首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pumiliotoxins (PTX) A, B, and 251D, members of a new class of indolizidine alkaloids isolated from the skin of poison frogs of the family Dendrobatidae, inhibit Ca2+-ATPase activity in sarcoplasmic reticulum vesicles from frog and rat hind-limb muscles. PTX-B and PTX-A appear to be relatively specific inhibitors of Ca2+-ATPase; PTX-A is much less potent than PTX-B. PTX-251D is a potent inhibitor of Ca2+-ATPase, and was also found to inhibit Na+, K+, and Mg2+-ATPases in rat brain synaptosomes. Caffeine and verapamil, two drugs known to affect calcium translocation, are very weak inhibitors of the Ca2+-ATPase. The Ki values for inhibition of the Ca2+-ATPase of rat and frog sarcoplasmic reticulum by PTX-B were comparable and ranged between 22 and 36 microM. Inhibition of calcium-dependent ATPase in sarcoplasmic reticulum by pumiliotoxin-B is noncompetitive with calcium and is not readily reversible. Based on structure-activity profiles, it is concluded that inhibition of Ca2+-ATPase by the indolizidine alkaloids is responsible for the alkaloid-elicited prolongation of twitch in intact muscle.  相似文献   

2.
Abstract. An investigation has been made of methods for isolating membrane vesicles from corn ( Zea mays L.) roots active in calcium transport and K+-stimulated ATPase. Pretreating and grinding the roots at room temperature with EGTA and fusicoccin increases basal ATPase activity. Improvement in Ca2+ uptake requires isolation of a scaled vesicle fraction by the method of Sze(1980). Sorbitol is superior to sucrose as an osmoticant. The pH optimum for Ca2+ uptake is 7.5. whereas that for associated ATPase activity is 6.5. Calmodulin strongly stimulates Ca2+ uptake in a process little affected by uncouplers and ATPase inhibitors, but blocked by chlorpromazine. Fusicoccin gives less stimulation of Ca2+ uptake which is sensitive to uncouplers, and is dependent upon isolation with fusicoccin present. It appears that the sealed vesicle fraction may possess two Ca2+ transport systems: a calmodulin-activated Ca2+-transporting ATPase, and a Ca2+/H+ antiport coupled through the protonmotive force to a fusicoccin-stimulated H+-ATPase.  相似文献   

3.
Recent studies have suggested that Ca2+/calmodulin (CaM) or CaM-like proteins may be involved in blue light (BL)-dependent proton pumping in guard cells. As the increase in cytosolic concentration of Ca2+ is required for the activation of CaM and CaM-like proteins, the origin of the Ca2+ was investigated by measuring BL-dependent proton pumping with various treatments using guard cell protoplasts (GCPs) from Vicia faba . BL-dependent proton pumping was affected neither by Ca2+ channel blockers nor by changes of Ca2+ concentration in the medium used for the GCPs. Addition of Ca2+ ionophores and an agonist to GCPs did not induce proton pumping. However, BL-dependent proton pumping was inhibited by 10 m M caffeine, which releases Ca2+ from the intracellular stores, and by 10 μ M 2,5-di-( tert -butyl)-1,4-benzohydroquinone (BHQ) and 10 μ M cyclopiazonic acid (CPA), inhibitors of Ca2+-ATPase in the sarcoplasmic and endoplasmic reticulum (ER). By contrast, the inhibitions were not observed by 10 μ M thapsigargin, an inhibitor of animal ER-type Ca2+-ATPase. The inhibitions by caffeine and BHQ were reversible. Light-dependent stomatal opening in the epidermis of Vicia was inhibited by caffeine, BHQ, and CPA. From these results, we conclude that the Ca2+ thought to be required for BL-dependent proton pumping may originate from intracellular Ca2+ stores, most likely from ER in guard cells, and that this origin of Ca2+ may generate a stimulus-specific Ca2+ signal for stomatal opening.  相似文献   

4.
Abstract: It is well established that ischemia is associated with prolonged increases in neuronal intracellular free calcium levels. Recent data suggest that regulation of calcium uptake and release from the endoplasmic reticulum is important in maintaining calcium homeostasis. The endoplasmic reticulum Mg2+/Ca2+ ATPase is the major mechanism for sequestering calcium in this organelle. Inhibition of this enzyme may play a causal role in the loss of calcium homeostasis. In order to investigate the effect of ischemia on calcium sequestration into the endoplasmic reticulum, microsomes were isolated from control and ischemic whole brain homogenates by differential centrifugation. Calcium uptake was measured by radioactive calcium (45Ca2+) accumulation in the microsomes mediated by Mg2+/Ca2+ ATPase. Ischemia caused a statistically significant inhibition of presteady-state and steady-state calcium uptake. Duration of ischemia was directly proportional to the degree of inhibition. Decreased calcium uptake was shown not to be the result of increased calcium release from ischemic compared with control microsomes nor the result of selective isolation of ischemic microsomes from the homogenate with a decreased capacity for calcium uptake. The data demonstrate that ischemia inhibits the ability of brain microsomes to sequester calcium and suggest that loss of calcium homeostasis is due, in part, to ischemia-induced inhibition of endoplasmic reticulum Mg2+/Ca2+ ATPase.  相似文献   

5.
Abstract: In fetal rat brain neurons, activation of voltage-dependent Na+ channels induced their own internalization, probably triggered by an increase in intracellular Na+ level. To investigate the role of phosphorylation in internalization, neurons were exposed to either activators or inhibitors of cyclic AMP- and cyclic GMP-dependent protein kinases, protein kinase C, and tyrosine kinase. None of the tested compounds mimicked or inhibited the effect of Na+ channel activation. An increase in intracellular Ca2+ concentration induced either by thapsigargin, a Ca2+-ATPase blocker, or by A23187, a Ca2+ ionophore, was unable to provoke Na+ channel internalization. However, Ca2+ seems to be necessary because both neurotoxin- and amphotericin B-induced Na+ channel internalizations were partially inhibited by BAPTA-AM. The selective inhibitor of Ca2+/calmodulin-dependent protein kinase II, KN-62, caused a dose-dependent inhibition of neurotoxin-induced internalization due to a blockade of channel activity but did not prevent amphotericin B-induced internalization. The rate of increase in Na+ channel density at the neuronal cell surface was similar before and after channel internalization, suggesting that recycling of internalized Na+ channels back to the cell surface was almost negligible. Pretreatment of the cells with an acidotropic agent such as chloroquine prevented Na+ channel internalization, indicating that an acidic endosomal/lysosomal compartment is involved in Na+ channel internalization in neurons.  相似文献   

6.
Mg2+- and Ca2+-uptake was measured in dark-grown oat seedlings ( Avena sativa L. cv. Brighton) cultivated at two levels of mineral nutrition. In addition the stimulation of the ATPase activity of the microsomal fraction of the roots by Mg2+ was measured. Ca2+-uptake by the roots was mainly passive. Mg2+-uptake mainly active; the passive component of Mg2+-uptake was accompanied by Ca2+-efflux up to 60% of the Ca2+ present in the roots.
In general Mg2+ -uptake of oat roots was biphasic. The affinity of the second phase correspond well with that of the Mg2+-stimulation of the ATPase activity, in low-salt roots as well as in high-salt roots and in roots of plants switched to the other nutritional condition. Linear relationships were observed when [phase 2] Mg2+-uptake was plotted against Mg2+-stimulation of the ATPase activity of the microsomal fraction of the roots. In 5 days old high-salt plants 1 ATP (hydrolysed in the presence of Mg2+ J corresponded with active uptake of a single Mg2+ ion, but in older high-salt roots and in low-salt roots more ATP was hydrolysed per net uptake of a Mg2+ ion. The results are discussed against the background of regulation of the Mg2+-level of the cytoplasm of root cells by transport of Mg2+ by a Mg2+-ATPase to the vacuole, to the xylem vessels, and possibly outwards.  相似文献   

7.
The endoplasmic reticulum (ER) is a universal signalling organelle, which regulates a wide range of neuronal functional responses. Calcium release from the ER underlies various forms of intracellular Ca2+ signalling by either amplifying Ca2+ entry through voltage-gated Ca2+ channels by Ca2+-induced Ca2+ release (CICR) or by producing local or global cytosolic calcium fluctuations following stimulation of metabotropic receptors through inositol-1,4,5-trisphosphate-induced Ca2+ release (IICR). The ER Ca2+ store emerges as a single interconnected pool, thus allowing for a long-range Ca2+ signalling via intra-ER tunnels. The fluctuations of intra-ER free Ca2+ concentration regulate the activity of numerous ER resident proteins responsible for post-translational protein folding and modification. Disruption of ER Ca2+ homeostasis results in the developing of ER stress response, which in turn controls neuronal survival. Altered ER Ca2+ handling may be involved in pathogenesis of various, neurodegenerative diseases including brain ischemia and Alzheimer dementia.  相似文献   

8.
ABSTRACT. Inhibitors of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-dependent ATPase) calcium pumps were used to investigate the involvement of internal Ca2+ stores in the GTP response in Paramecium . External application of these inhibitors was found to dramatically alter the typical behavioral and electrophysiological responses of Paramecium to extracellular chemical stimulation. In particular, 2.5-di-tert-butylhydroquinone (BHQ) strongly inhibited the backward swimming response of paramecia to externally applied GTP, though it did not inhibit the associated whirling response. BHQ also prolonged the normally brief electrophysiological response of these cells to GTP. BHQ completely blocked the behavioral and electrophysiological responses of Paramecium to extracellular Ba2+, but had no measurable effect on the behavioral or electrophysiological responses of these cells to another depolarizing stimulus, elevated external K+ concentration. These results suggest the involvement of nonciliary Ca2+ ions in the GTP and Ba2+ responses.  相似文献   

9.
Erythrosin b, a potent inhibitor of the Ca2+‐ATPases and the Ca2+‐release channel (BCC1) in mechanosensitive tissue of Bryonia dioica Jacq., effectively suppresses a tendril's reaction to touch, suggesting that Ca2+‐transporters are involved in signal transduction in this organ. The Ca2+‐ATPase located in the endoplasmic reticulum (ER) represents a multiregulated enzyme that is stimulated by calmodulin (CaM), KCl and lysophospholipids. Limited proteolysis of ER‐membranes by trypsin results in an irreversible activation of the Ca2+‐ATPase and loss of the CaM sensitivity, presumably through removal of an autoinhibitory domain where CaM binds. Mild trypsination mimics the effects of CaM on Vmax and the affinity for Ca2+ and ATP. Irrespective of a trypsin treatment, the enzyme can be additionally stimulated by KCl and lysolipids, indicating that the sites of interaction for these effectors are not located in the domain removed by the protease. CaM‐stimulated ATPase activity was purified from microsomal and ER fractions using a combination of CaM‐affinity and anion‐exchange chromatography. The isolated polypeptide was enzymatically active, showed a calcium‐dependent mobility‐shift in SDS‐PAGE from 109 kDa in the absence of Ca2+ to 104 kDa in the presence of 10 m M CaCl2 and could be radiolabeled with [35S]‐CaM. The characteristics of the purified enzyme remained closely similar to those of the ER‐bound Ca2+‐transporting activity, including the enzymatic data, CaM stimulation, and the sensitivity towards a range of inhibitors.  相似文献   

10.
Abstract: In primary cultures of cerebellar neurons glutamate neurotoxicity is mainly mediated by activation of the NMDA receptor, which allows the entry of Ca2+ and Na+ into the neuron. To maintain Na+ homeostasis, the excess Na+ entering through the ion channel should be removed by Na+,K+-ATPase. It is shown that incubation of primary cultured cerebellar neurons with glutamate resulted in activation of the Na+,K+-ATPase. The effect was rapid, peaking between 5 and 15 min (85% activation), and was maintained for at least 2 h. Glutamate-induced activation of Na+,K+-ATPase was dose dependent: It was appreciable (37%) at 0.1 µ M and peaked (85%) at 100 µ M . The increase in Na+,K+-ATPase activity by glutamate was prevented by MK-801, indicating that it is mediated by activation of the NMDA receptor. Activation of the ATPase was reversed by phorbol 12-myristate 13-acetate, an activator of protein kinase C, indicating that activation of Na+,K+-ATPase is due to decreased phosphorylation by protein kinase C. W-7 or cyclosporin, both inhibitors of calcineurin, prevented the activation of Na+,K+-ATPase by glutamate. These results suggest that activation of NMDA receptors leads to activation of calcineurin, which dephosphorylates an amino acid residue of the Na+,K+-ATPase that was previously phosphorylated by protein kinase C. This dephosphorylation leads to activation of Na+,K+-ATPase.  相似文献   

11.
Solanum elaeagnifolium Cav. fruits contain high concentrations of steroidal saponins. Treatment of 3-day-old clover seedlings with aqueous fruit extracts modified Ca2+ uptake without significantly altering K+ and H2PO4 uptake. The extracts increased Ca2+ uptake in the concentration range of 0.2 to 20 m M Ca2+. Uptake curves could be represented by two phases. In the lower phase (0.2-1.0 m M Ca2+), this change could be related to an increase in Vmax. Pretreatment of seedlings with saponin extracts significantly reduced ATP-dependent Ca2+ uptake and Ca2+-dependent ATPase activity in a fraction isolated from root homogenates by centrifugation at 1500 g for 15 min. Saponins purified from S. eleagnifolium extracts by thin-layer chromatography modified in vitro the Ca2+-ATPase activity of this fraction, indicating that the steroid may act directly on Ca2+ transport across membranes.  相似文献   

12.
The inhibitory action of divalent cations on the Ca2+-ATPase activity of a plasma membrane-rich microsome fraction isolated from the roots of barley ( Hordeum vulgare L. cv. Conquest) was investigated. Using electron paramagnetic resonance spectroscopy to measure cation-induced changes in membrane lipid properties, it was demonstrated that certain divalent cations (Ca2+, Cd2+, UO2+2) inhibit the Ca2+ ATP-ase by restriction of lipid polar head group mobility and not by alteration of membrane surface potential. Monovalent cations which stimulate the Ca2+-ATPase of barley roots (Na+, K+, ethanolamine HCl) can also reverse the Ca2+-ATPase inhibition by Cd2+. The degree of Na+ reversal of Cd2+-induced Ca2+-ATPase inhibition was influenced by the nature of the anion.  相似文献   

13.
Abstract Sucrose density fractionation of yeast membranes revealed two major and two minor peaks of 45Ca2+ transport activity which all co-migrate with marker enzymes of the endoplasmic reticulum, Golgi and membranes associated with these compartments as well as with ATPase activity measured when all other known ATPase are inhibited. Co-migration of 45Ca2+ transport and ATPase activities was also found after removal of plasma membranes by concanavalin A treatment. SDS-PAGE at pH 6.3 shows the Ca2+-dependent formation of acyl phosphate polypeptides of about 110 and 200 kDa. It is concluded that several compartments or sub-compartments of yeast are equipped with Ca2+-ATPase(s). It is proposed that these compartments are derived from the protein secretory apparatus of yeast.  相似文献   

14.
The effect of phospholipids on the activity of the plasma membrane (PM) Ca2+-ATPase was evaluated in PM isolated from germinating radish ( Raphanus sativus L. cv. Tondo Rosso Quarantino) seeds after removal of endogenous calmodulin (CaM) by washing the PM vesicles with EDTA. Acidic phospholipids stimulated the basal Ca2+-ATPase activity in the following order of efficiency: phosphatidylinositol 4,5-diphosphate (PIP2)≈phosphatidylinositol 4-monophosphate>phosphatidylinositol≈phosphatidylserine≈phosphatidic acid. Neutral phospholipids as phosphatidylcholine and phosphatidylethanolamine were essentially ineffective. When the assays were performed in the presence of optimal free Ca2+ concentrations (10 μ M ) acidic phospholipids did not affect the Ca2+-ATPase activated by CaM or by a controlled trypsin treatment of the PM, which cleaved the CaM-binding domain of the enzyme. Analysis of the dependence of Ca2+-ATPase activity on free Ca2+ concentration showed that acidic phospholipids increased Vmax and lowered the apparent Km for free Ca2+ below the value measured upon tryptic cleavage of the CaM-binding domain; in particular, PIP2 was shown to lower the apparent Km for free Ca2+ of the Ca2+-ATPase also in trypsin-treated PM. These results indicate that acidic phospholipids activate the plant PM Ca2+-ATPase through a mechanism only partially overlapping that of CaM, and thus involving a phospholipid-binding site in the Ca2+-ATPase distinct from the CaM-binding domain. The physiological implications of these results are discussed.  相似文献   

15.
ABSTRACT. We have determined the DNA sequence of the gene encoding the protein of the plasma membrane Ca2+-ATPase in Paramecium tetraurelia . The predicted amino acid sequence of the plasma membrane Ca2+-ATPase shows homology to conserved regions of known plasma membrane Ca2+-ATPases and contains the known binding sites for ATP (FITC), acylphosphate formation, and calmodulin, as well as the "hinge" region: all characteristics common to plasma membrane Ca2+-ATPases. The deduced molecular weight for this sequence is 131 kDa. The elucidation of this gene will assist in the studies of the mechanisms by which this excitable cell removes calcium entering through voltage gated calcium channels and the pump functions in chemosensory signal transduction.  相似文献   

16.
Abstract: Inositol phosphate accumulation on carbachol stimulation of rat cerebellar granule cells shows a marked dependence on factors affecting cytosolic Ca2+ concentration ([Ca2+]c). After 5 min, potassium depolarisation caused a modest accumulation of inositol phosphates but augmented the response to carbachol by a factor of 2–3. These effects of potassium were dependent on an extracellular source of calcium and could be partially blocked by specific (nifedipine) and nonspecific (verapamil) calcium channel blockers. Measurements of [Ca2+]c under a range of stimulatory conditions demonstrated a close correlation between the elevation of [Ca2+]c and agonist-stimulated phospholipase C (PLC) activity. The maximal potentiation of carbachol-stimulated inositol phosphate accumulation was achieved using 20 m M KCl, which increased [Ca2+]c from ∼20 to ∼75 n M , indicating the involvement of relatively low threshold Ca2+ channels and the high sensitivity of the relevant PLC to small changes in [Ca2+]c. By contrast, increases in [Ca2+]c induced by the Ca2+ ionophore ionomycin were associated with more modest and less potent effects on agonist-stimulated PLC. These results demonstrate a cooperative interaction between a receptor/G protein-regulated PLC and voltage-stimulated elevations of [Ca2+]c, which may function to integrate ionotropic and metabotropic signalling mechanisms in cerebellar granule cells.  相似文献   

17.
Abstract: 45Ca2+ uptake measurements were performed on intact and osmotically lysed synaptosomes from rat brain to study the possible influence of prostaglandins (PGs) on Ca2+ movements into and within the nerve endings. The K+-induced 45Ca2+ uptake of intact synaptosomes was not influenced by several inhibitors of PG synthesis. 45Ca2+ uptake in lysed synaptosomal preparations was promoted by ATP and seemed to be largely attributable to mitochondria, as it was inhibited by mitochondrial poisons. This Ca2+ uptake was strongly reduced by PG synthesis inhibitors but also by PG precursor fatty acids. Both PG synthesis inhibitors and precursors, according to their relative efficacy in blocking Ca2+ uptake, were able to induce Ca2+ efflux from preloaded intrasynaptosomal organelles. The PGs E2, F, D2, and thromboxane B2 were without effect on 45Ca2+ uptake in lysed synaptosomal preparations. On the basis of our results it does not seem likely that PGs influence Ca2+ availability by modulating Ca2+ fluxes into or within the nerve endings. The observed inhibitory effects of PG synthesis inhibitors and precursors on the intrasynaptosomal Ca2+ uptake might be due to unspecific impairment of mitochondrial functions.  相似文献   

18.
Abstract: Rat brain microsomes were preincubated with S -adenosylmethionine (SAM), MgCl2, and CaCl2, then re-isolated, and the activity of Na+,K+-ATPase determined. SAM inhibited the Na+,K+-ATPase activity compared with microsomes subjected to similar treatment in the absence of SAM. A biphasic inhibitory effect was observed with a 50% decrease at a SAM concentration range of 0.4 μ M -3.2 μ M and a 70% reduction at a concentration range above 100 μ M . Inclusion of either S- adenosylhomocysteine or 3-deazaadenosine in the preincubations prevented the SAM inhibition of Na+,K+-ATPase activity. The inhibition by SAM appeared to be Mg2+- or Ca2+-dependent.  相似文献   

19.
ABSTRACT. We have demonstrated previously that crystal violet induces a rapid, dose-related collapse of the inner mitochondrial membrane potential of Trypanosoma cruzi epimastigotes. In this work, we show that crystal violet-induced dissipation of the membrane potential was accompanied by an efflux of Ca2+ from the mitochondria. In addition, crystal violet inhibited the ATP-dependent, oligomycin-, and antimycin A-insensitive Ca2+ uptake by digitonin-permeabilired epimastigotes. Crystal violet also induced Ca2+ release from the mitochondria and endoplasmic reticulum of digitonin-permeabilized trypomastigotes. Furthermore, crystal violet inhibited Ca2+ uptake and the (Ca2+-Mg2+)ATPase of a highly enriched plasma membrane fraction of epimastigotes, thus indicating an inhibition of other calcium transport mechanisms of the cells. Disruption of Ca2+ homeostasis by crystal violet may be a key process leading to trypanosome cell injury by this drug.  相似文献   

20.
Abstract: A possible role for protein kinases in the regulation of free cytosolic Ca2+ levels in nerve endings was investigated by testing the effect of several kinase inhibitors on the increase in cytosolic Ca2+ (monitored with the Ca2+-sensitive dye fura-2) induced by depolarization with 15 or 30 mM K+. The ability of various drugs to inhibit the cytosolic Ca2+ response appeared to correlate with their reported mechanism of action in inhibiting protein kinases. W-7 and trifluoperazine, drugs reported to inhibit calmodulin-dependent events, were effective inhibitors of the increase in cytosolic Ca2+ induced by high K+ depolarization, as was sphingosine, a drug that inhibits protein kinase C by binding to the regulatory site, but which also inhibits calcium/calmodulin kinase. On the other hand, drugs that inhibit protein kinases by binding to the catalytic site, such as H-7 (1 m/W ), staurosporine (1μ M ), and K252a(1μ M ), were ineffective. Activation of protein kinase C, which is blocked by each of these drugs, does not appear to be essential to the maintenance of elevated cytosolic Ca2+ in depolarized synaptosomes. All of the drugs, including sphingosine, that functionally inhibit the depolarization-induced elevation in cytosolic Ca2+ have in common the ability to bind to calmodulin. Because the drugs that inhibit protein kinases by competing with ATP binding at the active catalytic site did not block the response in this system, we suggest that a calmodulin or a calmodulin-like binding site participates in the regulation of Ca2+ increases after depolarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号