首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have investigated the factors which contribute to the host specificity of a tumor inducing plasmid of Agrobacterium, pTiAg162, which confers a narrow host range. Determinants both within the T-DNA and virulence regions contribute to host specificity. Within the T-DNA a defective cytokinin biosynthetic gene limits host range. Nucleotide sequence analysis revealed a large deletion in the 5 coding region of this gene when compared with the homologous gene from the wide host range tumor inducing plasmid, pTiA6. Introduction of the wide host range cytokinin biosynthesis gene into the T-DNA of the limited host range strain expanded the host range and suppressed the rooty morphology of tumors incited by the limited host range strain. Two genes from the virulence region of the wide host range plasmid, designated virA and virC, must also be introduced into the limited host range strain in order to restore a wide host range phenotype. The wide host range strain is avirulent on some cultivars of Vitis plants on which the limited host range strain induces tumors. This avirulence is apparently due to a hypersensitive response in which infected plant cells are killed at the site of inoculation. Mutations within the virC locus of the wide host range plasmid prevented the hypersensitive response and allowed the formation of tumors by the wide host range strain.  相似文献   

2.
The relationship between the limited host range octopine Ti plasmids and the wide host range octopine Ti plasmids pTiB6806 and pTiA6 was studied. The limited host range Ti plasmids shared extensive deoxyribonucleic acid homology; pTiAg63 and pTiAg162 were essentially completely homologous with pTiAg158 while pTiAg57 shared approximately 64% homology with pTiAg158. In contrast, the limited host range octopine Ti plasmids only shared 6 to 15% homology with the wide host range octopine Ti plasmid pTiB6806. Thus, limited and wide host range octopine Ti plasmids comprise distinct families of plasmids. The deoxyribonucleic acid homology shared between the limited host range Ti plasmids and pTiB6806, however, was distributed over some 50% of pTiB6806, suggesting that both families of plasmids evolved from a common progenitor plasmid. The limited host range Ti plasmids showed relatively strong homology with pTiB6806 HpaI fragment 7, a region which codes for octopine utilization by the bacterium, but showed only weak homology with pTiB6806 HpaI fragment 12, a region required for virulence. In addition, homology between the limited host range octopine Ti plasmids and the "common deoxyribonucleic acid," sequences shown to have a central role in plant cell transformation, was barely detectable when stringent hybridization conditions were used. We therefore conclude that a highly conserved version of the common deoxyribonucleic acid is not required for crown gall tumorigenesis on all plant species.  相似文献   

3.
Agrobacterium tumefaciens Ag162 induces crown gall disease on an unusually narrow range of host plants. The 231-kilobase Ti plasmid which has been shown to determine host range, was subcloned into the vector pVCK102. By comparing overlaps of cloned insets, maps were constructed for the restriction endonucleases SalI, XhoI, EcoRI, and KpnI. Plasmid incompatibility, octopine catabolism, and at least six virulence genes were localized. Plasmid incompatibility between pTiAg162 and the wide host range plasmid pTiA6 consists of two components: mutual incompatibility and the apparent ability of pTiA6 to block RK2 replication if the pTiAg162 incompatibility locus is linked to the vector pVK102. The octopine catabolism locus maps within the 30 kilobases of DNA separating the two T-DNA regions of pTiAg162. Complementation of avirulent vir mutants of pTiA6 with clones of pTiAg162 DNA did not confer the host range of pTiAg162 but rather restored the wide host range of pTiA6. One potentially important difference between pTiA6 and pTiAg162 is that pTiAg162 T-DNA regions are widely separated.  相似文献   

4.
5.
Summary Agrobacterium strains harbouring the T-region and the virulence-region of the Ti plasmid on separate replicons still display efficient T-DNA transfer to plants. Based on this binary vector strategy we have constructed T-region derived gene vectors for the introduction of foreign DNA into plants. The vectors constructed can replicate in E. coli, thus the genetic manipulations with them can be performed with E. coli as a host. They can be transferred to Agrobacterium as a cointegrate with the wide host range plasmid R772. Their T-regions are transferred to plant cells from Agrobacterium strains conferring virulence functions.The plasmid pRAL 3940 reported here is 11.5 kb large, contains a marker to identify transformed plant cells and unique restriction sites for direct cloning of passenger DNA, flanked by the left- and right-hand border fragments of the T-region (including the 25 bp border repeats). The plasmid is free of onc-genes. Therefore, is does not confer tumorigenic traits on the transformed plant cells and mature, fertile plants can thus be regenerated from them.  相似文献   

6.
Role of T-region borders in Agrobacterium host range   总被引:2,自引:0,他引:2  
The limited host range AB3 strain of Agrobacterium tumefaciens induces tumors by transferring two T-regions, TA and TB. TA is a deleted version of the well-known biotype I octopine TL-region that lacks the iaa and ipt genes, but carries an intact oncogene, gene 6b, and typical left and right border sequences. TB carries two iaa genes that together code for the synthesis of indoleacetic acid. Gene 6b and the iaa gene act synergistically when transferred in a coinoculation experiment. The TA-region of the limited host range isolate Ag57 is related to the TA-region of AB3, but differs from it at several positions. The most significant difference is the absence of the right border region. In spite of this, Ag57 and the exconjugant strain C58C9(pTiAg57) induce normal tumors on Nicotiana rustica and Vitis vinifera. Various experiments indicate that gene 6b of the Ag57 TA-region is active and transferred in spite of the absence of the right border. On N. tabacum, C58C9(pTiAg57) is nononcogenic but becomes oncogenic when the pTiAg57 TA-region is restored by the right TA border sequence of pTiAB3. Thus, the right TA border sequence of the biotype III limited host range strains is required for tumor induction on some hosts, but not on others.  相似文献   

7.
Summary Host range variations were noted when 23 wildtype strains of Agrobacterium tumefaciens were tested on 27 different plant species. Because we have shown previously that host range specificity is conferred by the pTi plasmid, these variations in host specificity implicated genetic differences among p Ti plasmids within the A. tumefaciens population that was tested. Host specificity was independent of the type of opine utilized and biotype of the strain used. These data suggested that separate genetic determinants operate for host specificity. This hypothesis was confirmed by Tn5 mutagenesis of the pTi plasmid, which generated mutants affected in host specificity. The regions of host specifying genes were located by displacement analysis of mutant pTi-plasmid-DNA restriction fragments. There are at least two sites on the pTiC58 plasmid: one within the T-region and the other about 75–77 kb to the right of this region. Mutations within the T-region were chemically complemented by indoleacetic acid, which restored the host range of the mutants. Such complementations were not observed with mutants outside the T-region.  相似文献   

8.
The host range of crown gall   总被引:4,自引:0,他引:4  
Crown gall is a plant tumor disease caused by the specific action of the bacteriumAgrobacterium tumefaciens. In the current literature its host range is not clearly defined or is thought to be restricted to the dicotyledonous class of the angiosperms. We reviewed the susceptibility of 1193 species belonging to 588 genera and 138 families; 643 are host plants belonging to 331 genera and 93 families. Our list seems to be so far the most extensive source of information on crown gall susceptibility of plants. We attempted to correlate the susceptibility of plants to crown gall with known and/or presumed taxonomic relationships (according to the taxonomic systems of Engler and Takhtajan). No lower plant is known to be a host for crown gall. About 60% of the gymnosperms and the dicotyledonous angiosperms examined were sensitive for crown gall. In the latter class, there is no significant relationship between the taxonomic position of a plant family and its susceptibility. According to the literature, the susceptible monocots are limited to theLiliales andArales. The common opinion that the host range of crown gall is restricted to the dicotyledonous plants, is thus incorrect.  相似文献   

9.
Genetic complementation studies demonstrated that the transfer to plant cells of the octopine T-DNA, entirely present as the only part of the tumor-inducing (Ti) plasmid on the plasmid pAL1050, was effected by the virulence systems from related plasmids, viz. the nopaline Ti plasmid pTiC58, the limited host range plasmid pTiAg57, and the root-inducing (Ri) plasmid pRi1855. Rhizobium symbiosis plasmids were not capable of effecting the introduction of pAL1050 into plant cells.  相似文献   

10.
The TA regions of biotype III octopine/cucumopine (OC) Ti plasmids are closely related to the TL region of the biotype I octopine Ti plasmids pTiAch5 and pTi15955. Sequence analysis shows that the limited and wide host range biotype III OC TA regions are derived from a common ancestor structure which lacked the 6a gene found in the biotype I octopine TL region. The TA region of the wide host range OC Ti plasmids has conserved most of the original TL-like structure. In most wide host range OC isolates the TA-iaaH gene is inactivated by the insertion of an IS866 element. However, the TA region of the wide host range isolate Hm1 carries an intact TA-iaaH gene. This gene encodes a biologically active product, as shown by root induction tests and indole-3-acetic acid measurements.The limited host range OC Ti plasmids pTiAB3 and pTiAg57 have shorter TA regions which are derived from a wide host range TA region. The AB3 type arose by an IS868-mediated, internal TA region deletion which removed the iaa genes and part of the ipt gene and left a copy of IS868 at the position of the deleted fragment. The pTiAB3 iaa/ipt deletion was followed by insertion of a second IS element, IS869, immediately 3 of the ipt gene. pTiAg57 underwent the same iaa-ipt deletion as pTiAB3, but lacks the IS868 and IS869 elements.Analysis of the various TA region structures provides a detailed insight into the evolution of the biotype III OC strains.  相似文献   

11.
Summary A DNA fragment with homology to the cytokinin (ipt) gene from biotype I Agrobacterium tumefaciens strain Ach5 was cloned from the Ti plasmid of the wide host range biotype III Agrobacterium strain Tm-4 and sequenced. The fragment contains an intact ipt coding sequence. However, the 3 non-coding region of this ipt gene is rearranged due to a 0.9 kb deletion fusing it to the 3 coding region of the neighbouring gene 6a, most of which was found to be deleted. The Tm-4 ipt gene is strongly related to the partially deleted ipt gene of the limited host range biotype III strain Ag162. To test its biological activity, the Tm-4 ipt gene was inserted into a specially constructed, disarmed Ti vector lacking tzs and tested on tobacco, where the rearranged ipt gene induced shoot formation. The cloned Tm-4 ipt gene was mutated with Tn5 and the intact gene on the wild-type Tm-4 Ti plasmid was replaced by the mutated gene. The resulting strain was avirulent on tobacco but normally virulent on the natural host of the wild-type strain Tm-4, grapevine. As the biotype 1 6b gene diminishes the effect of a corresponding ipt gene, a larger Tm-4 fragment carrying both the ipt gene and an adjacent 6b-like gene was also tested on tobacco and compared with the Tm-4 ipt fragment alone and with an ipt and 6b/ipt fragment derived from Ach5. The Tm-4 6b gene diminishes the effect of the Tm-4 ipt gene, showing the Tm-4 6b gene to be active as well. The Tm-4 6b/ipt combination is less effective than the Ach5 combination. These results provide further insight into the molecular basis of the host range differences between limited host range and wide host range biotype III Agrobacterium strains and show that the WHR cytokinin gene, although active, does not significantly contribute to tumour formation on the natural host of the WHR biotype III strains, grapevine.Abbreviations LHR limited host range - WHR wide host range - onc oncogenicity genes - iaaH indoleacetamide hydrolase gene - iaaM tryptophan monooxygenase gene - ipt isopentenyl transferase gene - tzs transzeatin secretion gene - NAA -naphthalene acetic acid - BAP 6-benzylaminopurine - Km kanamycin - Neo neomycin - Cm chloramphenicol  相似文献   

12.
The tumour-inducing T-DNA gene 4 (T-cyt gene) of the nopaline Ti plasmid pTiC58 was cloned and introduced into tobacco cells by leaf disc transformation using Agrobacterium plasmid vectors. Tobacco shoots exposed to elevated cytokinin levels were unable to develop roots and lacked apical dominance. Using exogenously applied phytohormone manipulations we were able to regenerate morphologically normal transgenic tobacco plants which differed in endogenous cytokinin levels from normal untransformed plants. Although T-cyt gene mRNA levels, as revealed by dot-blot hybridization data, in these rooting plants were only about half those in primary transformed shoots the total amount of cytokinins was much lower than in crown gall tissue or cytokinin-type transformed shoots as reported by others. Nevertheless the cytokinin content in T-cyt plants was about 3 times greater than in control tobacco plants.Elevated cytokinin levels have been shown to change the expression of several plant genes, including some nuclear genes encoding chloroplast proteins. Our results show that the mRNA levels of chloroplast rbcL gene increase in cytokinin-type transgenic tobacco plants as compared with untransformed plants. Data obtained suggest that T-cyt transgenic plants are a good model for studying plant gene activity in different parts of the plant under endogenous cytokinin stress.  相似文献   

13.
Agrobacterium tumefaciens biotype III octopine strains have been isolated from grapevine tumors worldwide. They comprise limited and wide host range (LHR and WHR) strains that carry related tumor-inducing (Ti) plasmids with two T-regions, TA and TB. The WHR TA-region resembles the biotype I octopine region, whereas the LHR TA-region is a recent deletion derivative of the WHR TA-region, which lacks the iaa genes and part of the ipt gene. Sequencing of the TA-region of the ubiquitous LHR strain AB3 showed that the deleted region is replaced by an insertion sequence (IS) element, IS868, which resembles the IS51 element of Pseudomonas syringae subsp. savastanoi. The Ti plasmid of LHR strain Ag57 carries essentially the same iaa gene deletion as pTiAB3, but lacks IS868. We propose that the LHR Ti plasmids arose by the recent insertion of an IS868 element into the TA-region of a WHR-type Ti plasmid, followed by transposition to a nearby site. The deletion was caused during the second transposition or by later recombination between the two IS868 copies. Biotype III octopine strains also carry an IS51-like sequence close to the TB iaa genes. Our results confirm and extend earlier observations indicating that IS51-like elements in Pseudomonas and Agrobacterium are associated with iaa genes and played a major role in Ti plasmid evolution.  相似文献   

14.
A genomic library was prepared in Escherichia coli from DNA of wild-type Xanthomonas campestris pv. campestris (aetiological agent of crucifer black rot), partially digested with endonuclease EcoRI, using the mobilisable broad host range cosmid vector pLAFR1. Recombinant plasmids contained inserts ranging in size from 19.1 to 32.3 kb (mean 26.6). Certain of the clones complemented E. coli auxotrophic markers. Using the narrow host range plasmid pRK2013 as a helper the pooled recombinant plasmids were transferred conjugally to X. c. campestris mutants, and clones were identified which restored yellow pigmentation to white mutants, prototrophy to amino acid auxotrophs and pathogenicity towards turnip plants to two non-pathogenic mutants. The lesion in one mutant (8288, complemented by the plasmid pIJ3000) is unknown. However mutant 8237 is defective in production of extracellular protease and polygalacturonate lyase and restoration of pathogenicity by complementation with the plasmid pIJ3020 concomitantly restored both enzyme levels to wild-type values.  相似文献   

15.
The T-DNA oncogene complements of the limited-host-range tumor-inducing plasmid pTiAg63 and the wide-host-range plasmid pTiA6 were compared. The resulting data indicate that pTiAg63 has DNA sequences related to most of the genes encoded by the oncogene region, the TL-DNA, of pTiA6 and that these sequences are divided between two T-DNA regions, the TA-DNA, which encoded sequences related to pTiA6 genes 4 (the cytokinin independence gene) and 6a, as well as to a pTiA6 TL-DNA fragment that encoded gene 6b and a portion of gene 3, and the TB-DNA, which encoded sequences related to genes 1 and 2 (the auxin independence genes). Tumor tissues of Nicotiana rustica incited by Agrobacterium tumefaciens harboring either pTiA6 or pTiAg63 grew axenically in vitro on phytohormone-free medium. The morphologies of the tissues, however, differed; whereas those incited with pTiA6 grew as loose, friable, unorganized callus, the tumors incited by pTiAg63 grew as clumps of rootlike structures. Thus, the T-DNA oncogene complements of these plasmids were not equivalent. The results are discussed in relation to the A. tumefaciens host range.  相似文献   

16.
The intact T-region of the B6Ti plasmid of Agrobacterium tumefaciens was stepwise cloned into a site in transposon Tn3. In this way a suitable vehicle (Tn1882) was obtained for translocating the T-region to different replicons, i.e., to other plasmids or the chromosome. The IncP plasmid R772::Tn1882 conferred tumorigenicity on Agrobacterium if the virulence genes were provided in trans in the same cell. This result showed that the T-region present on Tn1882 was transferred efficiently to plant cells. Normal tumor development also occurred if the T-region was placed in the chromosome of A. tumefaciens and an R' plasmid was present carrying virA–E or virA–F. We conclude that the plasmid location of the T-region is not a prerequisite for transfer to the plant cell. The apparently normal delivery of the T-DNA from a bacterial chromosomal location supports a model involving a processing step within Agrobacterium effecting transfer of the T-region as a separate entity.  相似文献   

17.
The genetic basis of plasmid host range has been investigated by Tn7 insertion mutagenesis of the promiscuous plasmid R18 in Pseudomonas aeruginosa. Six mutants have been isolated on the basis of greatly reduced transferability into Escherichia coli C while retaining normal transferability within P. aeruginosa. Their physical mapping shows that two of them map at coordinate 11.72 ± 0.14 kb, in the region of the origin of plasmid replication (oriV) and one at 18.0 ± 0.3 kb, in the trans-acting gene essential for initiation of replication at oriV (trfA). Three map at 48.4 ± 0.5 kb in the region of the origin of plasmid transfer (oriT) and the site at which a single-strand nick is introduced in the plasmid DNA-protein relaxation complex (rlx). Consistent with the postulated defective replication of the oriV and trfA mutants was their inability to transform E. coli C or K12 while being able to transform P. aeruginosa. As expected the oriT/rlx mutants transformed both hosts as effectively as R18. Furthermore the trfA mutant was readily curable by mitomycin C in a DNA polymerase I-proficient P. aeruginosa and spontaneously lost from a polymerase-deficient mutant of P. aeruginosa suggesting a role of this polymerase in the replication of R18. Extensive transfer tests from P. aeruginosa into a range of enteric bacteria, other Pseudomonas species and into other Gram-negative bacteria indicated a complex host range pattern for these mutants. It appears that both plasmid replication and conjugation genes are responsible for host range in addition to the involvement of host gene products.  相似文献   

18.
Summary We transformed tomato (Lycopersicon esculentum L.) by using Agrobacterium rhizogenes containing two independent plasmids: the wild-type Ri-plasmid, and the vector plasmid, pARC8. The T-DNA of the vector plasmid contained a marker gene (Nos/Kan) encoding neomycin phosphotransferase which conferred resistance to kanamycin in transformed plant cells. Transgenic plants (R 0) with normal phenotype were regenerated from transformed organogenic calli by the punctured cotyledon transformation method. Southern blot analysis of the DNA from these transgenic plants showed that one or two copies of the vector plasmid T-DNA, but none of the Ri-plamid T-DNA, were integrated into the plant genome. Different transgenic plants derived from the same callus clone showed an identical DNA banding pattern, indicating the non-chimeric origin of these plants. We also transformed tomato by using A. tumefaciens strain LBA4404 containing a disarmed Ti-plasmid (pAL4404), and a vector plasmid (pARC8). Transgenic plants derived via A. tumefaciens transformation, like those via A. rhizogenes, contained one to two copies of the integrated vector T-DNA. The kanamycin resistance trait in the progeny (R 1) of most transgenic plants segregated at a ratio of 3:1, suggesting that the vector T-DNAs were integrated at a single site on a tomato chromosome. In some cases, the expression of the marker gene (Nos/Kan) seemed to be suppressed or lost in the progeny.  相似文献   

19.
Host range expansion in insect herbivores is often thought to be mediated by several factors, principal among them are secondary plant metabolites. In weed biological control, the host range of a prospective agent is one of the most important considerations in its implementation. Extensive host testing tests seek to determine the behavioral acceptance and nutritional value of different test plant species to the potential agent. A list of test plants is compiled that comprises species that are close taxonomic relatives of the target weed plus other species of economic or ecologic importance. The host testing of the Melaleuca quinquenervia biological control agent Oxyops vitiosa indicated that larvae would accept and complete development on the Australian target weed M. quinquenervia, two Australian ornamental species, Callistemon citrina, Callistemon viminalis (all Myrtaceae). However, the larvae did not complete development when fed a North American species Myrica cerifera (Myricaceae). The study reported here confirms these results and examines the nutritional and performance differences in O. vitiosa larvae fed leaves of these species. The leaf quality factors, percent moisture, percent nitrogen, toughness, and terpenoid content were related to larval survival, performance and digestive indices. The results indicate that plant quality among the Myrtaceae species was generally similar and correspondingly larval survival, performance and digestive indices differed little when larvae were fed leaves of these species. However, significant differences occurred in the plant quality of the North American M. cerifera compared with the Australian species which had leaves with the lowest percent moisture, lowest leaf toughness, highest percent nitrogen. This species, however, is not a physiological host as none of the neonates survived to pupate. When third instars were switched to M. cerifera from their normal host M. quinquenervia reductions were found in survival, biomass gain, digestive efficiency, and conversion of digested food to insect biomass. The marginal acceptance of this North American native plant in laboratory bioassays appears related to the terpenoid chemistry that has similarities to the taxonomically unrelated host M. quinquenervia. However, the high larval mortality corresponds to several novel terpenoids that are not present in the host. For weed biological control host testing these results indicate that M. cerifera is a poor host for O. vitiosa. Additionally, future test plant lists should include plants with secondary metabolites similar to the target weed as these compounds may constitute behavioral cues that are relevant to these specialized herbivores.  相似文献   

20.
Transposon-insertion mutants with vir? Ti plasmids were characterized and then used in complementation experiments. One of the mutants (LBA 1517) had a mutation in a newly discovered vir locus called virF. The virF mutation led to a strongly diminished virulence on tomato and tobacco, but not on certain other plant species. Also a mutant (LBA 1505) was isolated with a mutation somewhere in the bacterial genome but outside the octopine Ti plasmid that caused a restriction in host range for tumor induction. Introduction of a nopaline Ti plasmid or an Ri plasmid into LBA 1505 did not restore normal virulence, showing that the vir gene affected in LBA 1505 determines a factor which is essential for normal tumor induction both by different types of Ti plasmids and by the Ri plasmid. The introduction of R primes containing part or all of the octopine Ti plasmid virulence region led to a restoration of virulence in strains with a vir? nopaline Ti plasmid. Also the transfer of an Ri plasmid to a large number of different vir? octopine or nopaline Ti plasmid mutants rendered these strains virulent. These results indicate that the octopine Ti plasmid, the nopaline Ti plasmid, and the Ri plasmid each have a similar virulence system which can mediate the transfer of T-DNA to plant cells from different types of Ti or Ri plasmids. In complementation experiments between vir? octopine Ti plasmid mutations and vir? nopaline Ti plasmid mutations it was found that equivalent functions are determined by the areas of DNA homology in the virulence regions of these two types of Ti plasmids. The previously defined octopine Ti plasmid virC locus appeared to consist of two different loci. One of these loci was found to be in a region of the octopine Ti plasmid which does not share DNA homology with the nopaline Ti plasmid, and was therefore called virO (octopine Ti plasmid specific). For the other locus the name virC was retained. Whereas mutations in the virC locus were avirulent on all plant species tested, mutations in virO were avirulent on tomato and pea, but virulent on sunflower and Nicotiana rustica. VirO? mutants produced rooty tumors on Kalanchoë tubiflora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号