首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMP deaminase (AMPD) and adenylate kinase (AK) were purified from skeletal muscle of the white-tailed prairie dog, Cynomus leucurus, and enzyme properties were assayed at temperatures characteristic of euthermia (37 degrees C) and hibernation (5 degrees C) to analyze their role in adenylate metabolism during hibernation. Total adenylates decreased in muscle of torpid individuals from 6.97 +/- 0. 31 to 4.66 +/- 0.58 micromol/g of wet weight due to a significant drop in ATP but ADP, AMP, IMP, and energy charge were unchanged. The affinity of prairie dog AMPD for AMP was not affected by temperature and did not differ from that of rabbit muscle AMPD, used for comparison. However, both prairie dog and rabbit AMPD showed much stronger inhibition by ions and GTP at 5 degrees C, versus 37 degrees C, and inhibition by inorganic phosphate, NH(4)Cl, and (NH(4))(2)SO(4) was much stronger at 5 degrees C for the prairie dog enzyme. Furthermore, ATP and ADP, which activated AMPD at 37 degrees C, were strong inhibitors of prairie dog AMPD at 5 degrees C, with I(50) values of 1 and 14 microM, respectively. ATP also inhibited rabbit AMPD at 5 degrees C (I(50) = 103 microM). Strong inhibition of AMPD at 5 degrees C by several effectors suggests that enzyme function is specifically suppressed in muscle of hibernating animals. By contrast, AK showed properties that would maintain or even enhance its function at low temperature. K(m) values for substrates (ATP, ADP, AMP) decreased with decreasing temperature, the change in K(m) ATP paralleling the decrease in muscle ATP concentration. AK inhibition by ions was also reduced at 5 degrees C. The data suggest that adenylate degradation via AMPD is blocked during hibernation but that AK maintains its function in stabilizing energy charge.  相似文献   

2.
中华大蟾蜍卵母细胞成熟过程中膜电位变化的实验分析   总被引:1,自引:0,他引:1  
The full-grown oocytes obtained from toad (bufo bufo gargarizans) submitted in hibernation state or reared at 25-30 degrees C for several months, named hibernation oocyte or high temperature oocyte, had a membrane potential of -41.51 +/- 0.77 mV and -43.83 +/- 1.39 mV in Ringer's solution respectively. The hibernation oocytes underwent GVBD (germinal vesicle breakdown) and membrane depolarization at 19 +/- 1 degree C after progesterone stimulation. The membrane potential was about -20 mV at the period of GVBD, and -10 mV or so at 20 hours after the hormone treatment. However, the high temperature oocytes did not undergo GVBD, their membrane potential decreased before the fourth hour after treatment with progesterone and then recovered. If the hibernation oocytes were preincubated at 37-38 degrees C for 13 hours prior to the culture in the medium containing progesterone (10(-6)M, 37-38 degrees C), no GVBD was observed and the membrane depolarized before the fourth hour after treatment with progesterone then recovered, but MPF was detectable in the cytoplasm (unpublished). Both GVBD and membrane depolarization appeared in the hibernation oocytes and high temperature oocytes after injection of MPF. The time required for the hibernation oocytes injected MPF to attain the membrane potential about -20 mV was 4 hours earlier than that of progesterone treatment. It was just the time required for the appearance of MPF in the cytoplasm of oocytes treated with the hormone. It was noticed in our precedent article that a factor which appeared in the cytoplasm of high temperature oocytes differed from MPF. The factor was called Hibernation Oocyte Mature Promoting Factor (HOMPF).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Golden-mantled ground squirrels (Spermophilus lateralis) undergo seasonal hibernation during which core body temperature (T(b)) values are maintained 1-2 degrees C above ambient temperature. Hibernation is not continuous. Squirrels arouse at approximately 7-day intervals, during which T(b) increases to 37 degrees C for approximately 16 h; thereafter, they return to hibernation and sustain low T(b)s until the next arousal. Over the course of the hibernation season, arousals consume 60-80% of a squirrel's winter energy budget, but their functional significance is unknown and disputed. Host-defense mechanisms appear to be downregulated during the hibernation season and preclude normal immune responses. These experiments assessed immune function during hibernation and subsequent periodic arousals. The acute-phase response to bacterial lipopolysaccharide (LPS) was arrested during hibernation and fully restored on arousal to normothermia. LPS injection (ip) resulted in a 1-1.5 degrees C fever in normothermic animals that was sustained for > 8 h. LPS was without effect in hibernating squirrels, neither inducing fever nor provoking arousal, but a fever did develop several days later, when squirrels next aroused from hibernation; the duration of this arousal was increased sixfold above baseline values. Intracerebroventricular infusions of prostaglandin E(2) provoked arousal from hibernation and induced fever, suggesting that neural signaling pathways that mediate febrile responses are functional during hibernation. Periodic arousals may activate a dormant immune system, which can then combat pathogens that may have been introduced immediately before or during hibernation.  相似文献   

4.
Hibernating mammals rely heavily on lipid metabolism to supply energy during hibernation. We wondered if the fatty acid binding protein from a hibernator responded to temperature differently than that from a nonhibernator. We found that the Kd for oleate of the liver fatty acid binding protein (1.5 microM) isolated from ground squirrel (Spermophilus richardsonii) was temperature insensitive over 5-37 degrees C, while the rat liver fatty acid binding protein was affected with the Kd at 37 degrees C being about half (0.8 microM) that found at lower temperatures. This same trend was observed when comparing the specificity of various fatty acids of differing chain length and degree of unsaturation for the two proteins at 5 and 37 degrees C. At the lower temperature, ground squirrel protein bound long-chain unsaturated fatty acids, particularly linoleate and linolenate, at least as well as at the higher temperature and matched requirements for these fatty acids in the diet. The most common long-chain fatty acid, palmitate, was a more effective ligand for ground squirrel liver fatty acid binding protein at 5 degrees C than at 37 degrees C, with the opposite occurring in the eutherm. Rat protein was clearly not adapted to function optimally at temperatures lower than the animal's body temperature.  相似文献   

5.
The effects of muscimol and/or incubation temperature on the inhibition of [3H]flunitrazepam receptor binding by benzodiazepine receptor ligands were investigated. At 0 degree C muscimol decreased the Ki values for some ligands as displacers of [3H]flunitrazepam binding to brain-specific sites while increasing or having no effect on the Ki values for other ligands. The Ki values for some ligands are higher at 37 degrees C than at 0 degree C but are reduced by muscimol at both 0 degrees and 37 degrees C. In contrast, the ligands whose Ki values are increased by muscimol either decreased or did not alter the Ki values at 37 degrees C as compared to those at 0 degree C. Incubation of membranes at 37 degrees C for 30 min accelerated gamma-aminobutyric acid (GABA) release by 221% over that at 0 degree C. These results indicate that changes in incubation temperature alter benzodiazepine receptor affinity for ligands via GABA.  相似文献   

6.
7.
Brown adipose tissue (BAT) is thought to play a significant physiological role during arousal when body temperature rises from the extremely low body temperature that occurs during hibernation. The dominant pathway of BAT thermogenesis occurs through the β(3)-adrenergic receptor. In this study, we investigated the role of the β(3)-adrenergic system in BAT thermogenesis during arousal from hibernation both in vitro and in vivo. Syrian hamsters in the hibernation group contained BAT that was significantly greater in overall mass, total protein, and thermogenic uncoupling protein-1 than BAT from the warm-acclimated group. Although the ability of the β(3)-agonist CL316,243 to induce BAT thermogenesis at 36°C was no different between the hibernation and warm-acclimated groups, its maximum ratio over the basal value at 12°C in the hibernation group was significantly larger than that in the warm-acclimated group. Forskolin stimulation at 12°C produced equivalent BAT responses in these two groups. In vivo thermogenesis was assessed with the arousal time determined by the time course of BAT temperature or heart rate. Stimulation of BAT by CL316,243 significantly shortened the time of arousal from hibernation compared with that induced by vehicle alone, and it also induced arousal in deep hibernating animals. The β(3)-antagonist SR59230A inhibited arousal from hibernation either in part or completely. These results suggest that BAT in hibernating animals has potent thermogenic activity with a highly effective β(3)-receptor mechanism at lower temperatures.  相似文献   

8.
Glutamate dehydrogenase (GDH) was purified to homogeneity from the liver of euthermic (37 degrees C body temperature) and hibernating (torpid, 5 degrees C body temperature) Richardson's ground squirrels (Spermophilus richardsonii). SDS-PAGE yielded a subunit molecular weight of 59.5+/-2 kDa for both enzymes, but reverse phase and size exclusion HPLC showed native molecular weights of 335+/-5 kDa for euthermic and 320+/-5 kDa for hibernator GDH. Euthermic and hibernator GDH differed substantially in apparent Km values for glutamate, NH4+, and alpha-ketoglutarate, as well as in Ka and IC50 values for nucleotide and ion activators and inhibitors. Kinetic properties of each enzyme were differentially affected by assay temperature (37 versus 5 degrees C). For example, the Km for alpha-ketoglutarate of euthermic GDH was higher at 5 degrees C (3.66+/-0.34 mM) than at 37 degrees C (0.10+/-0.01 mM), whereas hibernator GDH had a higher affinity for alpha-ketoglutarate at 5 degrees C (Km was 0.98+/-0.08 mM at 37 degrees C and 0.43+/-0.02 mM at 5 degrees C). Temperature effects on Ka ADP values of the enzymes followed a similar pattern; GTP inhibition was strongest with the euthermic enzyme at 37 degrees C and weakest with hibernator GDH at 5 degrees C. Entry into hibernation leads to stable changes in the properties of ground squirrel liver GDH that allow the enzyme to function optimally at the prevailing body temperature.  相似文献   

9.
Irmeli Pajunen   《Cryobiology》1983,20(6):690-697
Hibernation pattern in the garden dormouse (Eliomys quercinus) was studied at TA's of 0, 4, 6.5, and 9 degrees C during 6 months in each study winter. The animals were kept in darkness without food or water. Body temperature and the mean duration of the hibernation periods were ambient temperature dependent. The comparison of hibernation at different TA's was based on three features: the mean duration of the hibernation periods during the midwinter plateau, the existence of the initial and terminal phases with the changing length of the hibernation periods, and the differences between the sexes. The TA of 4 degrees C was the optimal TA for long-term hibernation. The difference between 4 degrees C and other TA's was greater in males. The TA's of 0 and 9 degrees C were near the lower and higher TA limits for long-term hibernation. Signs of the existence of a circannual rhythm were detected in the males toward the end of the hibernation season.  相似文献   

10.
Kalabukhova TN 《Biofizika》1998,43(6):1076-1080
Taking into account the van't Hoff's law the rates of relative erythrocyte hemolysis in ground squirrel Citellus undulatus Pallas during different phases of hibernation were first studied by the method of acid erythrograms with some modifications. The temperature of the erythrogram registration (8 degrees C) models the body temperature in hibernation, and temperature of 35 degrees C, corresponds to the body temperature of the awakened ground squirrel. The positions of the erythrogram maxima for the ground squirrel during short-term arousal and during hibernation coincide for each temperature studied: 8 or 35 degrees C. Therefore, the increase in HCl concentration at 8 degrees C reflects an increase in the stability of erythrocyte membranes or a decrease in the rate of relative hemolysis for the ground squirrel during hibernation. Thus, the adaptive response of erythrocytes in hibernating ground squirrel is revealed. The correlation of the rates of physicochemical processes in vitro with the rates of physiological ones in vivo is shown using the ratio of the rates mentioned above for the short-term arousal and for hibernation. First the physicochemical way of cold adaptation due to the van't Hoff's law is proved.  相似文献   

11.
Plasma glucose and glucagon concentrations were measured in edible dormice during the bout of hibernation, arousal and active periods. During lethargy, plasma glucose and glucagon were low, compared to active values and did not fluctuate throughout the phase. During rewarming, plasma glucose regularly increased from 17 degrees to 37 degrees C while plasma glucagon rose after the 17 degrees C stage and reached the higher values at 26 degrees C, then slightly decreased at 37 degrees C. During arousal, plasma levels of free amino acids progressively increased. The effect of temperature and secretagogue (glucose and arginine) on glucagon secretion was studied using perfused pancreas from hibernating edible dormouse. In vitro rewarming of pancreas induced an increase in glucagon secretion. Glucagon secretion was regulated by glucose (inhibitory effect) and by arginine (stimulating effect) up to 25 degrees C. The effect of temperature and glucagon on oxygen uptake of hibernating edible dormouse brown fat was studied using an in vitro technique. Rewarming strongly increased oxygen consumption from 10 to 37 degrees C. Glucagon enhanced oxygen consumption up to 20 degrees C.  相似文献   

12.
This study reassesses the proposal that cellular conditions of low temperature and relative acidosis during hibernation contribute to a suppression of phosphofructokinase (PFK) activity which, in turn, contributes to glycolytic rate suppression during torpor. To test the proposal that a dilution effect during in vitro assay of PFK was the main reason for activity loss (tetramer dissociation) at lower pH values, the influence of the macromolecular crowding agent, polyethylene glycol 8000 (PEG), on purified skeletal muscle PFK from Spermophilus lateralis was evaluated at different pH values (6.5, 7.2 and 7.5) and assay temperatures (5, 25 and 37degrees C). A 78 +/- 2.5% loss of PFK activity during 1 h incubation at 5 degrees C and pH 6.5 was virtually eliminated when 10% PEG was present (only 7.0 +/- 1.5% activity lost). The presence of PEG also largely reversed PFK inactivation at pH 6.5 at warmer assay temperatures and reversed inhibitory effects by high urea (50 or 400 mM). Analysis of pH curves at 5 degrees C also indicated that approximately 70% of activity would remain at intracellular pH values in hibernator muscle. The data suggest that under high protein concentrations in intact cells that the conditions of relative acidosis, low temperature or elevated urea during hibernation would not have substantial regulatory effects on PFK.  相似文献   

13.
The bacterial flora of the large intestine was examined in 35 laboratory-reared leopard frogs (Rana pipiens) subjected to one of the following four treatments: (i) normal feeding at 21 degrees C (10 frogs); (ii) fasting for 2 weeks at 21 degrees C (8 frogs); (iii) chilling for 1 week at 4 degrees C (9 frogs); and (iv) simulated hibernation for 3 weeks at 4 degrees C (8 frogs). Bacteria from the intestinal contents and mucosa were counted microscopically and by colony counting after strictly anaerobic culturing. The predominant bacteria were isolated and partially characterized. Fasting for 2 weeks produced no significant changes in total counts or in the types of bacteria cultured. Chilling, whether rapid or in the course of simulated hibernation, was associated with a decrease in the numbers and variety of bacteria. Thus it appears that the lowering of temperature rather than the absence of food is the important factor in the reduction of bacterial flora seen in hibernating frogs. However, the bacteria showed some adaptation to the low temperature, as the longer the host had been at 4 degrees C, the higher the proportion of bacteria which could grow when cultured at that temperature.  相似文献   

14.
Heart rate (HR) of ground squirrel C. undulatus was studied in dependence of season, level of activity, physiological state and air temperature (T). In summer HR varies from 110-130 beat/min in sleep up to 420 beat/min at flight from danger. During winter hibernation HP was minimal (3-5 beat/min) at T 1-4 degrees C, the increase in T induced the growth of HP in correspondence to the Arrenius van't Hoff law. The temperature of the body in hibernation exceeded T on 1.5-3 degrees C. The time of getting off the hibernation increased with the decrease in T (6-7 hours at -1 degree C and 2.5-3 hours at +18 degrees C). At phase of increased thermogenesis during arousal heart temperature exceeded rectal one on 10-12 degrees C and heart rate run up to 360-420 beat/min i.e. 2-3 time higher than in active state. The decrease in T stimulated the increase in HP up to 3.8 in winter and 5.3 beat/min/degree C in summer. The highest values of Q10 for HP were revealed at the beginning of hibernation (15-20) and at the beginning of arousal (6-7), in other periods Q10 was similar to the normal biological values (2-2.5). Thus, at the beginning of transitional periods changes of HP were determined mainly by endogenic mechanisms that inhibited myocardium at the beginning of hibernation and activated in arousal. Some mechanisms of coordination between activities of heart and other systems of organism are considered. The features of hit exchange providing the hibernation in wide range of T are discussed.  相似文献   

15.
Membrane function in mammalian hibernation   总被引:1,自引:0,他引:1  
For homeotherms the maintenance of a high, uniform body temperature requires a constant energy supply and food intake. For many small mammals, the loss of heat in winter exceeds energy supply, particularly when food is scarce. To survive, some animals have developed a capacity for adaptive hypothermia in which they lower their body temperature to a new regulatory set-point, usually a few degrees above the ambient. This process, generally known as hibernation, reduces the temperature differential, metabolic activity, as well as the energy demand, and thus facilitates survival during winter. Successful hibernation in mammals requires that the enzymatic processes are regulated in such a manner that metabolic balance is maintained at both the high body temperature of the summer-active animal (37 degrees C) and the low body temperature of the winter-torpid animal (approx. 5 degrees C). This means that the cellular membranes have thermal properties capable of maintaining a balanced metabolism at these extreme physiological temperatures. The available evidence indicates that, for some tissues, preparation for hibernation involves an alteration in the lipid composition and thermal properties of cellular membranes. Marked differences in the thermal response of cellular membranes have been observed on a seasonal basis and, in some membranes, differences in lipid composition have been associated with the torpid state. However, to date, no consistent changes in lipid composition which would account for, or explain, the changes in membrane thermal response, have been detected. An important point to emphasize is that the process of 'homeoviscous adaptation', which occurs in procaryotes and some poikilotherms during acclimation to low temperatures, is not a characteristic feature of most membranes of mammalian hibernators.  相似文献   

16.
Body temperature and metabolic rate were recorded continuously in two groups of marmots either exposed to seasonally decreasing ambient temperature (15 to 0 degrees C) over the entire hibernation season or to short-duration temperature changes during midwinter. Hibernation bouts were characterized by an initial 95% reduction of metabolic rate facilitating the drop in body temperature and by rhythmic fluctuations during continued hibernation. During midwinter, we observed a constant minimal metabolic rate of 13.6 ml O(2) x kg(-1) x h(-1) between 5 and 15 degrees C ambient temperature, although body temperature increased from 7.8 to 17.6 degrees C, and a proportional increase of metabolic rate below 5 degrees C ambient temperature. This apparent lack of a Q(10) effect shows that energy expenditure is actively downregulated and controlled at a minimum level despite changes in body temperature. However, thermal conductance stayed minimal (7.65 +/- 1.95 ml O(2) x kg(-1) x h(-1) x degrees C(-1)) at all temperatures, thus slowing down cooling velocity when entering hibernation. Basal metabolic rate of summer-active marmots was double that of winter-fasting marmots (370 vs. 190 ml O(2) x kg(-1) x h(-1)). In summary, we provide strong evidence that hibernation is not only a voluntary but a well-regulated strategy to counter food shortage and increased energy demands during winter.  相似文献   

17.
Incubation of MCF 7 cells with 5 alpha-dihydrotestosterone (DHT) at 37 degrees C led to a 70% increase in the Bmax of androgen receptor, as compared to the values measured at 2 degrees C, without detectable changes in equilibrium dissociation constants. When MCF 7 cells were incubated with hormone at 2 degrees C, to reach steady-state levels of androgen-receptor complex, a subsequent temperature shift to 37 degrees C induced a rapid (t 1/2 = 3 min) cycloheximide-insensitive increase in DHT binding to androgen receptor. MCF 7 cell treatments at 37 degrees C either before or after incubation with DHT at 2 degrees C showed that up-regulation of binding capacity of androgen receptor could be observed only if hormone is present during incubation at physiological temperature.  相似文献   

18.
To determine whether metabolic rate is suppressed in a temperature-independent fashion in the golden-mantled ground squirrel during steady state hibernation, we measured body temperature and metabolic rate in ground squirrels during hibernation at different T(a)'s. In addition, we attempted to determine whether heart rate, ventilation rate, and breathing patterns changed as a function of body temperature or metabolic rate. We found that metabolic rate changed with T(a) as it was raised from 5 degrees to 14 degrees C, which supports the theory that different species sustain falls in metabolic rate during hibernation in different ways. Heart rate and breathing pattern also changed with changing T(a), while breathing frequency did not. That the total breathing frequency did not correlate closely with oxygen consumption or body temperature, while the breathing pattern did, raises important questions regarding the mechanisms controlling ventilation during hibernation.  相似文献   

19.
Tanaka H 《Zoological science》2006,23(11):991-997
This study examined seasonal changes in body weight, hibernation period, and body temperature of the Japanese badger (Meles meles anakuma) from 1997 to 2001. Adult badgers showed seasonal changes in body weight. Between mid-December and February, badger activity almost ceased, as the animals remained in their setts most of the time. Adult male badgers were solitary hibernators; adult females hibernated either alone or with their cubs and/or yearlings. The total hibernation period of Japanese badgers ranged from 42 to 80 days, with a mean length of 60.1 days. Japanese badgers did not always spend the winters in the same sett, although they seldom changed setts during hibernation. I equipped a male cub with an intraperitoneally implanted data logger to record its body temperature between November and April, while the cub hibernated with its mother. Over the winter, the body weight of the cub decreased from 5.3 kg to 3.6 kg, a weight loss of 32.1%, and its body temperature ranged from 32.0 to 39.8 degrees C. The mean monthly body temperature was 35.1 degrees C in December, 34.8 degrees C in January, 35.9 degrees C in February, 37.1 degrees C in March, and 37.4 degrees C in April, so the monthly decrease in body temperature of this cub was not great. The results indicate that during hibernation, when body temperature is low, there is likely considerable economy of energy and a reduced demand for adipose reserves.  相似文献   

20.
The mechanism underlying temperature-dependent shortening of action potential (AP) duration was examined in the fish (Carassius carassius L.) heart ventricle. Acute temperature change from +5 to +18 degrees C (heat stress) shortened AP duration from 2.8 +/- 0.3 to 1.3 +/- 0.1 s in intact ventricles. In 56% (18 of 32) of enzymatically isolated myocytes, heat stress also induced reversible opening of ATP-sensitive K+ channels and increased their single-channel conductance from 37 +/- 12 pS at +8 degrees C to 51 +/- 13 pS at +18 degrees C (Q10 = 1.38) (P < 0.01; n = 12). The ATP-sensitive K+ channels of the crucian carp ventricle were characterized by very low affinity to ATP both at +8 degrees C [concentration of Tris-ATP that produces half-maximal inhibition of the channel (K1/2)= 1.35 mM] and +18 degrees C (K1/2 = 1.85 mM). Although acute heat stress induced ATP-sensitive K+ current (IK,ATP) in patch-clamped myocytes, similar heat stress did not cause any glibenclamide (10 microM)-sensitive changes in AP duration in multicellular ventricular preparations. Examination of APs and K+ currents from the same myocytes by alternate recording under current-clamp and voltage-clamp modes revealed that changes in AP duration were closely correlated with temperature-specific changes in the voltage-dependent rectification of the background inward rectifier K+ current IK1. In approximately 15% of myocytes (4 out of 27), IK,ATP-dependent shortening of AP followed the IK1-induced AP shortening. Thus heat stress-induced shortening of AP duration in crucian carp ventricle is primarily dependent on IK1. IK,ATP is induced only in response to prolonged temperature elevation or perhaps in the presence of additional stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号