacter vinelandii UWD produced very high molecular weight (MW) (approx. 4 million Daltons) poly--hydroxybutyrate (PHB) when grown in 5% w/v beet molasses medium. The polymer MW decreased as the beet molasses concentration was increased. Similar results were obtained in equivalent concentrations of sucrose (as raw sugar), but the polymer MW was not greater than 1.6 million. This difference was not caused by more severe oxygen-limitation in the beet molasses medium. It appeared that the nonsugar components of beet molasses promoted the formation of higher MW polymer. Fish peptone, a known PHB-yield-promoter in this organism, did not promote the formation of very high MW polymer.  相似文献   

3.
Levan is a homopolymer of fructose with many outstanding properties like high solubility in oil and water, strong adhesiveness, good biocompatibility, and film-forming ability. However, its industrial use has long been hampered by costly production processes which rely on mesophilic bacteria and plants. Recently, Halomonas sp. AAD6 halophilic bacteria were found to be the only extremophilic species producing levan at high titers in semi-chemical medium containing sucrose, and in this study, pretreated sugar beet molasses and starch molasses were both found to be feasible substitutes for sucrose. Five different pretreatment methods and their combinations were applied to both molasses types. Biomass and levan concentrations reached by the Halomonas sp. AAD6 cells cultivated on 30 g/L of pretreated beet molasses were 6.09 g dry cells/L and 12.4 g/L, respectively. When compared with literature, Halomonas sp. was found to stand out with its exceptionally high levan production yields on available fructose. Molecular characterization and monosaccharide composition studies confirmed levan-type fructan structure of the biopolymers. Rheological properties under different conditions pointed to the typical characteristics of low viscosity and pseudoplastic behaviors of the levan polymers. Moreover, levan polymer produced from molasses showed high biocompatibility and affinity with both cancerous and non-cancerous cell lines.  相似文献   

4.
The fermentation of sugar beet juice as well as juice syrup medium by Zymomonas mobilis inoculum attached to stainless steel wire spheres was investigated. A semi‐synthetic sucrose medium enriched with mineral salts and yeast extract was used as the control. It was established that raw sugar beet juice ensured good Zymomonas mobilis culture growth and slightly decreased ethanol synthesis applying both flame‐burned and TiCl4‐treated wire spheres as carriers (Qx = 0.05—0.06 g/l × h; Qeth = 1.02—1.22 g/l × h). High ethanol yield was also observed in juice medium (Y = 0.45‐0.46 g/g), however, levan synthesis with this medium decreased. The application of juice syrup brought about less growth effect and ethanol synthesis as compared to juice medium. The use of semi‐synthetic sucrose medium resulted in high levan production (Qlev = 0.6—0.7 g/l × h), however, reduced ethanol production by 40%. In conclusion, sugar beet juice or syrup is recommendable for the preparation of Zymomonas mobilis inoculum. The levan production stage has to be realized using an optimized semi‐synthetic sucrose medium. The installed wire spheres filled with inocula provided the possibility for a repeated batch fermentation process, which could be recommended for both juice and semi‐synthetic sucrose medium fermentation.  相似文献   

5.
M. Thom  R. A. Leigh  A. Maretzki 《Planta》1986,167(3):410-413
Vacuoles isolated from the storage roots of red beet (Beta vulgaris L.) accumulate sucrose via two different mechanisms. One mechanism transports sucrose directly, and its rate is increased by the addition of MgATP. The other mechanism utilizes uridine diphosphate glucose (UDP-glucose) to synthesize and simultaneously transport sucrose phosphate and sucrose into the vacuole. This group translocation mechanism has also been found in sugarcane vacuoles. As in sugarcane, the beet group translocator does not require fructose 6-phosphate, nor is the latter substance transported into the vacuole. The uptake of UDP[14C]glucose in inhibited by high concentrations of osmoticum.Abbreviations EDTA ethylenediaminetetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - UDP uridine 5-diphosphate  相似文献   

6.
In order to obtain better bacterial species or strains for production of short side chain-poly[hydroxyalkanoate](ssc-PHA) from cheap carbon sources, a bioprospecting programme was performed in a subtropical rainforest soil. From 398 bacterial isolates, one produced high amounts of ssc-PHA when grown on sugarcane molasses or sucrose as detected by spectrophotometric scanning and gas chromatography coupled to mass spectrometry. Also, the GC—MS analysis indicated that the polymer was composed basically of poly[3-hydroxybutyrate](PHB). Phylogenetic studies using 16S rDNA analysis showed that the isolated bacterium belonged to the Ralstonia pickettii species and had a high identity/similarity with 16S rDNA obtained from total DNA of uncultured strains of soils and with unidentified bacteria at species level. The new strain was named R. pickettii 61A6. Spectrofluorometric analysis showed that the best rates of ssc-PHA accumulation within the cells occurred in 10%(w/v) sucrose and in 5%(w/v) sugarcane molasses at the stationary phase, with a yield of 231 and 357 mg/l of ssc-PHA per g dry cell weight, respectively.  相似文献   

7.
Bacillus subtilis(natto) Takahashi, used to prepare the fermented soybean product natto, was grown in a basal medium containing 5% (w/w) sucrose and 1.5% (w/w) l-glutamate and produced 58% (w/w) poly(-glutamic acid) and 42% (w/w) levan simultaneously. After 21 h, 40–50 mg levan ml-1had been produced in medium containing 20% (w/w) sucrose but without l-glutamate. In medium containing l-glutamic acid but without sucrose, mainly poly(-glutamic acid) was produced. Revisions requested 28 August 2004/14 October 2004; Revisions received 11 October 2004/22 November 2004  相似文献   

8.
M. Voß  M. Weidner 《Planta》1988,173(1):96-103
Tonoplast vesicles were prepared from red-beet (Beta vulgaris L. ssp. conditiva) hypocotyl tubers (beetroot) known to store sucrose. Uptake experiments, employing uridine 5-diphospho-[14C]glucose (UDP-[14C]glucose) showed the operation of an UDP-glucose-dependent group translocator for vectorial synthesis and accumulation of sucrose, recently described for sugarcane and red-beet vacuoles and for tonoplast vesicles prepared from sugarcane suspension cells. Characterization of the kinetic properties yielded the following results. Uptake of UDP-glucose was linear for 15 min. The apparent K m was 0.75 mM for UDP-glucose (at pH 7.2, 1 mM Mg2+), V max was 32 nmol·(mg protein)-1·min-1. The incorporation of UDP-glucose exhibited a sigmoidal substrate-saturation curve in the absence of Mg2+, the Hill coefficient (n H) was 1.33; Michaelis-Menten kinetics were obtained, however, in the presence of 1 mM MgCl2. For the reaction sequence under the control of the group translocator a dual pH optimum was found at pH 7.2 and 7.9, respectively. All reaction intermediates and the end product sucrose could be identified by two-dimensional high-performance thin-layer chromatography and autoradiography. The distribution pattern of radioactivity showed almost uniformly high labeling of all intermediates and sucrose. The physiological relevance of the results is discussed in the light of the fact that the tonoplast of red-beet storage cells accommodates two mechanisms of sucrose uptake (i) vectorial sucrose synthesis and (ii) direct ATP-dependent sucrose assimilation.Abbreviations HPTLC High-performance thin-layer chromatography - UDP uridine 5-diphosphate - SDS sodium dodecyl sulfate  相似文献   

9.
Summary Azotobacter vinelandii strain UWD formed >2 mg/ml poly--hydroxybutyrate (pHB) during exponential growth in media containing ammonium acetate and 1% w/v glucose, fructose, sucrose, or maltose, and >1.5 mg/ml with 1% w/v sodium gluconate or glycerol. After acetate exhaustion, pHB formation accompanied carbohydrate utilization and pHB rapidly accounted for 53%–70% of the cell mass. Strain UWD also formed >2 mg/ml pHB when it was grown with 2% w/v corn syrup, cane molasses, beet molasses, or malt extract. Beet molasses had a growth stimulatory effect which promoted higher yields of pHB/ml and a high ratio of pHB/protein. Malt extract also promoted higher yields of pHB/ml. In this case, pHB formation was no longer subject to acetate repression and the cells contained a higher ratio of pHB/protein. This study shows that unrefined carbon sources support pHB formation in strain UWD and that the yields of pHB were comparable to or better than those obtained with refined carbon sources.  相似文献   

10.
Summary Vigorously aerated batch cultures of Azotobacter vinelandii UWD formed < 1 g poly--hydroxybutyrate (PHB)/l in media containing pure sugars and 3 g PHB/l in media containing cane molasses, corn syrup or malt extract. However, > 7 g PHB/l was formed when the medium contained 5% beet molasses. Increased yields of PHB were promoted in the media containing pure or unrefined sugars by the addition of complex nitrogen sources. The greatest effect was obtained with 0.05–0.2% fish peptone (FP), proteose peptone no. 3 or yeast extract. Peptones caused a 1.6-fold increase in residual non-PHB biomass and up to a 25-fold increase in PHB content. Hence the increased PHB formation was not simply due to stimulation of culture growth. The amount of PHB per cell protein formed by UWD in media containing FP was greatest in glucose = corn syrup > malt extract > sucrose = fructose = cane molasses > maltose, as carbon sources. The addition of FP to medium containing beet molasses did not stimulate PHB yield. The peptone effect was most significant in well-aerated cultures, which were fixed nitrogen and consuming glucose at a high rate. An explanation for the peptone effect on PHB yield stimulation is proposed.  相似文献   

11.
Due to the environmental concerns and the increasing price of oil, bioethanol was already produced in large amount in Brazil and China from sugarcane juice and molasses. In order to make this process competitive, we have investigated the suitability of immobilized Saccharomyces cerevisiae strain AS2.1190 on sugarcane pieces for production of ethanol. Electron microscopy clearly showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported-biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 89.73–77.13 g/l in average value), and ethanol productivities (about 59.53–62.79 g/l d in average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.34–3.60 g/l) with conversions ranging from 97.67–99.80%, showing efficiency (90.11–94.28%) and operational stability of the biocatalyst for ethanol fermentation. The results of this study concerning the use of sugarcane as yeast supports could be promising for industrial fermentations. L. Liang and Y. Zhang have contributed equally to this work.  相似文献   

12.
Fourteen lactose-fermenting strains of Kluyveromyces marxianus , including its anamorph, Candida kefyr , were grown in two media containing 20% (w/v) sugar as either beet molasses or cheese whey. Strain NBRC 1963 of K. marxianus converted sucrose and lactose to ethanol in both media most efficiently. However, ethanol was produced from sucrose and not from lactose by strain NBRC 1963 in the medium containing equal amounts of sugar from beet molasses and cheese whey. The spontaneous mutants resistant to 2-deoxyglucose in the minimal medium composed of galactose as the sole carbon source were isolated from strain NBRC 1963. Among them, strain KD-15 vigorously produced ethanol in the media containing beet molasses, cheese whey, or both. The mutant strain KD-15 was insensitive to catabolite repression, as shown by the observation that β-galactosidase was not repressed in the presence of sucrose from beet molasses.  相似文献   

13.
The alcoholic fermentation for fuel ethanol production in Brazil occurs in the presence of several microorganisms present with the starter strain of Saccharomyces cerevisiae in sugarcane musts. It is expected that a multitude of microbial interactions may exist and impact on the fermentation yield. The yeast Dekkera bruxellensis and the bacterium Lactobacillus fermentum are important and frequent contaminants of industrial processes, although reports on the effects of both microorganisms simultaneously in ethanolic fermentation are scarce. The aim of this work was to determine the effects and interactions of both contaminants on the ethanolic fermentation carried out by the industrial yeast S. cerevisiae PE-2 in two different feedstocks (sugarcane juice and molasses) by running multiple batch fermentations with the starter yeast in pure or co-cultures with D. bruxellensis and/or L. fermentum. The fermentations contaminated with D. bruxellensis or L. fermentum or both together resulted in a lower average yield of ethanol, but it was higher in molasses than that of sugarcane juice. The decrease in the CFU number of S. cerevisiae was verified only in co-cultures with both D. bruxellensis and L. fermentum concomitant with higher residual sucrose concentration, lower glycerol and organic acid production in spite of a high reduction in the medium pH in both feedstocks. The growth of D. bruxellensis was stimulated in the presence of L. fermentum resulting in a more pronounced effect on the fermentation parameters than the effects of contamination by each microorganism individually.  相似文献   

14.
A levan-producing strain, BD1707, was isolated from Tibetan kefir and identified as Leuconostoc citreum. The effects of carbon sources on the growth of L. citreum BD1707 and levan production in tomato juice were measured. The changes in pH, viable cell count, sugar content, and levan yield in the cultured tomato juice supplemented with 15% (wt/vol) sucrose were also assayed. L. citreum BD1707 could synthesize more than 28 g/liter of levan in the tomato juice-sucrose medium when cultured at 30°C for 96 h. Based on the monosaccharide composition, molecular mass distribution, Fourier transform infrared (FTIR) spectra, and nuclear magnetic resonance (NMR) spectra, the levan synthesized by L. citreum BD1707 was composed of a linear backbone consisting of consecutive β-(2→6) linked d-fructofuranosyl units, with an estimated average molecular mass of 4.3 × 106 Da.  相似文献   

15.
In an effort to increase in vitro blueberry (Vaccinium corymbosum L.) shoot production without negatively impacting subsequent genetic engineering experiments, studies were conducted to examine the effects of sucrose concentration in the propagation medium on shoot proliferation and on the transfer of an intron-containing -glucuronidase (GUS) gene into leaf explants from the propagated shoots. Numbers of axillary shoots >0.5 cm in length did not significantly increase for `Bluecrop' when sucrose levels were increased from 15 mM to either 29, 44 or 58 mM. The number of axillary shoots increased significantly for Duke ' and `Georgiagem' when sucrose concentrations were increased from 15 to 44 mM, and from 15 to 58 mM, respectively. Four-days of cocultivation with Agrobacterium tumefaciens strain EHA105 yielded highest GUS-expressing leaf zones on leaf explants from shoots cultured on either 15 or 29 mM sucrose. The number of GUS-expressing leaf zones was significantly lower on leaf explants derived from shoots grown on 58 mM sucrose than from those grown on 15 mM sucrose for all three cultivars, and was significantly lower on 44 mM compared to 15 mM for cultivars Duke and Georgiagem. These studies indicate shoot pretreatment conditions for optimizing subsequent blueberry genetic engineering experiments. Thus, a blueberry shoot proliferation medium containing 15–29 mM sucrose is recommended for explants later used for genetic transformation.  相似文献   

16.
Summary It is well known that molasses stillage is difficult to dry because of its high hygroscopicity. This investigation was made to try to affect the drying capability of beet molasses stillage by the addition of gelling agents. Increase in crude protein and essential amino acid content of beet molasses was obtained by growing Brevibacterium flavum and Candida utilis. The results obtained showed that drying performance is probably due to an optimum combination of the chemico-physical properties of the raw material.  相似文献   

17.
The fungus Mucor indicus is found in this study able to consume glucose and fructose, but not sucrose in fermentation of sugarcane and sugar beet molasses. This might be an advantage in industries which want to selectively remove glucose and fructose for crystallisation of sucrose present in the molasses. On the other hand, the fungus assimilated sucrose after hydrolysis by the enzyme invertase. The fungus efficiently grew on glucose and fructose and produced ethanol in synthetic media or from molasses. The cultivations were carried out aerobically and anaerobically, and manipulated toward filamentous or yeast-like morphology. Ethanol was the major metabolite in all the experiments. The ethanol yield in anaerobic cultivations was between 0.35 and 0.48 g/g sugars consumed, depending on the carbon source and the growth morphology, while a yield of as low as 0.16 g/g was obtained during aerobic cultivation. The yeast-like form of the fungus showed faster ethanol production with an average productivity of 0.90 g/l h from glucose, fructose and inverted sucrose, than the filamentous form with an average productivity of 0.33 g/l h. The biomass of the fungus was also analyzed with respect to alkali-insoluble material (AIM), chitin, and chitosan. The biomass of the fungus contained per g maximum 0.217 g AIM and 0.042 g chitosan in yeast-like cultivation under aerobic conditions.  相似文献   

18.
Summary A levan-producing bacterium was isolated from soils and its characteristics for polysaccharide synthesis were studied. A series of enrichment and plating techniques enabled the isolation of a levan-producing bacterium from closely related contaminants. Cultural and physiological characteristics of the isolate identified the organism an a strain ofBacillus polymyxa. The organism produced about 40 g extracellular polysaccharide per liter of sucrose medium, which was about three times more yield than levan obtained from known levan producers. The highest amount of polysaccharide was on a 8% sucrose medium. Hydrolysis of the product showed that the polysaccharide consisted entirely ofd-fructose, and13C.n.m.r. spectra confirmed that the product was levan, a fructose polymer linked by B-(26) fructofuranosyl linkage.  相似文献   

19.
Azotobacter vinelandii was grown diazotrophically in sucrose-limited chemostat cultures at either 12, 48, 108, 144 or 192 M dissolved oxygen. Steady state protein levels and growth yield coefficients (Y) on sucrose increased with increasing dilution rate (D). Specific rate of sucrose consumption (q) increased in direct proportion to D. Maintenance coefficients (m) extrapolated from plots of q versus D, as well as from plots of 1/Y versus 1/D exhibited a nonlinear relationship to the dissolved oxygen concentration. Constant maximal theoretical growth yield coefficients (Y G) of 77.7 g cells per mol of sucrose consumed were extrapolated irrespective of differences in ambient oxygen concentration. For comparison, glucose-, as well as acetate-limited cultures were grown at 108 M oxygen. Fairly identical m- and Y G-values, when based on mol of substrate-carbon with glucose and sucrose grown cells, indicated that both substrates were used with the same efficiency. However, acetate-limited cultures showed significantly lower m- and, at comparable, D, higher Y-values than cultures limited by either sucrose or glucose. Substrate concentrations (K s) required for half-maximal growth rates on sucrose were not constant, they increased when the ambient oxygen concentration was raised and, at a given oxygen concentration, when D was decreased. Since biomass levels varied in linear proportion to K s these results are interpreted in terms of variable substrate uptake activity of the culture.Abbreviations D dilution rate - K s substrate concentration required for half maximal growth rate - m maintenance coefficient - q specific rate of substrate consumption - Y growth yield coefficient - Y G maximum theoretical growth yield coefficient  相似文献   

20.

Purpose

The production of bioethanol in Argentina is based on the sugarcane plantation system, with extensive use of agricultural land, scarce use of fertilizers, pesticides, and artificial irrigation, and burning of sugarcane prior to harvesting. The objective of this paper is to develop a life cycle assessment (LCA) of the fuel ethanol from sugarcane in Tucumán (Argentina), assessing the environmental impact potentials to identify which of them cause the main impacts.

Methods

Our approach innovatively combined knowledge about the main impact pathways of bioethanol production with LCA which covers the typical emission-related impact categories at the midpoint life cycle impact assessment. Real data from the Argentinean industry subsystems have been used to perform the study: S1—sugarcane production, S2—milling process, S3—sugar production, and S4—ethanol production from molasses, honey, or sugarcane juice.

Results and discussion

The results are shown in the three alternative pathways to produce bioethanol. Different impact categories are assessed, with global warming potential (GWP) having the highest impact. So, the production of 1 kg of ethanol from molasses emitted 22.5 kg CO2 (pathway 1), 19.2 kg CO2 from honey (pathway 2), and 15.0 kg CO2 from sugarcane juice (pathway 3). Several sensitivity analyses to study the variability of the GWP according to the different cases studied have been performed (changing the agricultural yield, including economic and calorific allocation in sugar production, and modifying the sugar price).

Conclusions

Agriculture is the subsystem which shows the highest impact in almost all the categories due to fossil fuel consumption. When an economic and calorific allocation is considered to assess the environmental impact, the value is lower than when mass allocation is used because ethanol is relatively cheaper than sugars and it has higher calorific value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号