首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in five loci that modify the phenotype of whiteapricot (wa), caused by the retrotransposon, copia, were examined in two-way combinations to determine whether their effects were additive or epistatic. All two-way combinations of mutations in these five loci, mottler of white (mw), suppressor of forked (su(f], suppressor of white apricot (su(wa], Enhancer of whiteapricot, (E(wa] and Darkener of apricot (Doa), are additive in their effects on wa, implying that each second-site modifier locus affects a different process. Three other copia-induced mutations, HwUa, whd81b25 and ctns were also examined for responsiveness to mutations in these modifier loci. None clearly responded. Mutations associated with B104 insertions, including Gl, vgni, ctn and wric were also examined for responsiveness to mw mutations, which have specificity for this element as well. Both vgni and wric respond to mutations in mw. The former interaction demonstrates that mw is capable of interacting with B104 elements in loci other than white. The significance of the results with respect to the nature of second-site modifier loci is discussed.  相似文献   

2.
3.
4.
DNA sequence of the white locus of Drosophila melanogaster   总被引:59,自引:0,他引:59  
The DNA sequence of the white locus of Drosophila melanogaster is presented. This 14,100 base-pair sequence includes the region of the locus required for wild-type levels of expression and control of expression. We also report the sequence of a complementary DNA clone which established the position of the 3' end of the white RNA on this genomic sequence. The probable exon-intron structure of the gene has been predicted from the DNA sequence of the regions known to be represented in the RNA. The amino acid sequence of the protein which would be produced by translation of this RNA suggests that the white locus gene product may be a membrane protein. The DNA sequence rearrangements associated with seven insertion mutants (white-dominant-zeste-like (wDZL), white-spotted (wsp), white-honey (wh), white-zeste-mottled (wzm), white-apricot (wa), white-buff (wbf) and white-hd81b11 (whd81b11)), one deletion mutant (white-spotted 4 (wsp4)) and one internal duplication mutant (white-ivory (wi)) have been determined and positioned on the wild-type sequence. The positions of these insertions and those of previously characterized insertions associated with six other mutations suggest that some insertions within an intron may still allow the production of correctly spliced RNA, but affect the amount, and correspondingly the expression of the w locus.  相似文献   

5.
6.
7.
A Rasmuson 《Mutation research》1985,148(1-2):65-70
An unstable white locus in Drosophila melanogaster originally described by Rasmuson and Green (1974) and further by Rasmuson et al. (1978, 1980) contains an IS element. This constellation interacts with the zeste mutation and forms a mutationally unstable system that is sensitive to a variety of mutagens. Mutational shifts between zeste and wild-type eye color as well as deletions and transpositions of the white locus are frequently occurring in the unstable X-chromosome in germ line and in somatic tissue. Germinal mutations from zeste to wild-type eye color are associated with an insertion of a piece of DNA, proximal to the wsp site, and the shifts from red to zeste are caused by an excision of the same piece (Rasmuson, in preparation). Mutations to pigmentless phenotype are interpreted as deletions of the white locus, while they always are irreversible and show non-complementation with wsp. The somatic system can be used as a screening test for potential mutagens, described by Rasmuson et al. (1984). This survey is an attempt to correlate the size of the mutated area of the eyes with the age of the larvae at mutagen treatment. X-Rays and MMS were used to give an indication of the mechanism of the instability, according to the different kinds of DNA damage induced. The results show that the mean size of red spots decreased with increasing age of larvae at treatment, while the mutation frequencies were increased because of the multiplication of the cells in the eye anlage susceptible to the mutagens. This is contradictory to the hypothesis maintained by Fahmy and Fahmy (1980) that the somatic shifts are not mutagenic but epigenetic events, due to altered regulation of the gene expression. Red spots induced with MMS are smaller in size than X-ray-induced red spots, indicating a delay in the establishment of mutations from chemically-induced lesions compared to irradiation damage. White spots on the other hand were equally large in size, irrespective of inducing agent and about twice the size of the chemically-induced red spots, implying a faster and more direct action for fixation of deletions than for the production of MMS induced shifts in eye color from zeste to red.  相似文献   

8.
Richter C  West M  Odorizzi G 《The EMBO journal》2007,26(10):2454-2464
Doa4 is a ubiquitin-specific protease in Saccharomyces cerevisiae that deubiquitinates integral membrane proteins sorted into the lumenal vesicles of late-endosomal multivesicular bodies (MVBs). We show that the non-catalytic N terminus of Doa4 mediates its recruitment to endosomes through its association with Bro1, which is one of several highly conserved class E Vps proteins that comprise the core MVB sorting machinery. In turn, Bro1 directly stimulates deubiquitination by interacting with a YPxL motif in the catalytic domain of Doa4. Mutations in either Doa4 or Bro1 that disrupt catalytic activation of Doa4 impair deubiquitination and sorting of MVB cargo proteins and lead to the formation of lumenal MVB vesicles that are predominantly small compared with the vesicles seen in wild-type cells. Thus, by recruiting Doa4 to late endosomes and stimulating its catalytic activity, Bro1 fulfills a novel dual role in coordinating deubiquitination in the MVB pathway.  相似文献   

9.
Attachment of proteins to ubiquitin is reversed by specialized proteases called deubiquitinating enzymes (Dubs), which are also essential for ubiquitin precursor processing. In the genome of Saccharomyces cerevisiae, 17 potential DUB genes can be discerned. We have now constructed strains deleted for each of these genes. Surprisingly, given the essential nature of the ubiquitin system, none of the mutants is lethal or strongly growth defective under standard conditions, although a number have detectable abnormalities. Including results from this study, 14 of the 17 Dubs have now been shown to have ubiquitin-cleaving activity. The most extensively characterized yeast Dub is Doa4, which is required for both ubiquitin homeostasis and proteasome-dependent proteolysis. To help determine what distinguishes Doa4 functionally from other Dubs, we have cloned a DOA4 ortholog from the yeast Kluyveromyces lactis. The K. lactis protein is 42% identical to Doa4, but unexpectedly the K. lactis gene is slightly closer in nucleotide sequence to UBP5, which cannot substitute for DOA4 even in high dosage. The data suggest that the DOA4 locus underwent a duplication after the divergence of K. lactis and S. cerevisiae. This information will facilitate fine-structure analysis of the Doa4 protein to help delineate its key functional elements.  相似文献   

10.
11.
WD40-repeat β-propellers are found in a wide range of proteins involved in distinct biological activities. We define a large subset of WD40 β-propellers as a class of ubiquitin-binding domains. Using the β-propeller from Doa1/Ufd3 as a paradigm, we find the conserved top surface of the Doa1 β-propeller binds the hydrophobic patch of ubiquitin centered on residues I44, L8, and V70. Mutations that disrupt ubiquitin binding abrogate Doa1 function, demonstrating the importance of this interaction. We further demonstrate that WD40 β-propellers from a functionally diverse set of proteins bind ubiquitin in a similar fashion. This set includes members of the F box family of SCF ubiquitin E3 ligase adaptors. Using mutants defective in binding, we find that ubiquitin interaction by the F box protein Cdc4 promotes its autoubiquitination and turnover. Collectively, our results reveal a molecular mechanism that may account for how ubiquitin controls a broad spectrum of cellular activities.  相似文献   

12.
13.
Gillespie JH  Turelli M 《Genetics》1989,122(1):129-138
The Enhancer of wa [E(wa)] mutation was shown to interact strongly with 4 of 41 tested alleles of the white (w) eye color locus. All four of the affected w alleles result from the insertion of a transposable element. E(wa) was further localized cytogenetically. The locus lies between the breakpoints of T(Y;2)L11 and T(Y;2)H137 (section 60) in 2R. The original mutation was shown to be antimorphic on the basis of its action in the presence of additional normal copies and the ability to revert the original allele to one that mimics the effect of a deficiency for the locus. The RNA transcribed from wa was analyzed from flies segregating for E(wa) and normal. The low level of normal functional messenger RNA present in white-apricot is reduced further in Enhancer homozygotes. Total copia RNA was also examined on Northern analyses from the segregating population but no quantitative change in the major copia RNA was produced by E(wa) homozygotes compared to normal.  相似文献   

14.
Large polytopic membrane proteins often derive from duplication and fusion of genes for smaller proteins. The reverse process, splitting of a membrane protein by gene fission, is rare and has been studied mainly with artificially split proteins. Fragments of a split membrane protein may associate and reconstitute the function of the larger protein. Most examples of naturally split membrane proteins are from bacteria or eukaryotic organelles, and their exact history is usually poorly understood. Here, we describe a nuclear-encoded split membrane protein, split-Doa10, in the yeast Kluyveromyces lactis. In most species, Doa10 is encoded as a single polypeptide with 12–16 transmembrane helices (TMs), but split-KlDoa10 is encoded as two fragments, with the split occurring between TM2 and TM3. The two fragments assemble into an active ubiquitin-protein ligase. The K. lactis DOA10 locus has two ORFs separated by a 508-bp intervening sequence (IVS). A promoter within the IVS drives expression of the C-terminal KlDoa10 fragment. At least four additional Kluyveromyces species contain an IVS in the DOA10 locus, in contrast to even closely related genera, allowing dating of the fission event to the base of the genus. The upstream Kluyveromyces Doa10 fragment with its N-terminal RING-CH and two TMs resembles many metazoan MARCH (Membrane-Associated RING-CH) and related viral RING-CH proteins, suggesting that gene splitting may have contributed to MARCH enzyme diversification. Split-Doa10 is the first unequivocal case of a split membrane protein where fission occurred in a nuclear-encoded gene. Such a split may allow divergent functions for the individual protein segments.  相似文献   

15.
Ubiquitin (Ub) is a sorting signal that targets integral membrane proteins to the interior of the vacuole/lysosome by directing them into lumenal vesicles of multivesicular bodies (MVBs). The Vps27-Hse1 complex, which is homologous to the Hrs-STAM complex in mammalian cells, serves as a Ub-sorting receptor at the surface of early endosomes. We have found that Hse1 interacts with Doa1/Ufd3. Doa1 is known to interact with Cdc48/p97 and Ub and is required for maintaining Ub levels. We find that the Hse1 Src homology 3 domain binds directly to the central PFU domain of Doa1. Mutations in Doa1 that block Hse1 binding but not Ub binding do not alter Ub levels but do result in the missorting of the MVB cargo GFP-Cps1. Loss of Doa1 also causes a synthetic growth defect when combined with loss of Vps27. Unlike the loss of Doa1 alone, the doa1Delta vps27Delta double mutant phenotype is not suppressed by Ub overexpression, demonstrating that the effect is not due to indirect consequence of lowered Ub levels. Loss of Doa1 results in a defect in the accumulation of GFP-Ub within yeast vacuoles, implying that there is a reduction in the flux of ubiquitinated membrane proteins through the MVB pathway. This defect was also reflected by an inability to properly sort Vph1-GFP-Ub, a modified subunit of the multiprotein vacuolar ATPase complex, which carries an in-frame fusion of Ub as an MVB sorting signal. These results reveal novel roles for Doa1 in helping to process ubiquitinated membrane proteins for sorting into MVBs.  相似文献   

16.
S. M. Mount  M. M. Green    G. M. Rubin 《Genetics》1988,118(2):221-234
The eye color phenotype of white-apricot (wa), a mutant allele of the white locus caused by the insertion of the transposable element copia into a small intron, is suppressed by the extragenic suppressor suppressor-of-white-apricot (su(wa] and enhanced by the extragenic enhancers suppressor-of-forked su(f] and Enhancer-of-white-apricot (E(wa]. Derivatives of wa have been analyzed molecularly and genetically in order to correlate the structure of these derivatives with their response to modifiers. Derivatives in which the copia element is replaced precisely by a solo long terminal repeat (sLTR) were generated in vitro and returned to the germline by P-element mediated transformation; flies carrying this allele within a P transposon show a nearly wild-type phenotype and no response to either su(f) or su(wa). In addition, eleven partial phenotypic revertants of wa were analyzed. Of these, one appears to be a duplication of a large region which includes wa, three are new alleles of su(wa), two are sLTR derivatives whose properties confirm results obtained using transformation, and five are secondary insertions into the copia element within wa. One of these, waR84h, differs from wa by the insertion of the most 3' 83 nucleotides of the I factor. The five insertion derivatives show a variety of phenotypes and modes of interaction with su[f) and su(wa). The eye pigmentation of waR84h is affected by su(f) and E(wa), but not su(wa). These results demonstrate that copia (as opposed to the interruption of white sequences) is essential for the wa phenotype and its response to genetic modifiers, and that there are multiple mechanisms for the alteration of the wa phenotype by modifiers.  相似文献   

17.
Yeast Doa1/Ufd3 is an adaptor protein for Cdc48 (p97 in mammal), an AAA type ATPase associated with endoplasmic reticulum-associated protein degradation pathway and endosomal sorting into multivesicular bodies. Doa1 functions in the endosomal sorting by its association with Hse1, a component of endosomal sorting complex required for transport (ESCRT) system. The association of Doa1 with Hse1 was previously reported to be mediated between PFU domain of Doa1 and SH3 of Hse1. However, it remains unclear which residues are specifically involved in the interaction. Here we report that Doa1/PFU interacts with Hse1/SH3 with a moderate affinity of 5 μM. Asn-438 of Doa1/PFU and Trp-254 of Hse1/SH3 are found to be critical in the interaction while Phe-434, implicated in ubiquitin binding via a hydrophobic interaction, is not. Small-angle X-ray scattering measurements combined with molecular docking and biochemical analysis yield the solution structure of the Doa1/PFU:Hse1/SH3 complex. Taken together, our results suggest that hydrogen bonding is a major determinant in the interaction of Doa1/PFU with Hse1/SH3.  相似文献   

18.
Prevailing triple infection with three distinct Wolbachia strains was identified in Japanese populations of the adzuki bean beetle, Callosobruchus chinensis. When a polymerase chain reaction (PCR) assay was conducted using universal primers for ftsZ and wsp, Wolbachia was detected in all the individuals examined, 288 males and 334 females from nine Japanese populations. PCR-restriction fragment length polymorphism (RFLP) analysis of cloned wsp gene fragments from single insects revealed that three types of wsp sequences coexist in the insects. Molecular phylogenetic analysis of the wsp sequences unequivocally demonstrated that C. chinensis harbours three phylogenetically distinct Wolbachia, tentatively designated as wBruCon, wBruOri and wBruAus, respectively. Diagnostic PCR analysis using specific primers demonstrated that, of 175 males and 235 females from nine local populations, infection frequencies with wBruCon, wBruOri and wBruAus were 100%, 96.3% and 97.0%, respectively. As for the infection status of individuals, triple infection (93.7%) dominated over double infection (6.1%) and single infection (0.2%). The amounts of wBruCon, wBruOri and wBruAus in field-collected adult insects were analysed by using a quantitative PCR technique in terms of wsp gene copies per individual insect. Irrespective of original populations, wBruCon and wBruOri (107 -108 wsp copies/insect) were consistently greater in amount than wBruAus (106 -107 wsp copies/insect), suggesting that the population sizes of the three Wolbachia strains are controlled, although the mechanism is unknown. Mating experiments suggested that the three Wolbachia cause cytoplasmic incompatibility at different levels of intensity.  相似文献   

19.
Little is known about quality control of proteins that aberrantly or persistently engage the endoplasmic reticulum (ER)-localized translocon en route to membrane localization or the secretory pathway. Hrd1 and Doa10, the primary ubiquitin ligases that function in ER-associated degradation (ERAD) in yeast, target distinct subsets of misfolded or otherwise abnormal proteins based primarily on degradation signal (degron) location. We report the surprising observation that fusing Deg1, a cytoplasmic degron normally recognized by Doa10, to the Sec62 membrane protein rendered the protein a Hrd1 substrate. Hrd1-dependent degradation occurred when Deg1-Sec62 aberrantly engaged the Sec61 translocon channel and underwent topological rearrangement. Mutations that prevent translocon engagement caused a reversion to Doa10-dependent degradation. Similarly, a variant of apolipoprotein B, a protein known to be cotranslocationally targeted for proteasomal degradation, was also a Hrd1 substrate. Hrd1 therefore likely plays a general role in targeting proteins that persistently associate with and potentially obstruct the translocon.  相似文献   

20.
e Saccharomyces cerevisiae Doa4 deubiquitinating enzyme is required for the rapid degradation of protein substrates of the ubiquitin-proteasome pathway. Previous work suggested that Doa4 functions late in the pathway, possibly by deubiquitinating (poly)-ubiquitin-substrate intermediates associated with the 26S proteasome. We now provide evidence for physical and functional interaction between Doa4 and the proteasome. Genetic interaction is indicated by the mutual enhancement of defects associated with a deletion of DOA4 or a proteasome mutation when the two mutations are combined. Physical association of Doa4 and the proteasome was investigated with a new yeast 26S proteasome purification procedure, by which we find that a sizeable fraction of Doa4 copurifies with the protease. Another yeast deubiquitinating enzyme, Ubp5, which is related in sequence to Doa4 but cannot substitute for it even when overproduced, does not associate with the proteasome. DOA4-UBP5 chimeras were made by a novel PCR/yeast recombination method and used to identify an N-terminal 310-residue domain of Doa4 that, when appended to the catalytic domain of Ubp5, conferred Doa4 function, consistent with Ubp enzymes having a modular architecture. Unlike Ubp5, a functional Doa4-Ubp5 chimera associates with the proteasome, suggesting that proteasome binding is important for Doa4 function. Together, these data support a model in which Doa4 promotes proteolysis through removal of ubiquitin from proteolytic intermediates on the proteasome before or after initiation of substrate breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号