首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The K+, Na+, and Cl balance and K+ (Rb+) and 36Cl fluxes in U937 cells induced to apoptosis by 0.2 or 1 μM staurosporine were studied using flame emission and radioisotope techniques. It is found that two-thirds of the total decrease in the amount of intracellular osmolytes in apoptotic cells is accounted for by monovalent ions and one-third consists of other intracellular osmolytes. A decrease in the amount of monovalent ions results from a decrease in the amount of K+ and Cl and an increase in the Na+ content. The rate of 36Cl, Rb+ (K+), and 22Na+ equilibration between cells and the medium was found to significantly exceed the rate of apoptotic change in the cellular ion content, which indicates that unidirectional influxes and effluxes during apoptosis may be considered as being in near balance. The drift of the ion flux balance in apoptosis caused by 0.2 μM staurosporine was found to be associated with the increased ouabain-resistant Rb+ (K+) channel influx and insignificantly altered the ouabain-sensitive pump influx. Severe apoptosis induced by 1 μM staurosporine is associated with reduced pump fluxes and slightly changed channel Rb+ (K+) fluxes. In apoptotic cells, the 1.4–1.8-fold decreased Cl level is accompanied by a 1.2–1.6-fold decreased flux.  相似文献   

2.
Inhibition of epithelial Na+ channels (ENaC) by the cystic fibrosis transmembrane conductance regulator (CFTR) has been demonstrated previously. Recent studies suggested a role of cytosolic Cl for the interaction of CFTR with ENaC, when studied in Xenopus oocytes. In the present study we demonstrate that the Na+/H+-exchanger regulator factor (NHERF) controls expression of CFTR in mouse collecting duct cells. Inhibition of NHERF largely attenuates CFTR expression, which is paralleled by enhanced Ca2+-dependent Cl secretion and augmented Na+ absorption by the ENaC. It is further demonstrated that epithelial Na+ absorption and ENaC are inhibited by cytosolic Cl and that stimulation by secretagogues enhances the intracellular Cl concentration. Thus, the data provide a clue to the question, how epithelial cells can operate as both absorptive and secretory units: Increase in intracellular Cl during activation of secretion will inhibit ENaC and switch epithelial transport from salt absorption to Cl secretion.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

3.
The involvement of Cl? in cytoplasm polarization in the pollen tube and membrane potential control during pollen germination in vitro was studied by fluorescence techniques in Nicotiana tabacum. Cl? release from cells was blocked by the anion channel inhibitor nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) or by the addition of Cl? to the incubation medium. The concentrations of the inhibitor (40 μM) and extracellular Cl? completely inhibiting pollen germination (200 mM) and pollen tube growth (100 mM) were used. The release of anions from the pollen grain has been revealed in the first minutes of hydration also in the presence of 200 mM Cl?. The inhibitor blocked this process completely, which points to the significance of the NPPB-sensitive anion channels in the transmembrane Cl? transport at the early activation stage. The pollen tube membrane was hyperpolarized in the presence of 100 mM Cl?; however, exogenous Cl? had no effect on the compartmentalization and organelle movement in the tube. The inhibitor depolarized the plasma membrane in the pollen grain and tube and affected the polar organization of the cytoplasm and organelle movement. Thus, activity of NPPB-sensitive chloride channels was required to regulate the potential on the plasma membrane and to maintain the functional compartmentalization of the cytoplasm, which provides for the polar growth.  相似文献   

4.
Self-referencing ion - selective electrodes (ISEs), made with Chloride Ionophore I-Cocktail A (Fluka), were positioned 1–3 μm from human embryonic kidney cells (tsA201a) and used to record chloride flux during a sustained hyposmotic challenge. The ISE response was close to Nernstian when comparing potentials (VN) measured in 100 and 10 mM NaCl (ΔVN = 57 ± 2 mV), but was slightly greater than ideal when comparing 1 and 10 mm NaCl (ΔVN = 70 ± 3 mV). The response was also linear in the presence of 1 mm glutamate, gluconate, or acetate, 10 μm tamoxifen, or 0.1, 1, or 10 mm HEPES at pH 7.0. The ISE was ∼3 orders of magnitude more selective for Cl over glutamate or gluconate but less than 2 orders of magnitude move selective for Cl over bicarbonate, acetate, citrate or thiosulfate. As a result this ISE is best described as an anion sensor. The ISE was ‘poisoned’ by 50 μm 5−nitro-2-(3phenylpropyl-amino)-benzoic acid (NPPB), but not by tamoxifen. An outward anion efflux was recorded from cells challenged with hypotonic (250 ± 5 mOsm) solution. The increase in efflux peaked 7–8 min before decreasing, consistent with regulatory volume decreases observed in separate experiments using a similar osmotic protocol. This anion efflux was blocked by 10 μm tamoxifen. These results establish the feasibility of using the modulation of electrochemical, anion-selective, electrodes to monitor anions and, in this case, chloride movement during volume regulatory events. The approach provides a real-time measure of anion movement during regulated volume decrease at the single-cell level.  相似文献   

5.
The molecular weight and subunit composition of Cl-,HCO3(-)- and picrotoxin-stimulated Mg2+-ATPase from rat brain plasma membrane solubilized in sodium deoxycholate were studied by gel filtration chromatography. The enzyme activity eluted from a Sephacryl S-300 column in a single peak associated with a protein of molecular weight approximately 300 kD and a Stokes radius of 5.4 nm. The enzyme-enriched fraction, concentrated and denatured by SDS, migrated through a Sephacryl S-200 column as three peaks with molecular weights of approximately 57, 53, and 45 kD. SDS-PAGE also showed three major protein bands with molecular weights of about 57, 53, and 48 kD. The molecular weight and subunit composition of the Cl- and HCO3(-)-stimulated Mg2+-ATPase from neuronal membrane of rat brain are similar with the molecular properties of GABA(A)-benzodiazepine receptor complex from mammalian brain but are different from those of P-type transport ATPases.  相似文献   

6.
7.
A method for determining the lifetime of unstable ions is described. The method is based on measuring the decrease in the ion beam current onto a fixed detector with increasing path length of the ion beam from the ion source to the detector. The measurements performed for D? 2 and HD? molecular ions have shown that their lifetimes are 3.5 ± 0.1 and 4.4 ± 0.1 μs, respectively.  相似文献   

8.
With the aid of the halide-sensitive dye 6-methoxy-N-ethylquinolinium iodide (MEQ), changes in intracellular Cl- concentration were measured to characterize the role of Ca2+-dependent Cl- channels at the rat distal colon. In order to avoid indirect effects of secretagogues mediated by changes in the driving force for Cl- exit (i.e., mediated by opening of Ca2+-dependent K+ channels), all experiments were performed under depolarized conditions, i.e., in the presence of high extracellular K+ concentrations. The Ca2+-dependent secretagogue carbachol induced a stilbene-sensitive Cl- efflux, which was mimicked by the Ca2+ ionophore ionomycin. Surprisingly, the activation of Ca2+-dependent Cl- efflux was resistant against blockers of classical Ca2+ signaling pathways such as phospholipase C, protein kinase C and calmodulin. Hence, alternative pathways must be involved in the signaling cascade. One possible signaling molecule seems to be nitric oxide (NO) as the NO donor sodium nitroprusside could induce Cl- efflux. Vice versa, the NO synthase inhibitor N-ω-monomethyl-arginine (l-NMMA) reduced the carbachol-induced Cl- efflux. This indicates that NO may be involved in part of the signaling cascade. In order to test the ability of the epithelium to produce NO, the expression of different isoforms of NO synthase was verified by immunohistochemistry. In addition, the cytoskeleton seems to play a role in the activation of Ca2+-dependent Cl- channels. Inhibitors of microtubule association such as nocodazole and colchicine as well as jasplakinolide, a drug that enhances actin polymerization, inhibited the carbachol-induced Cl- efflux. Consequently, the activation of apical Cl- channels by muscarinic receptor stimulation differs in signal transduction from the classical phospholipase C/protein kinase C way.  相似文献   

9.
The Na+/Mg2+ exchanger represents the main Mg2+ extrusion mechanism operating in mammalian cells including hepatocytes. We have previously reported that this exchanger, located in the basolateral domain of the hepatocyte, promotes the extrusion of intravesicular trapped Mg2+ for extravesicular Na+ with ratio 1. This electrogenic exchange is supported by the accumulation of tetraphenyl-phosphonium within the vesicles at the time when Mg2+ efflux occurs. In this present study, the role of extra- and intra-vesicular Cl? on the Na+/Mg2+ exchange ratio was investigated. The results reported here suggest that Cl? ions are not required for the Na+ to Mg2+ exchange to occur, but the stoichiometry ratio of the exchanger switches from electrogenic (1Na in + :1 Mg out 2+ ) in the presence of intravesicular Cl? to electroneutral (2Na in + :1 Mg out 2+ ) in their absence. In basolateral liver plasma membrane vesicles loaded with MgCl2 labeled with 36Cl?, a small but significant Cl? efflux (~30 nmol Cl?/mg protein/1 min) is observed following addition of NaCl or Na-isethionate to the extravesicular medium. Both Cl? and Mg2+ effluxes are inhibited by imipramine but not by amiloride, DIDS, niflumic acid, bumetanide, or furosemide. In vesicles loaded with Mg-gluconate and stimulated by Na-isethionate, an electroneutral Mg2+ extrusion is observed. Taken together, these results suggest that the Na+/Mg2+ exchanger can operate irrespective of the absence or the presence of Cl? in the extracellular or intracellular environment. Changes in trans-cellular Cl? content, however, can affect the modus operandi of the Na+/Mg2+ exchanger, and consequently impact "cellular" Na+ and Mg2+ homeostasis as well as the hepatocyte membrane potential.  相似文献   

10.
We have previously shown that the membrane conductance of mIMCD-3 cells at a holding potential of 0 mV is dominated by a Ca2+-dependent Cl current (ICLCA). Here we report that ICLCA activity is also voltage dependent and that this dependence on voltage is linked to the opening of a novel Al3+-sensitive, voltage-dependent, Ca2+ influx pathway. Using whole-cell patch-clamp recordings at a physiological holding potential (−60 mV), ICLCA was found to be inactive and resting currents were predominantly K+ selective. However, membrane depolarization to 0 mV resulted in a slow, sigmoidal, activation of ICLCA (T 0.5 ~ 500 s), while repolarization in turn resulted in a monoexponential decay in ICLCA (T 0.5 ~ 100 s). The activation of ICLCA by depolarization was reduced by lowering extracellular Ca2+ and completely inhibited by buffering cytosolic Ca2+ with EGTA, suggesting a role for Ca2+ influx in the activation of ICLCA. However, raising bulk cytosolic Ca2+ at −60 mV did not produce sustained ICLCA activity. Therefore ICLCA is dependent on both an increase in intracellular Ca2+ and depolarization to be active. We further show that membrane depolarization is coupled to opening of a Ca2+ influx pathway that displays equal permeability to Ca2+ and Ba2+ ions and that is blocked by extracellular Al3+ and La3+. Furthermore, Al3+ completely and reversibly inhibited depolarization-induced activation of ICLCA, thereby directly linking Ca2+ influx to activation of ICLCA. We speculate that during sustained membrane depolarization, calcium influx activates ICLCA which functions to modulate NaCl transport across the apical membrane of IMCD cells.  相似文献   

11.
To better understand the process of fluid movement driven by Cl conductance, a Cl channel-forming peptide was delivered to the luminal membrane of microperfused rabbit renal proximal tubules. When the peptide (NK4-M2GlyR) was perfused, a significant new conductance was observed within 3 min and stabilized at 10 min. Alteration of the ion composition revealed it to be a Cl-specific conductance. Reabsorption of Cl (J Cl) was increased by NK4-M2GlyR, but not by a scramble NK4-M2GlyR sequence, suggesting that the active peptide formed de novo Cl channels in the luminal membrane of the perfused tubules. In the presence of the peptide, reabsorption of fluid (J v) was dramatically increased and J Na and J Ca were concomitantly increased. We propose that introduction of the new Cl conductance in the luminal membrane leads to a coordinated efflux of water across the membrane and an increase in cation translocation via the paracellular pathway, resulting in an increase in J v. This novel method could prove useful in characterizing mechanisms of fluid transport driven by Cl gradients.  相似文献   

12.
We studied the possibility of K+ and Cl efflux from tobacco pollen grains during their activation in vitro or on the stigma of a pistil. For this purpose the X-ray microanalysis and spectrofluorometry were applied. We found that the relative content of potassium and chlorine in the microvolume of pollen grain decreases during its hydration and activation on stigma. Efflux of these ions was found both in vivo and in vitro. In model in vitro experiments anion channel inhibitor NPPB ((5-nitro-2-(3-phenylpropylamino) benzoic acid) in the concentration that was blocking pollen germination, reduced Cl efflux; potassium channel inhibitor TEA (tetraethylammonium chloride) partially reduced K+ efflux and lowered the percent of activated cells. Another blocker of potassium channels Ba2+ caused severe decrease in cell volume and blocked the activation. In general, the obtained data demonstrates that the initiation of pollen germination both in vivo and in vitro involves the activation of K+ and Cl release. An important role in these processes is played by NPPB-, TEA- and Ba2+-sensitive plasmalemma ion channels.  相似文献   

13.
Many mammalian cells regulate their volume by the osmotic movement of water directed by anion and cation flux. Ubiquitous volume-dependent anion currents permit cells to recover volume after swelling in response to a hypotonic environment. This study addressed competition between glutamate (Glu) and Cl permeation in volume-activated anion currents in order to provide insight into the ionic requirements for volume regulation, volume-dependent anion channel activity and to the architecture of the channel pore. The effect of changing the intracellular molar fraction (MF) of Glu and Cl on conductance and relative anion permeability was evaluated as a function of the extracellular permeant anion and/or the ionic strength. Relative permeability of Glu to Cl was determined by measuring reversal potentials under defined ionic conditions. Under conditions with high (150 mM) or low (50 mM) ionic strength solutions on both sides of the membrane, Cl was always more permeable than Glu. When a transmembrane ionic strength gradient (150 mM extracellular: 50 mM intracellular) was set to drive water into the cell, and in the presence of extracellular Cl, Glu became up to 16-fold more permeable than Cl. Replacement of extracellular Cl with Glu abolished this effect. These results indicate that it is possible for Glu to move into the extracellular environment during volume-regulatory events and they support the emerging role of glutamate as a modulator of anion channel activity.  相似文献   

14.
The contributions of Ca2+, H+, and Cl in generation of variation potentials (VP) in 3- to 4-week-old pumpkin (Cucurbita pepo L., cv. Mozoleevskaya) plants were assessed. During VP generation, transient alkalinization of the medium around the stem was recorded with a potentiometric method. The pH changes were kinetically similar to the electric potential changes and were apparently due to temporal suppression of the plasma-membrane electrogenic H+ pump. These data and the observed inhibition of VP in the stem zone treated locally with a metabolic inhibitor (NaN3) indicate that the VP generation is related to the reversible suppression of the H+-pump. The anion channel blocker (ethacrynic acid) decelerated significantly the front slope of VP and reduced the VP amplitude. A short-term increase in external Cl concentration around the stem was observed during potential transients representing the VP front slope and the pulses integrated into VP. The removal of Ca2+ from extracellular medium inhibited the VP generation. It is proposed that Ca2+ plays a role in activation of anion channels and in the H+-pump inactivation. The VP generation is probably determined by a complex mechanism, with contributions from passive ion fluxes (Ca2+, Cl) moving along the electrochemical gradients and from changes in the electrogenic pump activity.  相似文献   

15.
Action of Cl? + HCO3 ?1 ions on Mg2+-ATPase from brain plasma membranes of fish and rats has been studied. Maximal effect of the anions on the “basal” Mg2+-ATPase activity is revealed in the presence of 10 mM Cl? and 3 mM HCO3 ?1 at physiological values of pH of incubation medium. The studied Cl?, HCO3 ?-activated Mg2+-ATPases of both animal species, by their sensitivity to SH-reagents (5,5-dithio-bis-nitrobenzoic acid, N-ethylmaleimide), oligomycin, and orthovanadate, are similar to transport ATPase of the P-type, but differ from them by molecular properties and by sensitivity to ligands of GABAA-receptors. It has been established that the sensitive to GABAA-ergic ligands, Cl?, HCO3 ?-activated Mg2+-ATPase from brain of the both animal species is protein of molecular mass around 300 kDa and of Stock’s radius 5.4 nm. In fish the enzyme is composed of one major unit of molecular mass approximately 56 kDa, while in rats-of three subunits of molecular masses about 57, 53, and 45 kDa. A functional and structural coupling of the ATP-hydrolyzing areas of the studied enzyme to sites of binding of GABAA-receptor ligands is suggested.  相似文献   

16.
Based on the difference in the CD14 and CD16 expression, two subsets of monocytes were identified in human and other mammalian blood. These subsets have different patterns of adhesion molecules and chemokine receptors that suggests the different mode of their interaction with endothelium and tissue traffic. Here, we investigated the ability of CD14+CD16+ and CD14++CD16 monocytes to adhere to endothelial cell monolayer in presence or absence of pro- and anti-inflammatory cytokines. We demonstrated that CD14+CD16+ monocytes had a higher level of adhesion to intact monolayer of endothelial cells than CD14++CD16 monocytes. Adhesion of CD14++CD16 and CD14+CD16+ monocytes significantly increased in the presence of TNFα or its combination with other cytokines. IFNγ and IL-4 alone did not affect the adhesion of monocytes. These results show that CD14++CD16 and CD14+CD16+ monocytes can be recruited to the inflamed endothelium, but CD14+CD16+ monocytes adhere to endothelial cells without inflammations twice as strongly as CD14++CD16 monocytes.  相似文献   

17.
The Na+/H+ exchanger has been the only unequivocally demonstrated H+-transport mechanism in the synaptosomal preparation. We had previously suggested that a Cl–H+ symporter (in its acidifying mode) is involved in cytosolic pH regulation in the synaptosomal preparation. Supporting this suggestion, we now show that: (1) when synaptosomes are transferred from PSS to either gluconate or sulfate solutions, the Fura-2 ratio remains stable instead of increasing as it does in 50 mM K solution. This indicates that these anions do not promote a plasma membrane depolarization. (2) Based in the recovery rate from the cytosolic alkalinization, the anionic selectivity of the Cl–H+ symporter is NO3 > Br > Cl >> I = isethionate = sulfate = methanesulfonate = gluconate. (3) PCMB 10 μM inhibits the gluconate-dependent alkalinization by 30 ± 6%. (4) Neither Niflumic acid, 9AC, Bumetanide nor CCCP inhibits the recovery from the cytosolic alkalinization. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

18.
The anti-cancer drug cisplatin induces apoptosis by damaging DNA. Since a stilbene-derivative blocker of Cl/HCO3 exchangers and Cl channels, SITS, is known to induce cisplatin resistance in a manner independent of intracellular pH and extracellular HCO3, we investigated the relation between cisplatin-induced apoptosis and Cl channel activity in human adenocarcinoma KB cells. A stilbene derivative, DIDS, reduced cisplatin-induced caspase-3 activation and cell death, which were detected over 18 h after treatment with cisplatin. DIDS was also found to reduce sensitivity of KB cells to 5-day exposure to cisplatin. Whole-cell patch-clamp recordings showed that KB cells functionally express volume-sensitive outwardly rectifying (VSOR) Cl channels which are activated by osmotic cell swelling and sensitive to DIDS. Pretreatment of the cells with cisplatin for 12 h augmented the magnitude of VSOR Cl current. Thus, it is concluded that cisplatin-induced cytotoxicity in KB cells is associated with augmented activity of a DIDS-sensitive VSOR Cl channel and that blockade of this channel is, at least in part, responsible for cisplatin resistance induced by a stilbene derivative.  相似文献   

19.
The structures and stabilities of eleven N13 + and N13 isomers have been investigated with second-order Møller–Plesset (MP2) and density functional theory (DFT) methods. Five N13 + isomers and six N13 isomers are all reasonable local minima on their potential energy hypersurfaces. The most stable N13 + cation is structure C-2 with C2v symmetry, which contains a pentazole ring and two N4 open chains. It is different from those of the N7 + and N9 + clusters, but similar to the N11 + cluster. Meanwhile, the most stable N13 structure A-2 is composed of a pentazole ring and a six-membered ring connected by two nitrogen atoms. It is not only different from those of the N7 and N9 clusters, but also from the N11 cluster. The decomposition pathways of structures C-2 and A-2 were investigated at the B3LYP/(aug)-cc-pVDZ level. From the barrier heights of the structures C-2 and A-2 decomposition processes, it is suggested that C-2 is difficult to observe experimentally and A-2 may be observed as a short-lived species. Figure Optimized geometrical parameters of N13 + isomer C-2   相似文献   

20.
In two mountain ecosystems at the Alptal research site in central Switzerland, pulses of 15NO3 and 15NH4 were separately applied to trace deposited inorganic N. One forested and one litter meadow catchment, each approximately 1600 m2, were delimited by trenches in the Gleysols. K15NO3 was applied weekly or fortnightly over one year with a backpack sprayer, thus labelling the atmospheric nitrate deposition. After the sampling and a one-year break, 15NH4Cl was applied as a second one-year pulse, followed by a second sampling campaign. Trees (needles, branches and bole wood), ground vegetation, litter layer and soil (LF, A and B horizon) were sampled at the end of each labelling period. Extractable inorganic N, microbial N, and immobilised soil N were analysed in the LF and A horizons. During the whole labelling period, the runoff water was sampled as well. Most of the added tracer remained in both ecosystems. More NO3 than NH4+ tracer was retained, especially in the forest. The highest recovery was in the soil, mainly in the organic horizon, and in the ground vegetation, especially in the mosses. Event-based runoff analyses showed an immediate response of 15NO3 in runoff, with sharp 15N peaks corresponding to discharge peaks. NO3 leaching showed a clear seasonal pattern, being highest in spring during snowmelt. The high capacity of N retention in these ecosystems leads to the assumption that deposited N accumulates in the soil organic matter, causing a progressive decline of its C:N ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号