首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of 2.45 GHz microwave exposure (6 mW/g) on the diffusion processes in enzyme-loaded unilamellar liposomes as bioreactors was studied. The enzyme carbonic anhydrase (CA) was entrapped into cationic unilamellar vesicles. Previous kinetic experiments showed a very low self-diffusion rate of the substrate p-nitrophenyl acetate (PNPA) across intact liposome bilayer. A twofold increase in the diffusion rate of PNPA through the lipid bilayer was observed after 120 min of microwave radiation compared to temperature control samples. The microwave effect was time dependent. The enzyme activity, as a function of increased diffusion of PNPA, rises over 120 min from 22.3% to 80%. The increase in stearylamine concentration reduces the enzyme activity from 80% to 65% at 120 min. No enzyme leakage was observed. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The influence of low frequency (4-16 Hz), low amplitude (25-75 mu T) magnetic fields on the diffusion processes in enzyme-loaded unilamellar liposomes as bioreactors was studied. Cationic liposomes containing dipalmitoylphosphatidylcholine, cholesterol, and charged lipid stearylamine (SA) at different molar ratios (6:3:1 or 5:3:2) were used. Previous kinetic experiments showed a very low self-diffusion rate of the substrate p-nitrophenyl acetate (p-NPA) across intact liposome bilayer. After 60 min of exposure to 7 Hz sinusoidal (50 mu T peak) and parallel static (50 mu T) magnetic fields the enzyme activity, as a function of increased diffusion rate of p-NPA, rose from 17 +/- 3% to 80 +/- 9% (P < .0005, n = 15) in the 5:3:2 liposomes. This effect was dependent on the SA concentration in the liposomes. Only the presence of combined sinusoidal (AC) and static (DC) magnetic fields affected the p-NPA diffusion rates. No enzyme leakage was observed. Such studies suggest a plausible link between the action of extremely low frequency magnetic field on charged lipids and a change of membrane permeability.  相似文献   

3.
Abstract

Enzymatic kinetic of enzyme Ascorbate Oxidase (AAO) loaded into liposomes has been studied during microwave (MW) fields irradiation at temperature of 25°C. DPPC:Chol (7:3 mole ratio) unilamellar vesicles of an average diameter of 110 nm were used. At the working frequency of 2.45 GHz, MW exposure at 2.8 mW/g and 5.6 mW/g Specific Absorption Rate (SAR) were investigated. At both SARs above cited, the free enzyme in solution did not show any effects induced by MW exposure. On the other hand, the enzyme loaded into liposomes exhibits a significant decrease of 13% (p<0.005, n=42) in the reaction velocity induced by MW exposure at 5.6 mW/g in comparison to control. At SAR of 2.8 mW/g no significant decrease was obtained.  相似文献   

4.
We have applied a hybrid equilibration and sampling procedure for the atomic level simulation of a hydrated lipid bilayer to systems consisting of dipalmitoyl phosphatidylcholine (DPPC) and cholesterol, and palmitoyl-oleyl phosphatidylcholine (POPC) at low (approximately 6%) cholesterol concentration. The procedure is applied to bilayers of 94 molecules of DPPC, 6 molecules of cholesterol, and 3205 water molecules, and to bilayers of 120 molecules of POPC, 8 molecules of cholesterol, and 4268 water molecules, at a temperature of 325 K. After equilibration, three separate 400-ps continuous molecular dynamics runs, separated by 10,000 configurational bias Monte Carlo steps, were carried out for each system. Properties of the systems were calculated and averaged over the three separate runs. Results of the simulations are presented and compared with experimental data and with other recent simulations of DPPC and cholesterol, and of pure DPPC, and pure POPC. Certain properties of the bilayers are indistinguishable from cholesterol-free bilayers, including lateral diffusion and electron density. Other properties, most notably the order parameter profile, show the effect of cholesterol even at low concentrations.  相似文献   

5.
Electrophoretic light scattering (ELS) and depolarization of fluorescence have been used to determine the effect of membrane fluidity on the binding of Ca2+ to liposomes. ELS was used to measure the electrophoretic mobilities of the liposomes. Fluorescence depolarization was used to determine membrane fluidity. Zero to 30 mol% phosphatidylserine (PS) was incorporated into liposomes containing, as bulk phospholipids, one of the following: dimyristoyl-phosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), egg phosphatidylcholine (PC), or hydrogenated egg phosphatidylcholine (H egg PC). The binding of Ca2+ to the liposomes appears to be influenced by membrane fluidity. Liposomes containing bulk phospholipids whose phase transition temperature is higher than the experimental temperature exhibit enhanced binding of CA2+.  相似文献   

6.
Binary phase diagrams have been constructed from differential scanning calorimetry (DSC) data for the systems 1-palmitoyl-2-oleylphosphatidylcholine (POPC)/dimyristoylphosphatidylcholine (DMPC), POPC/dipalmitoylphosphatidylcholine (DPPC) and POPC/distearoylphosphatidylcholine (DSPC). Mixtures of POPC with DMPC exhibit complete miscibility in the gel and liquid crystalline states. Mixtures of POPC with DPPC or with DSPC exhibit gel phase immiscibility over the composition range 0-75% DPPC (or DSPC). These results, when taken together with previous studies of mixtures of phosphatidylcholines, are consistent with the hypothesis that PCs whose order-disorder transition temperatures (Tm values) differ by less than 33 deg. C exhibit gel state miscibility. Those whose Tm values differ by more than 33 deg. C exhibit gel state immiscibility. 2H-NMR spectroscopy has been used to further study mixed model membranes composed of POPC and DPPC, in which either lipid has been labeled with deuterium in the 2-, 10- or 16-position of the palmitoyl chain(s) or in the N-methyls of the choline head group. POPC/DPPC mixtures in the liquid crystalline state are intermediate in order between pure POPC and DPPC at the same temperature. The POPC palmitoyl chain is always more disordered than the palmitoyl chains of DPPC in liquid crystalline POPC/DPPC mixtures. This is attributed to the fact that a POPC palmitoyl chain is constrained by direct bonding to have at least one oleyl chain among its nearest neighbors, while a DPPC palmitoyl chain must have at least one neighboring palmitoyl chain. When liquid crystalline POPC, DPPC and POPC/DPPC mixtures are compared at a reduced temperature (relative to the acyl chain order-disorder transition), POPC/DPPC mixtures are more disordered than predicted from the behavior of the pure components, in agreement with enthalpy data derived from DSC studies. Within the temperature range of the broad phase transition of 1:1 POPC/DPPC, a superposition of gel and liquid crystalline spectra is observed for 1:1 POPC/[2H]DPPC, while 1:1[2H]POPC/DPPC exhibits only a liquid crystalline spectrum. Thus, at temperatures within the phase transition region, the liquid crystalline phase is POPC-rich and the gel phase is DPPC-rich. Comparison of the liquid crystalline quadrupole splittings within the thermal phase transition range suggests that mixing of the residual liquid crystalline POPC and DPPC is highly non-ideal.  相似文献   

7.
We have investigated the phospholipase A(2) catalyzed hydrolysis of supported phospholipid bilayers using neutron reflection and ellipsometry. At the hydrophilic silica-water interface, hydrolysis of phosphatidylcholine bilayers by phospholipase A(2) from Naja mossambica mossambica venom is accompanied by destruction of the bilayer at an initial rate, which is comparable for DOPC and DPPC but is doubled for POPC. The extent of bilayer destruction at 25 degrees C decreases from DOPC to POPC and is dramatically reduced for DPPC. Neutron reflectivity measurements indicate that the enzyme penetrates into the bilayers in increasing order for DOPC, POPC, and DPPC, while the amount of enzyme adsorbed at the interface is smallest for DPPC and exhibits a maximum for POPC. Penetration into the hydrophobic chain region in the bilayer is further supported by the fact that the enzyme adsorbs strongly and irreversibly to a hydrophobic monolayer of octadecyltrichlorosilane. These results are rationalized in terms of the properties of the reaction products and the effect of their accumulation in the membrane on the kinetics of enzyme catalysis.  相似文献   

8.
We have examined the Raman scattering due to CH stretching vibrations, as well as to v(-C=C-) and v(=C-C=) of beta-carotene, of liposomes composed of phosphatidylcholine (egg, dimyristoyl, dipalmitoyl) +/- cholesterol, beta-carotene or melittin in the temperature range of -10 degrees C to 45 degrees C. (2) Plots vs. temperature of the intensities of the 2885 cm-1 and 2930 cm-1 CH stretching bands relative to the intensity of the thermally stable 2850 cm-1 band, i.e. the I2885/I2850 and I2930/I2850 ratios, reveal a sharp discontinuity in cholesterol-free phosphatidylcholine liposomes; this coincides with the gel leads to liquid-crystal transition temperature of the fatty acyl chains. In cholesterol/phosphatudylcholine liposomes the change in I2885/I2850 occurs over a very broad temperature range and I2930/I2850 remains stable. (3) I1527/I1158, i.e. the intensity of v(-C=C-) relative to that of v(=C-C-) in beta-carotene/phosphatidylcholine liposomes, changes discontinuously at the gel leads to liquid-crystal transition temperature. The values above the transition temperature approach those of the carotenoid in organic solution. (4) The transitions reported in I2885/I2850 for phosphatidylcholine/melittin liposomes (25-56; 1, M/M) are shifted to much higher temperatures than observed in phosphatidylcholine liposomes. In the case of dimyristoyl phosphatidylcholine/melittin the changes in I2930/I2850 also occurs at a higher temperature (28 degrees C) than without melittin (21 degrees C), but the temperature shift is less than the +13 degrees C observed for I2885/I2850. It appears that the apolar moiety of melittin organizes phospholipids adjacent to and more remote from the peptide moiety, to form complexes with an elevated lipid transition temperature. The effect of the peptide moiety is greater on the methylene segments (I2885/I2850) than on the methyl termini (I2930/I2850).  相似文献   

9.
The effects of the organophosphorous insecticide fenitrothion (phosphorothioic acid, O,O-dimethyl O-(3-methyl-4-nitrophenyl) ester; FS) on the physical state of pure dipalmitoyl (DPPC) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) membranes were investigated. FS lowers the phase transition temperature of DPPC. It has no large effects on the DPPC gel phase, but it increases the order of the liquid-crystalline state of DPPC and POPC. FS also decreases 1,6-diphenyl-1,3,5-hexatriene (DPH) lifetime (tau) in the DPPC and POPC liquid-crystalline states. Since a direct quenching of DPH emission by FS was ruled out, tau shortening is assigned to an increased water penetration in the bilayer. The effect of FS is different from most perturbing agents for which an increased order is accompanied by a higher tau. Furthermore, quenching of DPH by KI was increased by FS in POPC liposomes indicating an increased accessibility of the quencher to the hydrophobic core where DPH distributes. The effect of FS on dipole relaxation at the hydrophilic-hydrophobic interface of POPC bilayers was studied with 2-dimethylamino-6-lauroylnaphthalene (Laurdan). FS produces a decrease in Laurdan tau and a narrowing of its emission band. FS significantly increases the generalized polarization values at both emission band ends. These results indicate that FS may allow the coexistence of microdomains that have different physical properties.  相似文献   

10.
The effects of hydrostatic pressure on the physical properties of large unilamellar vesicles of single lipids dipalmitoyl phosphatidylcholine (DPPC) and dimyristoyl phosphatidylcholine (DMPC) and lipid mixtures of DMPC/DPPC have been studied from time-resolved fluorescence of trans-parinaric acid. Additional experiments were carried out using diphenylhexatriene to compare the results extracted from both probes. Fluorescence decays were analyzed by the maximum entropy method. Pressure does not influence the fluorescence lifetime distribution of trans-parinaric acid in isotropic solvents. However, in pressurized lipid bilayers an abrupt change was observed in the lifetime distribution which was associated with the isothermal pressure-induced phase transition. The pressure to temperature equivalence values, dT/dP, determined from the midpoint of the phase transitions, were 24 and 14.5 degrees C kbar-1 for DMPC and POPC, respectively. Relatively moderate pressures of about 500 bar shifted the DMPC/DPPC phase diagram 11.5 degrees C to higher temperatures. The effects of pressure on the structural properties of these lipid vesicles were investigated from the anisotropy decays of both probes. Order parameters for all systems increased with pressure. In the gel phase of POPC the order parameter was smaller than that obtained in the same phase of saturated phospholipids, suggesting that an efficient packing of the POPC hydrocarbon chains is hindered.  相似文献   

11.
Epifluorescence microscopy was used to investigate the effect of cholesterol on monolayers of dipalmitoylphosphatidylcholine (DPPC) and 1 -palmitoyl-2-oleoyl phosphatidylcholine (POPC) at 21 +/- 2 degrees C using 1 mol% 1-palmitoyl-2-[12-[(7-nitro-2-1, 3-benzoxadizole-4-yl)amino]dodecanoyl]phosphatidylcholine (NBD-PC) as a fluorophore. Up to 30 mol% cholesterol in DPPC monolayers decreased the amounts of probe-excluded liquid-condensed (LC) phase at all surface pressures (pi), but did not effect the monolayers of POPC, which remained in the liquid-expanded (LE) phase at all pi. At low pi (2-5 mN/m), 10 mol% or more cholesterol in DPPC induced a lateral phase separation into dark probe-excluded and light probe-rich regions. In POPC monolayers, phase separation was observed at low pi when > or =40 mol% or more cholesterol was present. The lateral phase separation observed with increased cholesterol concentrations in these lipid monolayers may be a result of the segregation of cholesterol-rich domains in ordered fluid phases that preferentially exclude the fluorescent probe. With increasing pi, monolayers could be transformed from a heterogeneous dark and light appearance into a homogeneous fluorescent phase, in a manner that was dependent on pi and cholesterol content. The packing density of the acyl chains may be a determinant in the interaction of cholesterol with phosphatidylcholine (PC), because the transformations in monolayer surface texture were observed in phospholipid (PL)/sterol mixtures having similar molecular areas. At high pi (41 mN/m), elongated crystal-like structures were observed in monolayers containing 80-100 mol% cholesterol, and these structures grew in size when the monolayers were compressed after collapse. This observation could be associated with the segregation and crystallization of cholesterol after monolayer collapse.  相似文献   

12.
Increased serum enzyme activity in microwave-exposed rats   总被引:1,自引:0,他引:1  
Heat stable serum enzymes were studied in rats exposed to microwaves (2.45 GHz, 120 Hz amplitude modulated) 24 hr after a single 4-hr exposure or immediately after 3 and 10 exposures to 0.1 to 55 mW/cm2. In addition, stable colonic temperature at 41.5 degrees C for 30 min was maintained by microwave exposure in a group of five rats under barbiturate anesthesia. Alkaline phosphatase and lactic dehydrogenase did not increase as a result of microwave exposure. Increased serum glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) were noted in the 41.5 degrees C group 24 hr after exposure. A threshold body temperature for acute cellular injury after microwave exposure was demonstrated. The acute cellular injury could be in the liver. These mild elevations in the serum enzyme levels (mean +/- SE, GOT = 167 +/- 40 U/liter: GPT = 74 +/- 26 U/liter) indicated that the injuries were not accompanied by any significant sequelae in the rat. From this threshold and colonic temperature (41.5 degrees C for 30 min) in barbiturate-anesthetized, microwave-exposed rats, we derived a tentative threshold for the whole-body average absorption rate at 14 W/kg (70 mW/cm2 at 2.45 GHz for adult rats) for 4 hr. This tentative threshold is subject to changes by duration of exposure and by compounding variables influencing maintenance of body temperature.  相似文献   

13.
Dendrimers are individual macromolecular compounds having a great potential for biomedical application. The key step of the cell penetration by dendrimers is the interaction with lipid bilayer. Here, the interaction between cationic pyridylphenylene dendrimer of third generation (D350+) and multicomponent liquid (CL/POPC), solid (CL/DPPC) and cholesterol-containing (CL/POPC/30% Chol) anionic liposomes was investigated by dynamic light scattering, fluorescence spectroscopy, conductometry, calorimetric studies and molecular dynamic (MD) simulations. Microelectrophoresis and MD simulations revealed the interaction is electrostatic and reversible with only part of pyridinium groups of dendrimers involved in binding with liposomes. The ability of dendrimer molecules to migrate between liposomes was discovered by the labeling liposomes with Rhodamine B. The phase state of the lipid membrane and the incorporation of cholesterol into the lipid bilayer were found to not affect the mechanism of the dendrimer - liposome complex formation. Rigid dendrimer adsorption on liposomal surface does not induce the formation of significant defects in the lipid membrane pave the way for possible biological application of pyridylphenylene dendrimers.  相似文献   

14.
The effects on testicular function of pulse-modulated microwave radiation (PM MWR, 1.3 GHz) and of conventional heating were studied in the rat. Anesthetized adult males (Sprague-Dawley, 400-500 g) were treated then killed at specific intervals with respect to the 13-day cycle of the seminiferous epithelium. PM MWR at 7.7 mW/g (90 min) yielded a modest decline in daily sperm production (DSP) that derived primarily from effects on primary spermatocytes. PM MWR at 4.2 mW/g was ineffective. The mean intratesticular temperature during the former reached 40 degrees C and did not exceed 38 degrees C during the latter. MWR considerably in excess of 7.7 mW/g yielded decrements in virtually all germ cell types, with primary spermatocytes again being most markedly affected. Using conventional heating, intratesticular temperatures in excess of 39 degrees C for 60 min were required for significant decrements in DSP. Levels of circulating follicle-stimulating hormone and of leutinizing hormone were resistant to either treatment. We conclude that the damage threshold and the differential sensitivity of immature germ cells to PM MWR can be adequately explained by the consequent macroscopic heating.  相似文献   

15.
The lateral distribution of 1-palmitoyl-2-[10-(1-pyrenyl)decanoyl]phosphatidylcholine (PyrPC) was studied in small unilamellar vesicles of 1,2-dipalmitoyl-, 1,2-dimyristoyl-, and 1-palmitoyl-2-oleoyl-phosphatidylcholine (DPPC, DMPC, and POPC, respectively) under anaerobic conditions. The DPPC and DMPC experiments were carried out over temperature ranges above and below the matrix phospholipid phase transition temperature (Tm). The excimer to monomer fluorescence intensity ratio (E/M) was determined as a function of temperature for the three PyrPC/lipid mixtures. Phase and modulation data were used to determine the temperature dependence of pyrene fluorescence rate parameters in gel and in liquid-crystalline bilayers. These parameters were then used to provide information about excited-state fluorescence in phospholipid bilayers, calculate the concentration of the probe within liquid-crystalline and gel domains in the phase transition region of PyrPC in DPPC, and simulate E/M vs. temperature curves for three systems whose phase diagrams are different. From the simulated curves we could determine the relationship between the shape of the three simulated E/M vs. temperature curves and the lateral distribution of the probe. This information was then used to interpret the three experimentally derived E/M vs. temperature curves. Our results indicate that PyrPC is randomly distributed in pure gel and fluid phosphatidylcholine bilayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Exclusion of the strongly hygroscopic polymer, poly(ethylene glycol) (PEG), from the surface of phosphatidylcholine liposomes results in an osmotic imbalance between the hydration layer of the liposome surface and the bulk polymer solution, thus causing a partial dehydration of the phospholipid polar headgroups. PEG (average molecular weight of 6000 and in concentrations ranging from 5 to 20%, w/w) was added to the outside of large unilamellar liposomes (LUVs). This leads to, in addition to the dehydration of the outer monolayer, an osmotically driven water outflow and shrinkage of liposomes. Under these conditions phase separation of the fluorescent lipid 1-palmitoyl-2[6-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC) embedded in various phosphatidylcholine matrices was observed, evident as an increase in the excimer-to-monomer fluorescence intensity ratio (IE/IM). Enhanced segregation of the fluorescent lipid was seen upon increasing and equal concentrations of PEG both inside and outside of the LUVs, revealing that osmotic gradient across the membrane is not required, and phase separation results from the dehydration of the lipid. Importantly, phase separation of PPDPC could be induced by PEG also in binary mixtures with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), for which temperature-induced phase segregation of the fluorescent lipid below Tm was otherwise not achieved. In the different lipid matrices the segregation of PPDPC caused by PEG was abolished above characteristic temperatures T0 well above their respective main phase transition temperatures Tm. For 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), DMPC, SOPC, and POPC, T0 was observed at approximately 50, 32, 24, and 20 degrees C, respectively. Notably, the observed phase separation of PPDPC cannot be accounted for the 1 degree C increase in Tm for DMPC or for the increase by 0.5 degrees C for DPPC observed in the presence of 20% (w/w) PEG. At a given PEG concentration maximal increase in IE/IM (correlating to the extent of segregation of PPDPC in the different lipid matrices) decreased in the sequence 1,2-dihexadecyl-sn-glycero-3-phosphocholine (DHPC) > DPPC > DMPC > SOPC > POPC, whereas no evidence for phase separation in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) LUV was observed (Lehtonen and Kinnunen, 1994, Biophys. J. 66: 1981-1990). Our results indicate that PEG-induced dehydration of liposomal membranes provides the driving force for the segregation of the pyrene lipid.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Observations recently reported by our group indicate that combined 7 Hz sinusoidal (B(acpeak) = 50 mu T) and parallel static (B(dc) = 50 mu T) magnetic fields can induce a significant increase in diffusion rate of substrate across carbonic anhydrase (CA)-loaded liposomes (DPPC:Chol:SA). A direct involvement of charges of stearylamine (SA) on the lipid membrane surface was also demonstrated. Kinetic studies showed that CA was mainly entrapped in liposomes at 5:3:2 molar ratio, although a small amount (17%) of enzyme was also located on the external surface of these cationic liposomes. In this paper we report steady state kinetic studies on this latter CA after ELF-EMFs exposure. No difference in the apparent K(m) between exposed and sham samples was observed. On the contrary the apparent V(max) was increased by approximately a factor of 2 after field exposure. In spite of the proteolytic digestion of this external CA, a significant increase of enzymatic activity, as a function of increase in the diffusion rate of substrate across the lipid bilayer, was observed in the exposed samples. Based on these results, a conformational change induced by the field on the CA located on the external surface of 5:3:2 liposomes is excluded as an explanation for our previous observations, supporting the primary role of bilayer SA in the interaction with ELF. A model of ELF interaction, based on the Larmor precession theory, explaining the physical phenomenon induced on the dipole of SA has been developed.  相似文献   

18.
The interaction of antidepressant drug trazodone hydrochloride (TRZ) with dipalmitoyl phosphatidylcholine (DPPC) multilamellar liposomes (MLVs) in the presence and absence of cholesterol (CHO) was investigated as a function of temperature by using Electron Paramagnetic Resonance (EPR) spin labeling, Fourier Transform Infrared (FTIR) Spectroscopy and Differential Scanning Calorimetry (DSC) techniques. These interactions were also examined for dimyristoyl phosphatidylcholine (DMPC) multilamellar liposomes by using Electron Paramagnetic Resonance (EPR) spin labeling technique. In the EPR spin labeling studies, 5- and 16-doxyl stearic acid (5-DS and 16-DS) spin labels were used to monitor the head group and alkyl chain region of phospholipids respectively. The results indicated that TRZ incorporation causes changes in the physical properties of PC liposomes by decreasing the main phase transition temperature, abolishing the pre-transition, broadening the phase transition profile, and disordering the system around the head group region. The interaction of TRZ with unilamellar (LUV) DPPC liposomes was also examined. The most pronounced effect of TRZ on DPPC LUVs was observed as the further decrease of main phase transition temperature in comparison with DPPC MLVs. The mentioned changes in lipid structure and dynamics caused by TRZ may modulate the biophysical activity of membrane associated receptors and in turn the pharmacological action of TRZ.  相似文献   

19.
Differential scanning calorimetry (DSC) was used to determine the amount of water that freezes in an aqueous suspension of multilamellar dipalmitoylphosphatidylcholine (DPPC) liposomes. The studies were performed with dehydrated suspensions (12-20 wt% water) and suspensions containing an excess of water (30-70 wt% water). For suspensions that contained > or = 18 wt% water, two ice-formation events were observed during cooling. The first was attributed to heterogeneous nucleation of extraliposomal ice; the second was attributed to homogeneous nucleation of ice within the liposomes. In suspensions with an initial water concentration between 13 and 16 wt%, ice formation occurred only after homogeneous nucleation at temperatures below -40 degrees C. In suspensions containing < 13 wt% water, ice formation during cooling was undetectable by DSC, however, an endotherm resulting from ice melting during warming was observed in suspensions containing > or = 12 wt% water. In suspensions containing < 12 wt% water, an endotherm corresponding to the melting of ice was not observed during warming. The amount of ice that formed in the suspensions was determined by using an improved procedure to calculate the partial area of the endotherm resulting from the melting of ice during warming. The results show that a substantial proportion of water associated with the polar headgroup of phosphatidylcholine can be removed by freeze-induced dehydration, but the amount of ice depends on the thermal history of the samples. For example, after cooling to -100 degrees C at rates > or = 10 degrees C/min, a portion of water in the suspension remains supercooled because of a decrease in the diffusion rate of water with decreasing temperature. A portion of this supercooled water can be frozen during subsequent freeze-induced dehydration of the liposomes under isothermal conditions at subfreezing storage temperature Ts. During isothermal storage at Ts > or = -40 degrees C, the amount of unfrozen water decreased with decreasing Ts and increasing time of storage. After 30 min of storage at Ts = -40 degrees C and subsequent cooling to -100 degrees C, the amount of water associated with the polar headgroups was < 0.1 g/g of DPPC. At temperatures > -50 degrees C, the amount of unfrozen water associated with the polar headgroups of DPPC decreased with decreasing temperature in a manner predicted from the desorption isotherm of DPPC. However, at lower temperatures, the amount of unfrozen water remained constant, in large part, because the unfrozen water underwent a liquid-to-glass transformation at a temperature between -50 degrees and -140 degrees C.  相似文献   

20.
《Biophysical journal》2021,120(21):4751-4762
A mesoscopic model with molecular resolution is presented for dipalmitoyl phosphatidylcholine (DPPC) and palmitoyl oleoyl phosphatidylcholine (POPC) monolayer simulations at the air-water interface using many-body dissipative particle dynamics (MDPD). The parameterization scheme is rigorously based on reproducing the physical properties of water and alkane and the interfacial property of the phospholipid monolayer by comparison with experimental results. Using much less computing cost, these MDPD simulations yield a similar surface pressure-area isotherm as well as similar pressure-related morphologies as all-atom simulations and experiments. Moreover, the compressibility modulus, order parameter of lipid tails, and thickness of the phospholipid monolayer are quantitatively in line with the all-atom simulations and experiments. This model also captures the sensitive changes in the pressure-area isotherms of mixed DPPC/POPC monolayers with altered mixing ratios, indicating that the model is promising for applications with complex natural phospholipid monolayers. These results demonstrate a significant improvement of quantitative phospholipid monolayer simulations over previous coarse-grained models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号