首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
By using two-dimensional polyacrylamide gel electrophoresis, a proteomic analysis over time was conducted with high-cell-density, industrial, phosphate-limited Escherichia coli fermentations at the 10-liter scale. During production, a recombinant, humanized antibody fragment was secreted and assembled in a soluble form in the periplasm. E. coli protein changes associated with culture conditions were distinguished from protein changes associated with heterologous protein expression. Protein spots were monitored quantitatively and qualitatively. Differentially expressed proteins were quantitatively assessed by using a t-test method with a 1% false discovery rate as a significance criterion. As determined by this criterion, 81 protein spots changed significantly between 14 and 72 h (final time) of the control fermentations (vector only). Qualitative (on-off) comparisons indicated that 20 more protein spots were present only at 14 or 72 h in the control fermentations. These changes reflected physiological responses to the culture conditions. In control and production fermentations at 72 h, 25 protein spots were significantly differentially expressed. In addition, 19 protein spots were present only in control or production fermentations at this time. The quantitative and qualitative changes were attributable to overexpression of recombinant protein. The physiological changes observed during the fermentations included the up-regulation of phosphate starvation proteins and the down-regulation of ribosomal proteins and nucleotide biosynthesis proteins. Synthesis of the stress protein phage shock protein A (PspA) was strongly correlated with synthesis of a recombinant product. This suggested that manipulation of PspA levels might improve the soluble recombinant protein yield in the periplasm for this bioprocess. Indeed, controlled coexpression of PspA during production led to a moderate, but statistically significant, improvement in the yield.  相似文献   

2.
Two-dimensional electrophoretic analyses of Escherichia coli cells producing recombinant human growth hormone (Nutropin) in fermentations were conducted. The resulting two-dimensional protein profiles were compared with those of nonproducing (blank) cells. A qualitative comparison was performed to address regulatory issues in the biopharmaceutical industry, and a semiquantitative comparison was performed to reveal information about the physiological state of the cells. The protein spots unique to production fermentation profiles were all related to recombinant human growth hormone (hGH); these included intact hGH, charge variants of hGH, and a proteolytically cleaved form of hGH, as expected. There were no E. coli host cell proteins unique to either the production or blank fermentation profiles. Rather, all detectable differences in E. coli proteins were quantitative in nature. Specifically, the levels of IbpA (inclusion body binding protein A), Ivy (inhibitor of vertebrate lysozyme), and a cleaved form of GroEL (Hsp60 homolog) were higher in hGH production profiles, whereas the levels of GlmU protein and PspA (phage shock protein A) were higher in blank profiles. In general, the high degree of similarity between proteomes for hGH-producing and nonproducing cells suggests that E. coli proteins from a nonproducing (blank) fermentation are appropriate for eliciting antibodies that are then used in immunoassays to measure host cell proteins in samples from production fermentations.  相似文献   

3.
Induction of the wild type cholera toxin operon (ctxAB) from multicopy clones inEscherichia coliinhibited growth and resulted in low yields of cholera toxin (CT). We found that production of wild type CT or its B subunit (CT-B) as a periplasmic protein was toxic forE. coli,but by replacing the native signal sequences of both CT-A and CT-B with the signal sequence from the B subunit ofE. coliheat-labile enterotoxin LTIIb we succeeded for the first time in producing CT holotoxin in high yield inE. coli.Based on these findings, we designed and constructed versatile cloning vectors that use the LTIIb-B signal sequence to direct recombinant native proteins with high efficiency to the periplasm ofE. coli.We confirmed the usefulness of these vectors by producing two other secreted recombinant proteins. First, usingphoAfromE. coli,we demonstrated that alkaline phosphatase activity was 17-fold greater when the LTIIb-B signal sequence was used than when the native leader for alkaline phosphatase was used. Second, using thepspAgene that encodes pneumococcal surface protein A fromStreptococcus pneumoniae,we produced a 299-residue amino-terminal fragment of PspA inE. coliin large amounts as a soluble periplasmic protein and showed that it was immunoreactive in Western blots with antibodies against native PspA. The vectors described here will be useful for further studies on structure–function relationships and vaccine development with CT and PspA, and they should be valuable as general tools for delivery of other secretion-competent recombinant proteins to the periplasm inE. coli.  相似文献   

4.
An expression plasmid pPTK-hEGF2 was constructed to provide for the extracellular production of recombinant human epidermal growth factor by the Escherichia coli cells. The plasmid contained two expression cassettes, one of which carried a tandem of the fused genes ompF-hegf under the control of the tac promoter, ensuring regulated secretion of hEGF into the E. coli periplasm, and another one contained the kil gene from the ColE1 plasmid under the control of lac promoter. The regulated low-level biosynthesis of Kil protein increased the permeability of E. coli outer membrane for periplasmic proteins. This enabled the recombinant proteins secreted into the cell periplasm to outflow into the cultural medium. As a result, the E. coli strains that harboured this plasmid construct produced effectively the recombinant hEGF into the cultural medium. The yields of hEGF produced by the nTG1(pPTK-hEGF2) and HB101(pPTK-hEGF2) strains reached 25 and 30 mg/l of cell culture after 14 and 18 h of cultivation, respectively. The hEGF preparation isolated possessed biological activity both in vivo and in vitro.  相似文献   

5.
Le Y  Peng J  Wu H  Sun J  Shao W 《PloS one》2011,6(4):e18489
The development of new procedures and protocols that allow researchers to obtain recombinant proteins is of fundamental importance in the biotechnology field. A strategy was explored to overcome inclusion-body formation observed when expressing an aggregation-prone fungal xylanase in Escherichia coli. pHsh is an expression plasmid that uses a synthetic heat-shock (Hsh) promoter, in which gene expression is regulated by an alternative sigma factor (σ(32)). A derivative of pHsh was constructed by fusing a signal peptide to xynA2 gene to facilitate export of the recombinant protein to the periplasm. The xylanase was produced in a soluble form. Three factors were essential to achieving such soluble expression of the xylanase: 1) the target gene was under the control of the Hsh promoter, 2) the gene product was exported into the periplasm, and 3) gene expression was induced by a temperature upshift. For the first time we report the expression of periplasmic proteins under the control of an Hsh promoter regulated by σ(32). One unique feature of this approach was that over 200 copies of the Hsh promoter in an E. coli cell significantly increased the concentration of σ(32). The growth inhibition of the recombinant cells corresponded to an increase in the levels of soluble periplasmic protein. Therefore, an alternative protocol was designed to induce gene expression from pHsh-ex to obtain high levels of active soluble enzymes.  相似文献   

6.
Production of recombinant proteins is an industrially important technique in the biopharmaceutical sector. Many recombinant proteins are problematic to generate in a soluble form in bacteria as they readily form insoluble inclusion bodies. Recombinant protein solubility can be enhanced by minimising stress imposed on bacteria through decreasing growth temperature and the rate of recombinant protein production. In this study, we determined whether these stress-minimisation techniques can be successfully applied to industrially relevant high cell density Escherichia coli fermentations generating a recombinant protein prone to forming inclusion bodies, CheY–GFP. Flow cytometry was used as a routine technique to rapidly determine bacterial productivity and physiology at the single cell level, enabling determination of culture heterogeneity. We show that stress minimisation can be applied to high cell density fermentations (up to a dry cell weight of >70 g L?1) using semi-defined media and glucose or glycerol as carbon sources, and using early or late induction of recombinant protein production, to produce high yields (up to 6 g L?1) of aggregation-prone recombinant protein in a soluble form. These results clearly demonstrate that stress minimisation is a viable option for the optimisation of high cell density industrial fermentations for the production of high yields of difficult-to-produce recombinant proteins, and present a workflow for the application of stress-minimisation techniques in a variety of fermentation protocols.  相似文献   

7.
When brain-derived neurotrophic factor (BDNF) is produced in the Escherichia coli periplasm, insoluble BDNF proteins with low biological activity and having mismatched disulfide linkages are formed. The coexpression of cysteine oxidoreductases (DsbA and DsbC) and membrane-bound enzymes (DsbB and DsbD), which play an important role in the formation of disulfide bonds in the periplasm, was investigated to improve the production of soluble and biologically active BDNF. The expression levels of Dsb proteins changed when the growth medium and the Dsb expression plasmids were changed, and the production rate of soluble BDNF was almost proportional to the expression level of DsbC protein with disulfide isomerase activity in the case of a low expression level of BDNF. The rate of soluble BDNF production with coexpression of DsbABCD was as high as 35%. These results show that coexpression of BDNF and Dsb proteins can effectively increase the production of soluble and biologically active BDNF.  相似文献   

8.
The proteomic response of recombinant Escherichia coli producing human glucagon-like peptide-1 was analyzed by two-dimensional gel electrophoresis. Protein spots in two-dimensional gel could be identified by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and their expression profiles were compared with those of nonproducing cells. Thirty-five intracellular proteins exhibited differential expression levels between the production and control strains. These changes reflected physiological responses to heterologous peptide production in recombinant E. coli. Specifically, physiological changes included the down-regulation of proteins involved in the central carbon metabolism, biosynthesis of cellular building blocks and peptides, and up-regulation of cell protection proteins and some sugar transport proteins. This comprehensive analysis would provide useful information for understanding physiological alterations to heterologous peptide production and for designing efficient metabolic engineering strategies for the production of recombinant peptides in E. coli.  相似文献   

9.
Anthrax is caused by the gram-positive spore-forming bacterium Bacillus anthracis. The anthrax toxin consists of three proteins, protective antigen (PA), lethal factor (LF), and edema factor (EF). PA facilitates the translocation of LF and EF into the cytosol of mammalian cells. LF is thought to be a zinc-dependent metalloprotease that results in death. EF is a calmodulin- and calcium-dependent adenylate cyclase that causes edema upon entrance into the cytosol by elevating the cAMP levels in cells. Previous efforts to produce recombinant EF (rEF) in Escherichia coli yielded only 2.5 mg of rEF per liter of culture. In this work, we produced soluble rEF in large quantities in both the periplasm and cytoplasm of E. coli from shake flasks and fermentors. The rEF protein was purified by standard chromatography and yielded >97% pure, biologically active rEF. Yields of purified rEF from medium cell density fermentations resulted in up to 2.38 g/L of highly pure, biologically active rEF protein. These results exhibit the ability to generate gram quantities of active rEF from E. coli.  相似文献   

10.
Disulfide-bond formation is a major post-translational modification and is essential for protein folding, stability, and function. This is especially true for secreted proteins, many of which possess great potential for biotechnological applications. Focusing on the use of Escherichia coli for the production of this class of proteins, we describe the mechanisms that maintain redox compartmentalization in the cell, with an emphasis on those that promote the formation and isomerization of disulfide bonds in the bacterial periplasm, while presenting parallel pathways in the eukaryotic endoplasmic reticulum. Based on these concepts, we review the use of E. coli as a cell factory for the production of heterologous disulfide-containing proteins using either peri- or cytoplasmic expression and, in particular, how these compartments can be tuned to improve the yield of correctly folded recombinant proteins. Finally, we describe a few examples of the production of small disulfide-rich proteins (protease inhibitors) to illustrate how soluble, active, and fully oxidized recombinants may be successfully obtained upon peri- or cytoplasmic expression in E. coli.  相似文献   

11.
从肺炎球菌YF05中扩增了肺炎球菌表面蛋白A(PspA)和肺炎球菌表面黏附素A(PsaA)基因,以pET27b(+)为载体构建了重组表达质粒的表达系统后,转化入大肠杆菌BL21,IPTG诱导表达,表达的重组蛋白约占菌体总蛋白的75%,结果显示:表达的PspA蛋白和PsaA蛋白,分子量分别约为75kDa和37kDa。成功表达的重组蛋白具有较强的免疫活性和交叉免疫效果。  相似文献   

12.
旨在克隆人生存素( survivin)基因,并在原核系统中进行可溶性表达.采用RT-PCR方法从人乳腺癌细胞MCF-7中克隆survivin基因,将其重组到pAYZ表达栽体中,构建带有六聚组氨酸纯化标记的人survivin基因原核表达栽体pAYZ-survivin,将该载体转化大肠杆菌16C9进行表达.结果表明,成功克隆了survivin基因并构建了重组表达载体.融合蛋白主要以可溶性状态分泌到周质腔内存在.分离提取蛋白,HiTrap金属螯合柱进行亲和层析纯化,并经Western blot验证了高纯度survivin融合蛋白的表达.  相似文献   

13.
The kinetics of the heat-shock response and the formation of inclusion bodies in recombinant Escherichia coli TG1 were studied in glucose-limited high-cell-density cultures in response to temperature-induced production of human basic fibroblast growth factor (hFGF-2), a protein which partially aggregates into inclusion bodies. The maximum synthesis rates of heat-shock proteins were similar to those in a control cultivation with a strain carrying an expression vector without inducible structural gene. However, the maximum of induction for many heat-shock proteins including DnaK, ClpB, and HtpG was reached at least 30 min later when synthesis of hFGF-2 was simultaneously induced by the temperature upshift. During this first production phase, hFGF-2 was exclusively deposited in the insoluble cell fraction. Thereafter, accumulation of soluble hFGF-2 was observed, too, indicating that the recombinant protein needs heat-shock chaperones for proper folding at elevated temperatures. Strong recombinant protein production prolonged the synthesis of the majority of heat-shock proteins (including GroELS, DnaK, ClpB, and HtpG) even in a wildtype dnaK(+) background. In contrast, the synthesis rates of the small heat-shock proteins IbpA and IbpB declined within 1 h to preinduction values in control and hFGF-2 producing cultures. In the producing cultivation, IbpA and IbpB synthesis ceased to an undetectable level when soluble hFGF-2 started to accumulate, whereas the synthesis rates of the other heat-shock proteins including those belonging to the DnaK and GroEL families remained high throughout the entire production phase.  相似文献   

14.
Protein splicing elements (inteins), capable of catalyzing controllable peptide bond cleavage reactions, have been used to separate recombinant proteins from affinity tags during affinity purification. Since the inteins eliminate the use of a protease in the recovery process, the intein-mediated purification system has the potential to significantly reduce recovery costs for the industrial production of recombinant proteins. Thus far, the intein system has only been examined and utilized for expression and purification of recombinant proteins at the laboratory scale for cells cultivated at low cell densities. In this study, protein splicing and in vitro cleavage of intein fusion proteins expressed in high-cell-density fed-batch fermentations of recombinant Escherichia coli were examined. Three model intein fusion constructs were used to examine the stability and splicing/cleavage activities of the fusion proteins produced under high-cell-density conditions. The data indicated that the intein fusion protein containing the wild-type intein catalyzed efficient in vivo protein splicing during high-cell-density cultivation. Also, the intein fusion proteins containing modified inteins catalyzed efficient thiol-induced in vitro cleavage reactions. The results of this study demonstrated the potential feasibility of using the intein-mediated protein purification system for industrial-scale production of recombinant proteins.  相似文献   

15.
外源基因在大肠杆菌中表达是对基因重组技术的成功应用。外源基因在不同的大肠杆菌表达系统中表达产物可能定位于大肠杆菌空间结构的不同位置:胞质,胞质膜,胞周质,胞外膜和胞外培养基,五种表达定位方式各有其特点和用途 。  相似文献   

16.
The large-scale production and isolation of recombinant protein is a central element of the biotechnology industry and many of the products have proved extremely beneficial for therapeutic medicine. Escherichia coli is the microorganism of choice for the expression of heterologous proteins for therapeutic application, and a range of high-value proteins have been targeted to the periplasm using the well characterized Sec protein export pathway. More recently, the ability of the second mainstream protein export system, the twin-arginine translocase, to transport fully-folded proteins into the periplasm of not only E. coli, but also other Gram-negative bacteria, has captured the interest of the biotechnology industry. In this study, we have used a novel approach to block the export of a heterologous Tat substrate in the later stages of the export process, and thereby generate a single-span membrane protein with the soluble domain positioned on the periplasmic side of the inner membrane. Biochemical and immuno-electron microscopy approaches were used to investigate the export of human growth hormone by the twin-arginine translocase, and the generation of a single-span membrane-embedded variant. This is the first time that a bonafide biotechnologically relevant protein has been exported by this machinery and visualized directly in this manner. The data presented here demonstrate a novel method for the production of single-span membrane proteins in E. coli.  相似文献   

17.
大肠杆菌表达重组蛋白相比真核细胞具有成本低廉、大规模发酵容易、条件易于自动化控制等优点,通过大肠杆菌表达重组蛋白是一种高效、经济的途径,重组蛋白表达量可达到大肠杆菌总蛋白质量的50%。具有正常生化活性的重组蛋白通常为可溶性形式,因而对于以得到活性产物(如抗体、酶等)为目的的研究,通常采用可溶性表达途径。目前已有多种以可溶性重组蛋白为活性物质的治疗性药物经批准上市,但并非所有外源基因均能实现可溶性高表达,因此重组蛋白的可溶性高表达具有重要研究价值。在总结近年提高经大肠杆菌可溶性表达重组蛋白产率研究的基础上,从启动子的选择、SD序列的引入、信号肽的优化、宿主细胞的选择、共表达其他蛋白质,高密度发酵等方面阐释在大肠杆菌中提高可溶性重组蛋白表达产率的方法。  相似文献   

18.
A high number of economically important recombinant proteins are produced in Escherichia coli based host/vector systems. The major obstacle for improving current processes is a lack of appropriate on-line in situ methods for the monitoring of metabolic burden and critical state variables. Here, a pre-evaluation of the reporter green fluorescent protein (GFP) was undertaken to assess its use as a reporter of stress associated promoter regulation. The investigation of GFP and its blue fluorescent variant BFP was done in model fermentations using E. coli HMS 174(DE3)/pET11 aGFPmut3.1 and E. coli HMS174(DE3)/pET1aBFP host/vector systems cultured in fed-batch and chemostat regime. Our results prove the suitability of the fluorescent reporter proteins for the design of new strategies of on-line bioprocess monitoring. GFPmut3.1 variant can be detected after a short lag-phase of only 10 min, it shows a high fluorescence yield in relation to the amount of reporter protein, a good signal to noise ratio and a low detection limit. The fluorescence-signal and the amount of fluorescent protein, determined by ELISA, showed a close correlation in all fermentations performed. A combination of reporter technology with state of the art sensors helps to develop new strategies for efficient on-line monitoring needed for industrial process optimisation. The development of efficient monitoring will contribute to advanced control of recombinant protein production and accelerate the development of optimised production processes.  相似文献   

19.
Many proteins that accumulate in the form of insoluble aggregates when they are overproduced in Escherichia coli can be rendered soluble by fusing them to E. coli maltose binding protein (MBP), and this will often enable them to fold in to their biologically active conformations. Yet, although it is an excellent solubility enhancer, MBP is not a particularly good affinity tag for protein purification. To compensate for this shortcoming, we have engineered and successfully tested Gateway destination vectors for the production of dual His6MBP-tagged fusion proteins in the cytoplasm and periplasm of E. coli. The MBP moiety improves the yield and solubility of its fusion partners while the hexahistidine tag (His-tag) serves to facilitate their purification. The availability of a vector that targets His6MBP fusion proteins to the periplasm expands the utility of this dual tagging approach to include proteins that contain disulfide bonds or are toxic in the bacterial cytoplasm.  相似文献   

20.
Production of recombinant proteins by excretory expression has many advantages over intracellular expression in Escherichia coli. Hyperexpression of a secretory exoglucanase, Exg, of Cellulomonas fimi was previously shown to saturate the SecYEG pathway and result in dramatic cell death of E. coli. In this study, we demonstrated that overexpression of the PspA in the JM101(pM1VegGcexL-pspA) strain enhanced excretion of Exg to 1.65 U/ml using shake-flask cultivation, which was 80% higher than the highest yield previously obtained from the optimized JM101(pM1VegGcexL) strain. A much higher excreted Exg activity of 4.5 U/ml was further achieved with high cell density cultivation using rich media. Furthermore, we showed that the PspA overexpression strain enjoyed an elevated critical value (CV), which was defined as the largest quotient between the intracellular unprocessed precursor and its secreted mature counterpart that was still tolerable by the host cells prior to the onset of cell death, improving from the previously determined CV of 20/80 to the currently achieved CV of 45/55 for Exg. The results suggested that the PspA overexpression strain might tolerate a higher level of precursor Exg making use of the SecYEG pathway for secretion. The reduced lethal effect might be attributable to the overexpressed PspA, which was postulated to be able to reduce membrane depolarization and damage. Our findings introduce a novel strategy of the combined application of metabolic engineering and construct optimization to the attainment of the best possible E. coli producers for secretory/excretory production of recombinant proteins, using Exg as the model protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号