首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Previous reports have described a decrease in retinal temperature and clinical improvement of wet age-related macular degeneration (AMD) after vitrectomy. We hypothesized that the retinal temperature decrease after vitrectomy plays a part in the suppression of wet AMD development. To test this hypothesis, we evaluated the temperature dependence of the expression of vascular endothelial growth factor-A (VEGF-A) and in vitro angiogenesis in retinal pigment epithelium (RPE).

Results

We cultured ARPE-19 cells at 37, 35, 33 and 31°C and measured the expression of VEGF-A, VEGF-A splicing variants, and pigment epithelium–derived factor (PEDF). We performed an in vitro tube formation assay. The dehydrogenase activity was also evaluated at each temperature. Expression of VEGF-A significantly decreased with decreased temperature while PEDF expression did not. VEGF165 expression and in vitro angiogenesis also were temperature dependent. The dehydrogenase activity significantly decreased as the culture temperature decreased.

Conclusions

RPE cultured under hypothermia that decreased cellular metabolism also had decreased VEGF-A and sustained PEDF expression, creating an anti-angiogenic environment. This mechanism may be associated with a beneficial effect after vitrectomy in patients with wet AMD.  相似文献   

2.
Pheochromocytomas are well-vascularized tumors, suggesting that a potent angiogenic factor may be involved in the mechanism of their formation. As vascular endothelial growth factor (VEGF) is a potent mitogen for vascular endothelial cells, here we have investigated the mRNA and protein expression of VEGF and the mRNA expression of its two receptors (Flt-1 and Flk-1/KDR) in pheochromocytomas tissue. An increase in VEGF mRNA (mainly isoforms VEGF(121) and VEGF(165)) and in VEGF protein expression were observed by semi-quantitative RT-PCR and Western blot, respectively, compared to normal adrenomedullary tissue. Flk-1/KDR, and Flt-1 levels of mRNA were also increased markedly in tumors and correlated with levels of VEGF mRNA. Therefore, we speculate that upregulation of VEGF expression and its receptors might be important in the pathogenesis of pheochromocytomas.  相似文献   

3.
We determined whether there is an association between complement factor H (CFH), high-temperature requirement A-1 (HTRA1), vascular endothelial growth factor (VEGF), and pigment epithelium-derived factor (PEDF) genotypes and the response to treatment with a single intravitreous injection of bevacizumab for age-related macular degeneration (AMD). Eighty-three patients with exudative AMD treated by bevacizumab injection were genotyped for three single nucleotide polymorphisms (SNPs; rs800292, rs1061170, rs1410996) in the CFH gene, a rs11200638-SNP in the HTRA1 gene, three SNPs (rs699947, rs1570360, rs2010963) in the VEGF gene, and four SNPs (rs12150053, rs12948385, rs9913583, rs1136287) in the PEDF gene using a TaqMan assay. The CT genotype (heterozygous) of CFH-rs1061170 was more frequently represented in nonresponders in vision than TT genotypes (nonrisk allele homozygous) at the time points of 1 and 3 months, while there was no CC genotype (risk allele homozygous) in our study cohort (p = 7.66 × 10−3, 7.83 × 10−3, respectively). VEGF-rs699947 was also associated with vision changes at 1 month and PEDF-rs1136287 at 3 months (p = 5.11 × 10−3, 2.05 × 10−2, respectively). These variants may be utilized for genetic biomarkers to estimate visual outcomes in the response to intravitreal bevacizumab treatment for AMD.  相似文献   

4.
There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche.  相似文献   

5.
The replacement of cartilage by bone is the net result of genetic programs that control chondrocyte differentiation, matrix degradation, and bone formation. Disruptions in the rate, timing, or duration of chondrocyte proliferation and differentiation result in shortened, misshapen skeletal elements. In the majority of these skeletal disruptions, vascular invasion of the elements is also perturbed. Our hypothesis is that the processes involved in endochondral ossification are synchronized via the vasculature. The purpose of this study was to examine carefully the events of vascular invasion and matrix degradation in the context of chondrocyte differentiation and bone formation. Here, we have produced a ‘molecular map’ of the initial vascularization of the developing skeleton that provides a framework in which to interpret a wide range of fetal skeletal malformations, disruptions, and dysplasias.  相似文献   

6.
7.
In liver regeneration the formation of new capillary blood vessels is a fundamental requirement for cellular proliferation. Vascular endothelial growth factor (VEGF) is involved in the events of angiogenesis, the mRNA of which is expressed in both hepatocytes and non-parenchymal cells. In this experimental design we try to establish if during liver regeneration in mouse, the expression of VEGF is produced before or after the hepatocytes proliferation. C3H/S adult male mice were divided in three groups in order to study: VEGF expression; S-phase index (SI); and mitotic activity (MA) of hepatocytes. The results that were analyzed by ANOVA, show that VEGF expression starts to increase 26 h after PH with a peak at 28 h. Furthermore, the DNA synthesis (DNAs) reaches maximal level 42 h after pH, meanwhile the MA of the hepatocytes shows an increase 8h after the DNAs peak. In conclusion, it could be argued that the chronobiology of the events related to liver regeneration in mice started with a release of VEGF by the hepatocytes, followed by its DNAs and mitosis.  相似文献   

8.
目的:研究食管鳞状细胞癌中肝癌衍生生长因子(HDGF)、血管内皮生长因子(VEGF)的表达及其与微血管形成的关系。方法:通过免疫组化SABC法检测和比较68例食管鳞癌、20例切缘正常组织中HDGF、VEGF的表达和CD34标记的微血管密度(MVD),分析HDGF和VEGF表达之间的关系及其与食管鳞癌患者临床病理因素和食管癌组织MVD值的关系。结果:食管鳞癌组织中HDGF(63.2%)和VEGF(72.1%)的阳性表达率均明显高于切缘正常粘膜组织(15.0%、20.0%)(P0.05),食管鳞癌组织和切缘正常粘膜组织中的MVD值分别为35.48±5.75和13.50±2.1(P0.05)。食管鳞癌组织HDGF的阳性表达率仅与其临床分期明显相关(P0.05),而VEGF的阳性表达率与其淋巴结转移、临床分期均显著相关(P0.05),二者在食管鳞癌组织中的表达呈显著正相关(P0.05)。食管鳞癌组织中HDGF、VEGF阳性表达组MVD值均明显高于HDGF、VEGF阴性表达组(P0.05)。结论:HDGF可能通过诱导VEGF的产生,从而促进血管生成,参与食管鳞癌的发生、发展及转移。  相似文献   

9.
This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.  相似文献   

10.
11.
The objective of this study is to examine the change in macrophage numbers, inducible form of NO synthase (iNOS), and vascular endothelial growth factor (VEGF) expression both before and after embryo implantation in the uterine tissue of mice. In order to explore the mechanism of macrophages in endometrial angiogenesis, 8-week-old female mice were divided into three groups: pregnant group, pseudopregnant group (mated to male mice that had been vasectomized), and estrous group (unmated). Individuals from these three groups were sacrificed at time intervals D1.5 to D6.5. Formalin-fixed paraffin-embedded tissue was used for immunocytochemical localization of Mφ, iNOS, and VEGF utilizing standard methodology. The proportion of macrophages in the peripheral blood was determined by flow cytometry, and the relationship between macrophage, iNOS, and VEGF expression was analyzed. The proportion of peripheral blood macrophages in the pregnancy group was significantly higher than that in the other groups. The results of immunohistochemistry determined that the macrophages exhibited changes in both numbers and distribution. The number of macrophages in the endometrium of the pregnancy and pseudopregnancy groups was significantly higher than that in the control (estrous) group. In the pregnancy group, macrophage numbers dramatically decreased and gradually transferred to the perimetrium on D4.5. Immunostaining revealed strong staining in the pregnancy group and weaker staining in the pseudopregnant and control groups for both iNOS and VEGF. There was strong, dense immunostaining at the implantation site for both iNOS and VEGF, whereas light immunostaining was seen in interimplantation tissues on D5.5 to D6.5. In the pregnant group, peripheral blood and uterine macrophage proportions were negatively correlated, whereas the amount of macrophages, iNOS, and VEGF expression in the endometrium were positively correlated. The expression of iNOS and VEGF in the endometrium also displayed a strong positive correlation. In conclusion, during embryo implantation, macrophages levels decreased in the uterus, whereas the number of peripheral macrophages increased, suggesting that macrophages may migrate into the peripheral blood and uterus to adapt for pregnancy. Additionally, an increase in the expression of iNOS and VEGF was observed during the implantation window, implying that iNOS and VEGF may play an important role in promoting embryo implantation. The positive correlation between macrophages, iNOS, and VEGF in the implanting uterus implied that macrophages might regulate iNOS and VEGF during the implantation process.  相似文献   

12.
Blood vessels are crucial for normal development and growth by providing oxygen and nutrients. As shown by genetic targeting studies in mice, zebrafish and Xenopus blood vessel formation (or angiogenesis) is a multistep process, which is highly dependent on angiogenic growth factors such as VEGF, the founding member of the VEGF family. VEGF binds to the tyrosine kinase receptors VEGFR-1 and VEGFR-2, and loss of VEGF or its receptors results in abnormal angiogenesis and lethality during development. In contrast, PlGF, another member of this family, binds only to VEGFR-1, and appears to be crucial exclusively for pathological angiogenesis in the adult. However, the expression of VEGFR-1 and VEGFR-2 on non-vascular cells suggests additional biological properties for these growth factors. Indeed, the VEGF family and its receptors determine development and homeostasis of many organs, including the respiratory, skeletal, hematopoietic, nervous, renal and reproductive system, independent of their vascular role. These new insights broaden the activity spectrum of these "angiogenic" growth factors, and may have therapeutic implications when using these growth factors for vascular and/or non-vascular purposes.  相似文献   

13.
Angiogenesis, also known as new blood vessel formation, is regulated coordinately with other tissue differentiation events during limb development. Although vascular endothelial cell growth factor (VEGF) is important in the regulation of angiogenesis, chondrogenesis and osteogenesis during limb development, the role of other angiogenic factors is not well understood. Sphingosine 1-phosphate, a platelet-derived lipid mediator, regulates angiogenesis and vascular maturation via its action on the G-protein-coupled receptor S1P(1) (also known as EDG-1). In addition to vascular defects, abnormal limb development was also observed in S1p(1)(-/-) mice. Here we show that strong induction of S1P(1) expression is observed in the blood vessels and the interdigital mesenchymal cells during limb development. Deletion of S1P(1) results in aberrant chondrocyte condensation and defective digit morphogenesis. Interestingly, the vasculature in the S1p(1)(-/-) limbs was hyperplastic and morphologically altered. In addition, the hypoxia inducible factor (HIF)-1 alpha and its response gene VEGF were induced in S1p(1)(-/-) limbs. However, aberrant regulation of HIF-1 alpha and VEGF were not observed in embryonic fibroblasts derived from S1p(1)(-/-) mice, suggesting a non-cell autonomous effect of S1P(1) on VEGF expression. Indeed, similar limb defects were observed in endothelium-specific S1P(1) null mice in vivo. These data suggest that the function of S1P(1) in the developing vasculature is essential for proper limb development.  相似文献   

14.
Poly(ADP-ribose)polymerase (PARP) inhibitors decrease angiogenesis through reducing vascular endothelium growth factor (VEGF) induced proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). In contrast to VEGF, pigment epithelium-derived factor (PEDF) has been demonstrated to act as a strong endogenous inhibitor of angiogenesis. Here, we show that PARP inhibition with a specific inhibitor PJ-34 or specific PARP antisense oligonucleotide upregulates hyperglycemia-induced PEDF expression in HUVECs in a dose-dependent manner. This results in the retard of activation of p38 MAP kinase and the concomitant decrease in cell apoptosis. These results give the first direct demonstration that PEDF might represent a target for PARP inhibition treatment and the effects of PEDF on endothelial cells growth are context dependent.  相似文献   

15.
伍艳芳  何凌 《生物磁学》2009,(14):2710-2712
目的:探讨子宫内膜异位症患者血清血管内皮生长因子(VEGF)和C-反应蛋白(CRP)的水平变化及其相关性。方法:采用ELISA的方法测定30例III~Ⅳ期子宫内膜异位症患者(其中增生期13例、分泌期17例)和22例非子宫内膜异位症患者(其中增生期10例、分泌期12例)血清VEGF和CRP的水平,并分析两者相关性。结果:子宫内膜异位症组分泌期血清VEGF水平明显高于对照组(P〈0.05);子宫内膜异位症组增生期血清CRP水平明显高于对照组(P〈0.05);子宫内膜异位症组增生期和分泌期血清VEGF与CRP水平存在显著的正相关(F0.52,P〈0.05;r=0.44,P〈0.05)。结论:子宫内膜异位症患者血清VEGF、CRP水平的升高说明了过度血管生成和异常炎症反应是子宫内膜异位症的显著特征。  相似文献   

16.
目的:研究血管内皮生长因子(VEGF)和基质衍生因子-1(SDF-1)的协同作用对高血压脑出血患者内皮祖细胞(EPCs)增殖迁移能力的影响。方法:采集急性期高血压脑出血患者与健康对照的外周静脉血,分离培养外周血中的EPCs。用分别含有不同VEGF与SDF-1的培养基处理患者外周血分离的EPCs,Western blot检测各组细胞以及患者和对照中VEGF和SDF-1的蛋白表达。MTT法检测细胞增值能力,Transwell法检测细胞迁移能力,分别转染VEGF-si RNA与SDF-1-si RNA至各组细胞观察抑制VEGF和SDF-1对EPCs增殖迁移能力的影响。结果:VEGF和SDF-1在患者中的表达显著高于健康对照组。VEGF和SDF-1对EPCs的增殖和迁移能力有促进作用,且在其协同作用下效果显著。抑制VEGF或SDF-1显著降低VEGF和SDF-1对EPCs增殖迁移能力的促进作用。结论:VEGF和SDF-1的协同作可促进急性期高血压脑出血患者EPCs的细胞增殖能力和迁移能力,对患者血管修复提供新的治疗方向。  相似文献   

17.
目的:探讨甲状腺乳头状癌(PTC)中存活素(Survivin)、血管内皮生长因子(VEGF)、表皮生长因子受体(EGFR)的表达及临床意义。方法:选择2013年4月~2016年4月在我院收治的100例PTC患者的手术标本以及同期100例癌旁正常甲状腺组织为研究对象,采用免疫组化方法检测盒比较Survivin、VEGF、EGFR的表达在PTC及癌旁正常甲状腺组织中的表达及二者的相关性,并分析其Survivin、VEGF、EGFR的表达与PTC患者临床病理特征的相关性。结果:PTC组织中Survivin、VEGF、EGFR阳性表达率均显著高于癌旁正常甲状腺组织,差异具有统计学意义(P0.05);Survivin、VEGF在淋巴结转移患者中的阳性表达率显著高于无淋巴结转移者(P0.05);EGFR在女性PTC患者中的阳性表达率显著高于男性(P0.05)。PTC组织中VEGF和Survivin、EGFR的表达无显著相关性(P0.05),但Survivin和EGFR的表达显著相关(r=0.235,P0.05)。结论:Survivin、VEGF、EGFR在PTC组织中表达上调,Survivin、VEGF与PTC的淋巴结转移有关,Survivin和EGFR在PTC的发生、发展过程中可能存在着协同作用。  相似文献   

18.
Insulin-like growth factor II (IGF2) is perhaps the most intricately regulated of all growth factors characterized to date. Its gene is imprinted – only one allele is active, depending on parental origin – and this pattern of expression is maintained epigenetically in almost all tissues. IGF2 activity is further controlled through differential expression of receptors and IGF-binding proteins (IGFBPs) that determine protein availability. This complex and multifaceted regulation emphasizes the importance of accurate IGF2 expression and activity. This review will examine the regulation of the IGF2 gene and what it has revealed about the phenomenon of imprinting, which is frequently disrupted in cancer. IGF2 protein function will be discussed, along with diseases that involve IGF2 overexpression. Roles for IGF2 in sonic hedgehog (Shh) signaling and angiogenesis will also be explored.  相似文献   

19.
目的:黄芪红花配伍是否通过调节小凹蛋白1(Caveolin-1,Cav-1)/血管内皮生长因子(vascular endothelial growth factor,VEGF)通路促进血管新生保护大鼠脑缺血损伤。方法:60只雄性SD大鼠随机分为5个组:对照组(Sham组,n=12),模型组(MACO组,n=12),黄芪红花40:1组(n=12),20:1组(n=12),5:1(n=12)。大鼠脑缺血再灌注损伤模型采用尼龙线栓法制作,连续给药21d后,评价神经功能学评分,计算脑梗死体积,采用免疫组化法测定皮质区的微血管密度,采用RT-PCR法检测皮质区VEGF m RNA和Cav-1 m RNA表达,采用Western-blotting法测定皮质区VEGF和Cav-1的蛋白表达。结果:连续给药21d后,各组大鼠的神经功能学评分均有所降低,3个不同比例的黄芪红花组的神经功能学评分降低最为明显(P0.01),脑梗死体积较模型组显著减少(P0.05~P0.01),微血管密度、VEGF和Cav-1 m RNA和蛋白表达水平均较模型组明显升高(P0.05~P0.01)。结论:黄芪红花配伍可能通过调节Cav-1/VEGF信号通路促进脑缺血再灌注损伤大鼠脑内的血管新生,从而减轻脑缺血损伤,且最佳的配伍比例为黄芪红花5:1。  相似文献   

20.
To explore the potential of combined delivery of osteogenic and angiogenic factors to bone marrow stromal cells (BMSCs) for repair of critical-size bone defects, we followed the formation of bone and vessels in tissue-engineered constructs in nude mice and rabbit bone defects upon introducing different combinations of BMP-2, vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) to BMSCs with adenoviral vectors. Better osteogenesis and angiogenesis were found in co-delivery group of BMP-2, VEGF and angiopoietin-1 than any other combination of these factors in both animal models, indicating combined gene delivery of angiopoietin-1 and VEGF165 into a tissue-engineered construct produces an additive effect on BMP-2-induced osteogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号