首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wind is the main dispersal agent for a wide array of species and for these species the environmental conditions under which diaspores are released can potentially modify the dispersal kernel substantially. Little is known about how bryophytes regulate spore release, but conditions affecting peristome movements and vibration of the seta may be important. We modelled airborne spore dispersal of the bryophyte species Discelium nudum (spore diameter 25 μm), in four different release scenarios, using a Lagrangian stochastic dispersion model and meteorological data. We tested the model predictions against experimental data on colonization success at five distances (5, 10, 30, 50 and 100 m) and eight directions from a translocated point source during seven two‐day periods. The model predictions were generally successful in describing the observed colonization patterns, especially beyond 10 m. In the laboratory we established spore release thresholds; horizontal wind speed sd > 0.25 m s?1 induced the seta to vibrate and in relative humidity < 75% the peristome was open. Our dispersal model predicts that the proportion of spores dispersing beyond 100 m is almost twice as large if the spores are released under turbulent conditions than under more stable conditions. However, including release thresholds improved the fit of the model to the colonization data only minimally, with roughly the same amount of variation explained by the most constrained scenario (assuming both vibration of the seta and an open peristome) and the scenario assuming random release. Model predictions under realised experimental conditions suggest that we had a low statistical power to rank the release scenarios due to the lack of measurements of the absolute rate of spore release. Our results hint at the importance of release conditions, but also highlight the challenges in dispersal experiments intended for validating mechanistic dispersal models.  相似文献   

2.
Deposition velocities, vg, to horizontal slides were measured over a barley crop for a range of air spora. Slides were either freely exposed, placed on a 60 cm2 table or placed in a large beaker. Deposition velocities calculated from the spore catch on freely exposed slides were 2–3 times the sedimentation velocity for all spore classes. While exposure of slides in protected enclosure reduced turbulent deposition, the values of vg were still almost twice the sedimentation velocity. Thus caution must be advised when interpreting such deposition measurements in terms of spore concentration.  相似文献   

3.
This study determined the relationship between airborne concentration of Cladosporium spp. spores and wind speed and direction using real data (local wind measured by weather station) and modelled data (air mass flow computed with the aid of HYbrid Single Particle Lagrangian Trajectory model). Air samples containing fungal conidia were taken at an urban site (Worcester, UK) for a period of five consecutive years using a spore trap of the Hirst design. A threshold of ≥6000 s m?3 (double the clinical value) was applied in order to select high spore concentration days, when airborne transport of conidia at a regional scale was more likely to occur. Collected data were then examined using geospatial and statistical tools, including circular statistics. Obtained results showed that the greatest numbers of spore concentrations were detected in July and August, when C. herbarum, C. cladosporioides and C. macrocarpum sporulate. The circular correlation test was found to be more sensitive than Spearman’s rank test. The dominance of either local wind or the air mass on Cladosporium spore distributions varied between examined months. Source areas of this pathogen had an origin within the UK territory. Very high daily mean concentrations of Cladosporium spores were observed when daily mean local wind speed was v s ≤ 2.5 m s?1 indicating warm days with a light breeze.  相似文献   

4.

Background and Aims

Initial release height and settling speed of diaspores are biologically controlled components which are key to modelling wind dispersal. Most Sphagnum (peat moss) species have explosive spore liberation. In this study, how capsule and spore sizes affect the height to which spores are propelled were measured, and how spore size and spore number of discharged particles relate to settling speed in the aspherical Sphagnum spores.

Methods

Spore discharge and spore cloud development were filmed in a closed chamber (nine species). Measurements were taken from snapshots at three stages of cloud development. Settling speed of spores (14 species) and clusters were timed in a glass tube.

Key Results

The maximum discharge speed measured was 3·6 m s−1. Spores reached a maximum height of 20 cm (average: 15 cm) above the capsule. The cloud dimensions at all stages were related positively to capsule size (R2 = 0·58–0·65). Thus species with large shoots (because they have large capsules) have a dispersal advantage. Half of the spores were released as singles and the rest as clusters (usually two to four spores). Single spores settled at 0·84–1·86 cm s−1, about 52 % slower than expected for spherical spores with the same diameters. Settling speed displayed a positive curvilinear relationship with spore size, close to predictions by Stokes'' law for spherical spores with 68 % of the actual diameters. Light-coloured spores settled slower than dark spores. Settling speed of spore clusters agrees with earlier studies. Effective spore discharge and small, slowly settling spores appear particularly important for species in forested habitats.

Conclusions

The spore discharge heights in Sphagnum are among the greatest for small, wind-dispersed propagules. The discharge heights and the slow settling of spores affect dispersal distances positively and may help to explain the wide distribution of most boreal Sphagnum species.  相似文献   

5.
We used species‐specific spore traps to measure airborne dispersal of the wood decay fungus Phlebia centrifuga (spore size 6.5–9 × 2.5–3 μm) up to 1000 m distance from a point source. We fitted two simple dispersal models, an empirical power law model and a semi‐mechanistic diffusion model to the data using the Bayesian approach. The diffusion model provided a better fit than the power law model which underestimated deposition at 3–55 m and overestimated deposition at longer and shorter distances. Model fit improved by allowing overdispersion, suggesting that spores are not dispersed independently but wind can transport spores in groups inside discrete air packages up to considerable distances. Using the fitted diffusion model and available information on the establishment rates of wood‐decay fungi, we examine the distance up to which colonisation from a single fruit body is likely to occur. We conclude that the diluting effect of distance and low establishment success make the occurrence of P. centrifuga dispersal limited possibly already at the distance of tens of metres and very probably at a few hundred metres from the nearest fruit body, despite the fact that under favourable conditions a high proportion of the spores can disperse considerably further. This conclusion is likely to hold generally for those fungal species that inhabit fragmented landscapes, have specialised resource and habitat requirements, and have similar spore size and other dispersal traits as P. centrifuga.  相似文献   

6.
Fungal spores and pollens can be dispersed in a number of ways: by animals and insects; by water; by wind or by rain. This paper concentrates on the effects of wind on the dispersal of spores and pollen grains and the effects of rain on spore dispersal. For dispersal to be successful particles must complete three phases: removal, dispersal through the air and deposition. The biology of the organism and its environment can affect all three phases, however, once released the fate of all airborne particles largely depends on the laws of physics which govern the motion of the air. Many types of spore are actively ejected into the air while others are simply blown from the host surface. Particle size and shape affects dispersal and deposition phases. Local environmental factors such as temperature, humidity and light, as well as wind or rain, can play a key role in the removal of spores. Wind speed and turbulence or rainfall, largely determine spore dispersal, but, the size and shape of the particle, the nature of the plant canopy and the way the particles are released into the air may also be important. Particle deposition depends on both environmental and biological factors. This paper briefly considers these processes using examples and how they can be modelled.  相似文献   

7.
Deposition of Erysiphe graminis Conidia on a Barley Crop   总被引:1,自引:0,他引:1  
Naturally released Erysiphe graminis conidia were trapped (on horizontal slides, on vertical sticky cylinders and in suction traps) in a barley crop infected with powdery mildew and the numbers of single spores and of clumps of different sizes deposited on the traps were counted. The efficiencies of impaction calculated from deposits and wind speed measurements were higher than expected from mean wind speed measurements. The values were consistent with the hypothesis that spores were removedpredominantly in gusts. More than half the conidia were removed in clumps of two or more spores. The measurements suggest that clumps were more effectively deposited than single spores. The measurements demonstrate that spore release mechanisms can influence spore deposition significantly, especially close to the source.  相似文献   

8.
The maximum quantum yield of photosystem II was estimated from variable chlorophyll a fluorescence in samples of phytoplankton collected from the Taihu Lake in China to determine the responses of different phytoplankters to irradiance and vertical mixing. Meteorological and environmental variables were also monitored synchronously. The maximum quantum yield of three phytoplankton groups: cyanobacteria, chlorophytes, and diatoms/dinoflagellates, showed a similar diurnal change pattern. F v/F m decreased with a significant depth-dependent variation as irradiance increased during the morning and increased as irradiance declined in the afternoon. Furthermore, the rates of F v/F m depression were dependent upon the photon flux density, whereas the rates of recovery of F v/F m were dependent upon the historical photon density. Moreover, photoinhibition affected the instantaneous growth rates of phytoplankton. Although at noon cyanobacteria had a higher photoinhibition value (up to 41%) than chlorophytes (32%) and diatoms/dinoflagellates (34%) at the surface, no significant difference in diurnal growth rates among the three phytoplankton groups were observed indicating that cyanobacteria could photoacclimate better than chlorophytes and diatoms/dinoflagellates. In addition, cyanobacteria had a higher nonphotochemical quenching value than chlorophytes and diatoms/dinoflagellates at the surface at noon, which indicated that cyanobacteria were better at dissipating excess energy. The ratios of enclosed bottle samples F v/F m to free lake samples F v/F m showed different responses for the three phytoplankton groups to irradiance and vertical mixing when wind speed was approximately constant at about 3.0 m s−1. When wind speed was lower than 3.0 m s−1, cyanobacteria accumulated mainly at the surface and 0.3 m, because of their positive buoyancy, where diurnal growth rates of phytoplankton were relatively higher than those at 0.6 m and 0.9 m. Chlorophytes were homogenized completely by vertical mixing, while diatoms/dinoflagellates avoided active high irradiance by moving downward at noon, and then upward again when irradiance decreased. These results explain the dominance of cyanobacteria in Taihu Lake. Handling editor: L. Naselli-Flores  相似文献   

9.
Effective dispersal is crucial to species inhabiting transient substrates in order for them to be able to persist in a landscape. Bryophytes, pteridophytes, lichens and fungi all have wind‐dispersed small diaspores and can be efficiently dispersed if their diaspores reach air masses above canopy height. However, empirical data on dispersal over landscape scales are scarce. We investigated how the colonization of an acrocarpous clay‐inhabiting pioneer moss, Discelium nudum, varied between sites that differed in connectivity to potential dispersal sources at spatial scales from 1 to 20 km in a region in northern Sweden. We recorded the colonization on ?25 introduced clay heaps at each of 14 experimental sites some months after the dispersal period. The colonization rate ranged from 0–82% and had a statistically significant relationship with a proxy for potential habitats (amount of clay‐dominated soil) in a buffer of 20 km radius surrounding the experimental sites (and also weakly with the amount of substrate in a 10 km buffer). There were no significant relationships between colonization rate and connectivity at smaller scales (1 and 5 km). We made a rough estimate of the number of spores available for dispersal in a landscape, given the amount of clay‐dominated soil, by recording the number of Discelium nudum colonies in two 25 × 25 km landscapes. The estimated available spore numbers in the different 20 km buffers were of the same order of magnitude as the deposition densities at the experimental sites calculated from the colonization rates. The results suggest that the spores of species with scattered occurrences and small diaspores (25 μm) in open landscapes can be deposited over extensive areas, at rates high enough to drive colonization patterns. This also implies that regional connectivity may be more important than local connectivity for these kinds of species.  相似文献   

10.
Experimental measurements were made in the laboratory to determine the swimming capacities of settlement-stage fish larvae of several Mediterranean coastal species collected from the nearshore waters of Corsica, France. Critical swimming speed (Ucrit, cm s−1) was measured to provide a realistic laboratory estimate of in situ swimming speed. Morphometric traits were measured to assess potential predictors of a species’ swimming ability and, when possible, daily otolith increments were used to estimate age. Observed swimming speeds were consistent with other temperate species and demonstrated that the tested species are competent swimmers and not passive components of their environment. Morphological traits varied in their correlation with Ucrit across groups and species. Direct measurements of morphological traits were better predictors than calculated ratios. Pelagic larval duration had little relationship with swimming speed among species for which daily otolith increments were counted. In addition to expanding the database on swimming capacities of settlement-stage fish larvae in the Mediterranean Sea, this study also developed methods that simplify the assessment of larval fish swimming ability. Swimming speed data are essential for improving larval dispersal models and for predicting recruitment rates in coastal fish populations.  相似文献   

11.
 In part 1 an experiment was described for determining the extent of pollen dispersal from a Lolium source. The results were used to test Bateman’s pollen dispersal equations, which were found to be not particularly useful for describing variation in pollen deposition with distance. An improvement is suggested here which takes the influence of wind direction into account. For 11 of the 12 datasets the new equations fit significantly better than the original ones. Mean wind directions were used to produce 15 data subsets for testing Bateman’s equations for dispersal downwind of a pollen source. These equations fitted only 4 of the data subsets, all of which were collected from traps facing towards the pollen source. The usefulness of the model equations in estimating the importance of turbulence is brought into question. It is shown that models incorporating only distance and wind direction do not accurately describe pollen deposition. The amount of pollen deposited does not always decrease smoothly with increasing distance from the source. The variation in the amount of pollen deposited is probably influenced by several factors, including wind speed and turbulence. Received: 5 June 1996 / Accepted: 11 October 1996  相似文献   

12.
The dispersal ability of plants is a major factor driving ecological responses to global change. In wind‐dispersed plant species, non‐random seed release in relation to wind speeds has been identified as a major determinant of dispersal distances. However, little information is available about the costs and benefits of non‐random abscission and the consequences of timing for dispersal distances. We asked: 1) to what extent is non‐random abscission able to promote long‐distance dispersal and what is the effect of potentially increased pre‐dispersal risk costs? 2) Which meteorological factors and respective timescales are important for maximizing dispersal? These questions were addressed by combining a mechanistic modelling approach and field data collection for herbaceous wind‐dispersed species. Model optimization with a dynamic dispersal approach using measured hourly wind speed showed that plants can increase long‐distance dispersal by developing a hard wind speed threshold below which no seeds are released. At the same time, increased risk costs limit the possibilities for dispersal distance gain and reduce the optimum level of the wind speed threshold, in our case (under representative Dutch meteorological conditions) to a threshold of 5–6 m s–1. The frequency and predictability (auto‐correlation in time) of pre‐dispersal seed‐loss had a major impact on optimal non‐random abscission functions and resulting dispersal distances. We observed a similar, but more gradual, bias towards higher wind speeds in six out of seven wind‐dispersed species under natural conditions. This confirmed that non‐random abscission exists in many species and that, under local Dutch meteorological conditions, abscission was biased towards winds exceeding 5–6 m s–1. We conclude that timing of seed release can vastly enhance dispersal distances in wind‐dispersed species, but increased risk costs may greatly limit the benefits of selecting wind conditions for long‐distance dispersal, leading to moderate seed abscission thresholds, depending on local meteorological conditions and disturbances.  相似文献   

13.
 为揭示加拿大一枝黄花(Solidago canadensis)种群扩散机制, 明确种子的脱落及风传扩散在其种群蔓延中的作用, 在人工环境下测定了不同湍流强度、风速和湿度处理下种子脱落的差异, 并对脱落种子与未脱落种子进行形态学特征对比。结果表明: 加拿大一枝黄花的种子脱落受湍流、风速和湿度等因素的共同影响。水平气流下种子的脱落阈值为5.1 m·s–1, 并随着风速增加, 种子的脱落率增加。与模拟水平气流相比, 模拟垂直气流下种子的脱落阈值显著偏小。相对于层流状态, 湍流的存在显著提高了种子的脱落率, 平均增幅超过300%; 但单纯提高湍流强度对种子脱落率的影响不显著。增加湿度则显著降低种子的脱落率。种子形态学特征对比结果表明, 脱落种子的冠毛数量和冠毛夹角显著高于未脱落种子。该研究结果为研究加拿大一枝黄花种子脱落规律和风传扩散机制提供了科学依据, 也为其他入侵性杂草种子的扩散机制及入侵过程提供了借鉴。  相似文献   

14.
Flight of the honey bee VII: metabolic power versus flight speed relation   总被引:1,自引:1,他引:0  
The existing experimental data on metabolic power P m of honey bees are critically discussed, partly corrected for real flight conditions and plotted as a function of flight speed v. New wind tunnel measurements of tethered flight under near-natural conditions are added in the range 3.3<v<5.1 m·s-1, derived from exhaustion flight measurements. Within this small sector the latter measurements can be characterised by a linear correlation: P m(mW)=6.72v (m·s-1)+13.83, the slope of which is significantly different from zero. The over-all P m(v) curve is significantly not a straight line of zero slope but a U-shaped minimum curve and may be approximated by a second-order polynom: P m=49.2-8.9v+1.5v 2. The same is true for relative metabolic power, P m rel (e) related to empty body mass of 76.5 mg: P m rel(e)=630.0-114.0v+19.2v 2 (P m in mW: P m rel in mW·g-1; v in m·s-1). The data support the existence of a U-shaped power-versus-speed curve in bees.Abbreviations bm body mass (mg) - f full - e empty - mu muscles - P m (mJ·s-1=mW) metabolic power (input) - P m rel (mW·g-1) relative metabolic power - P mec (mW) mechanical power (output) - efficiency (of the flight musculature) - t(s) flight time - v (m·s-1) relative speed between bee and air  相似文献   

15.
《Journal of bryology》2013,35(4):793-794
Abstract

Occurrence of Ptilidium pulcherrimum in transects and spore dispersal from a single colony have been studied in a coastal spruce forest in northern Sweden. The main substrate type was rotting wood with 75% of all occurrences. Annual spore production was 68,500 spores/m2 forest, 640,000 spores/m2 substrate and 44,000,000 spores/m2 colony. Almost 50% of the spores were deposited within 2.5 m of the colony. Annual spore deposition between colonies was estimated to be between 24,000–39,000 and deposition on the main substrate, decaying logs, was about 340–600 spores/m2 forest. P. pulcherrimum showed a clumped distribution pattern up to about a 15 m neighbourhood distance. This pattern could not be explained by a similar clumping of the substrate. Instead a limitation by distance in establishment due to a deficit of spores is assumed.  相似文献   

16.
While patterns of spore dispersal from single sources at short distances are fairly well known, information about ‘spore rain’ from numerous sources and at larger spatial scales is generally lacking. In this study, I sampled spore rain using a novel method consisting of 0.25–0.5 m2 cotton cloth traps at nine sites in the boreo‐nemoral vegetation zone in eastern Sweden during two seasons, using Sphagnum spores as a model. Traps were located in various landscapes (mainland, islands). Additional trapping was done in an arctic area (Svalbard) without spore production. Spore densities were tested against distance from the nearest source and area of sources (open peatlands) within different radii around each site (5, 10, 20, 50, 100, 200, 300, 400 km). The cloth method appeared reliable when accounting for precipitation losses, retaining approximately 20–60% of the spores under the recorded amounts of precipitation. Estimated spore densities ranged from 6 million m?2 and season within a large area source, via regional deposition of 50 000–240 000 spores m?2, down to 1000 m?2 at Svalbard. Spore rain for all sites was strongly related to distance from the nearest source, but when excluding samples taken within a source peatland, the amount of sources within 200 km was most important. Spores were larger at isolated island sites, indicating that a higher proportion originated from distant, humid areas. Immense amounts of Sphagnum spores are dispersed across regional distances annually in boreal areas, explaining the success of the genus to colonise nutrient poor wetlands. The detectable deposition at Svalbard indicates that about 1% of the regional spore rain has a trans‐ or intercontinental origin. The regional spore rain, originating from numerous sources in the landscape, is probably valid for most organisms with small diaspores and provides a useful insight in ecology, habitat restoration and conservation planning.  相似文献   

17.
1. Surface water is an important dispersal vector for wetland plant species. However, most previous studies on hydrochory (i.e. water dispersal) have focused on ecosystems with relatively rapid water flow. Therefore, there is a need to study such dispersal in slow‐flowing or stagnant waterbodies, such as drainage ditches, which might act as dispersal corridors between habitat patches. 2. To gain insight into the mechanisms by which seeds are transported in drainage ditches, the effect of the velocity of wind and water on the rate of transport of floating seeds of three wetland species (Carex pseudocyperus L., Iris pseudacorus L. and Sparganium erectum L.) was investigated. Furthermore, in release and retrace experiments with painted C. pseudocyperus seeds, a number of factors potentially determining the probability of seed deposition were investigated. 3. Net wind speed was found to be the main factor determining the rate at which seeds are transported in drainage ditches. No relation between water flow at middepth in the ditches and seed transport was found. Wind speed and flow at the water surface were positively related. The effect of wind speed on the rate of transport of floating seeds was greater for S. erectum seeds, because a greater ratio of their volume protrudes from the water, than for C. pseudocyperus and I. pseudacorus seeds. 4. The principal factors that determine seed deposition were aquatic plant cover, ditch slope and indentations in the ditch bank. Seeds changed direction if the wind direction changed, or if there was a bend in the ditch. The final pattern of deposition was related to mean net wind speed. Mean transport distance after 2 days varied between 34 and 451 m. 5. Unlike in rivers, seed transport in ditches was determined by wind speed and direction, enabling multidirectional seed dispersal. We conclude that in slow‐flowing waters, wind is a more important driver for hydrochorous seed transport than the flow of water. This sheds a new light on hydrochory and has important consequences for the management of otherwise fragmented wetland remnants.  相似文献   

18.
Wood decay fungi are considered to be dispersed by wind, but dispersal by animals may also be important, and more so in managed forests where dead wood is scarce. We investigated whether beetles could disperse spores of the keystone species Fomitopsis pinicola. Beetles were collected on sporocarps and newly felled spruce logs, a favourable habitat for spore deposition. Viable spores (and successful germination) of F. pinicola were detected by dikaryotization of monokaryotic bait mycelium from beetle samples. Viable spores were on the exoskeleton and in the faeces of all beetles collected from sporulating sporocarps. On fresh spruce logs, nine beetle species transported viable spores, of which several bore into the bark. Our results demonstrate that beetles can provide directed dispersal of wood decay fungi. Potentially, it could contribute to a higher persistence of some species in fragmented forests where spore deposition by wind on dead wood is less likely.  相似文献   

19.
Regional variation in spore deposition and viability was studied for two fungi, Fomitopsis rosea (Alb. & Schwein.: Fr.) P. Karst. and Phlebia centrifuga P. Karst., both confined to old‐growth spruce forests in the boreal zone. Seven regions in Sweden were studied along a north‐south transect in which the historical impact from forestry increases and the amount old forests decreases towards the south. The two southernmost regions were located outside the distribution border of the species. Spore deposition was measured species specifically as heterokaryotisation of homokaryotic mycelia growing on wood discs. There was a significant decline in spore deposition towards the south for both species. F. rosea deposited an average amount of 111 spores m?2 24 h?1 in the northernmost region compared to less than 1 spore in the four southernmost regions. The corresponding values for P. centrifuga were 27 spores m?2 24 h?1 in the north compared to less than 2 spores in the 4 southernmost regions. No deposition was found south of the distribution borders. The viability of spores from local populations within each region was measured as germination success on nutrient media. Individual fruiting bodies from large populations in the north generally produced spores with higher germinability than fruiting bodies from geographically isolated populations in the central and southern regions. However, there was a high variation among the southern populations. Our data suggest that some populations in mid‐ and south Sweden may suffer from negative genetic effects, possibly associated with fragmentation and loss of habitat. Thus, the combination of low spore deposition and low germinability of spores may be a threat to the long‐term persistence of F. rosea and P. centrifuga in southern Sweden. Several other species may experience the same situation, especially when considering the severe decline of dead wood in Swedish forests.  相似文献   

20.
Abstract. Planned conservation efforts for tree snails of the endangered genus Achatinella, endemic to the island of O'ahu, Hawai'i, will include translocations among the remaining wild and captive‐bred populations. In order to establish optimal levels of artificial migration among neighboring groups of snails within fragmented populations, efforts to determine natural dispersal rates through direct observation were initiated. Capture–mark–recapture (CMR) efforts have proved inadequate for obtaining the requisite dispersal estimates, due to low recapture probabilities. In addition, snail dispersal beyond the boundaries of a finite CMR study site was indistinguishable from mortality. In the preliminary study reported here, both the low recapture probability and dispersal detection problems of past CMR efforts were addressed by using harmonic radar tracking. This approach yielded rough dispersal estimates that were unattainable using CMR alone by providing 100% recapture rates even beyond the normal survey area boundaries. Extensive snail movements within clusters of connected trees were frequently observed after tracking for merely a few hours, although movements between unconnected trees were rare and recorded only after monthly survey intervals. Just 11 out of 40 tracked snails made between‐tree movements (average distance of 4.94±1.52 m) during the entire 7‐month study, and provided the only data utilizable for inferring gene flow in and out of subpopulations. Meteorological data loggers were deployed when tracking began to look for an association between such snail movement and weather fluctuations. The resultant data indicate that increases in both wind gusts and humidity facilitate dispersal (R2=0.77, p‐value <0.001), and that passive wind dispersal alone may be responsible for many snail movements (R2=0.59, p‐value=0.0014). Despite having provided coarse estimates of short‐term dispersal and corresponding wind influences, the limitations of the radar method can be substantial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号