首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
Previous studies have shown that the small subunit of Xenopus DNA polymerase gamma (pol gammaB) acts as a processivity factor to stimulate the 140 kDa catalytic subunit of human DNA polymerase gamma. A putative human pol gammaB initially identified by analysis of DNA sequence had not been shown to be functional, and appeared to be an incomplete clone. In this paper, we report the cloning of full-length human and mouse pol gammaB. Both human and mouse pol gammaB proteins were expressed in their mature forms, without their apparent mitochondrial localization signals, and shown to stimulate processivity of the recombinant catalytic subunit of human pol gammaA. Deletion analysis of human pol gammaB indicated that blocks of sequence conserved with prokaryotic class II aminoacyl-tRNA synthetases are necessary for activity and inter-action with human pol gammaA. Purification of DNA pol gamma from HeLa cells indicated that both proteins are associated in vivo.  相似文献   

7.
8.
We have previously cloned the human RNA polymerase II subunit 11, as a doxorubicin sensitive gene product. We suggested multiple tasks for this subunit, including structural and regulatory roles. With the aim to clarify the human RNA polymerase II subunit 11 function, we have identified its interacting protein partners using the yeast two-hybrid system. Here, we show that human RNA polymerase II subunit 11 specifically binds keratin 19, a component of the intermediate filament protein family, which is expressed in a tissue and differentiation-specific manner. In particular, keratin 19 is a part of the nuclear matrix intermediate filaments. We provide evidence that human RNA polymerase II subunit 11 interacts with keratin 19 via its N-terminal alpha motif, the same motif necessary for its interaction with the human RNA polymerase II core subunit 3. We found that keratin 19 contains two putative leucine zipper domains sharing peculiar homology with the alpha motif of human RNA polymerase II subunit 3. Finally, we demonstrate that keratin 19 can compete for binding human RNA polymerase II subunit 11/human RNA polymerase II subunit 3 in vitro, suggesting a possible regulatory role for this molecule in RNA polymerase II assembly/activity.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Although previous biochemical studies have demonstrated global degradation of the largest subunit, Rpb1p, of RNA polymerase II in response to DNA damage, it is still not clear whether the initiating or elongating form of Rpb1p is targeted for degradation in vivo. Further, whether other components of RNA polymerase II are degraded in response to DNA damage remains unknown. Here, we show that the Rpb1p subunit of the elongating, but not initiating, form of RNA polymerase II is degraded at the active genes in response to 4-nitroquinoline-1-oxide-induced DNA damage in Saccharomyces cerevisiae. However, other subunits of RNA polymerase II are not degraded in response to DNA damage. Further, we show that Rpb1p is essential for RNA polymerase II assembly at the active gene, and thus, the degradation of Rpb1p following DNA damage disassembles elongating RNA polymerase II. Taken together, our data demonstrate that Rpb1p but not other subunits of elongating RNA polymerase II is specifically degraded in response to DNA damage, and such a degradation of Rpb1p is critical for the disassembly of elongating RNA polymerase II at the DNA lesion in vivo.  相似文献   

19.
Two cases are described which indicate that RNA polymerase could alter DNA supercoiling. One occurred in a topA mutant in which abnormally high levels of plasmid supercoiling were lowered by rifampin, an inhibitor of the beta subunit of RNA polymerase. The second case involves suppression of a temperature-sensitive gyrB mutation by a rifampin-resistant allele of rpoB, the gene encoding the beta subunit of RNA polymerase. Measurements of chromosomal DNA supercoiling show that the rpoB mutation reduced DNA relaxation.  相似文献   

20.
We describe the cloning and analysis of mRPA1, the cDNA encoding the largest subunit (RPA194) of murine RNA polymerase I. The coding region comprises an open reading frame of 5151?bp that encodes a polypeptide of 1717 amino acids with a calculated molecular mass of 194?kDa. Alignment of the deduced protein sequence reveals homology to the β′ subunit of Escherichia coli RNA polymerase in the conserved regions a-h present in all large subunits of RNA polymerases. However, the overall sequence homology among the conserved regions of RPA1 from different species is significantly lower than that observed in the corresponding β′-like subunits of class II and III RNA polymerase. We have raised two types of antibodies which are directed against the conserved regions c and f of RPA194. Both antibodies are monospecific for RPA194 and do not cross-react with subunits of RNA polymerase II or III. Moreover, these antibodies immunoprecipitate RNA polymerase I both from murine and human cell extracts and, therefore, represent an invaluable tool for the identification of RNA polymerase I-associated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号