首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
对羟苯基丙酮酸双加氧酶(ρ-hydroxyphenylpyruvate dioxygenase,HPPD;EC 1.13.11.27)催化生物体内对羟苯基丙酮酸与O2作用形成尿黑酸的反应,是植物体中质体醌和生育酚生物合成途径的关键酶。当其活性受到抑制时,植物体中作为类胡萝卜素生物合成途径中最终电子受体和光合链电子传递体的质体醌的生物合成受阻,进而导致类胡萝卜素合成减少,光合链电子传递受阻,致使植物体出现白化症状。目前已经开发了多种以HPPD为靶标的除草剂,该类除草剂及抗除草剂转基因植物研究具有广阔的前景。对这一新型白化型除草剂靶标酶以及耐该类除草剂转基因植物的研究进展作了简要综述。  相似文献   

2.
农田杂草是影响作物品质和产量的主要因素,而化学除草是现代农业生产中杂草控制的主要手段.乙酰乳酸合酶(ALS,acetolactate synthase)也称乙酰羟基酸合酶(Acetohydroxyacid synthase),是植物支链氨基酸生物合成第一步的催化酶.ALS抑制剂类除草剂也称ALS类除草剂,其通过干扰AL...  相似文献   

3.
AgBiotech Reporter 2000年10月号报道:BASF和RiceTech公司签署了一项协议。内容是利用Clear-field技术开发、生产和商品化杂交稻。公司认为协议的实行将导致开发出首个具有耐受咪唑啉酮类除草剂的杂交水稻品种,作为美国2003年的商业化候选品种。这种除草剂耐性不是通过转基因获得的。咪唑啉酮是一类用于防除杂草的植保产品。作用原理是影响植物中的一种酶,这种酶只存在于植物中,在哺乳动物、鸟类、鱼类或昆虫中没有。美国培育耐除草剂水稻@孙雷心  相似文献   

4.
甜菜碱提高植物抗盐性的作用机理及其遗传工程研究进展   总被引:3,自引:3,他引:0  
张波  张怀刚 《西北植物学报》2005,25(9):1888-1893
系统地讨论了甜菜碱在提高植物抗盐性中的作用机理及其国内外研究进展,并对甜菜碱生物合成过程中关键酶及其遗传工程的研究进展进行了综述。提出在进一步弄清甜菜碱提高植物抗盐性作用机理的基础上,应在重要作物中开展甜菜碱合成相关基因的导入,以期获得耐盐植物新品种。  相似文献   

5.
乙酰辅酶A羧化酶是一个生物素羧化酶,它所催化的反应是脂肪酸生物合成中的第一个植物叶绿体中的乙酰辅酶A羧化酶是两类禾本科除草剂的靶蛋白.从抗除草剂拿捕净和感拿捕净的谷子(SetariaitalicaBeauv.)中克隆了两个乙酰辅酶A羧化酶的全长cDNA,分别命名为foxACC-R和foxACC-S,它们推导的蛋白质均编码2 321个氨基酸,然而在第1 780个氨基酸处,foxACC-R编码亮氨酸,而foxACC-S编码异亮氨酸.采用生物信息学方法,我们推断这个cDNA编码的是叶绿体中的乙酰辅酶A羧化酶,并预测了它的功能域和保守区.通过这两个cDNA编码的氨基酸序列与其他乙酰辅酶A羧化酶的序列比较得出结论,亮氨酸/异亮氨酸位点可能是APPs和CHDs两类除草剂作用的关键位点.Southern杂交分析的结果显示,该基因在谷子基因组中只有一个拷贝.  相似文献   

6.
细胞色素P450酶系与除草剂代谢   总被引:5,自引:0,他引:5  
细胞色素P450是广泛存在于动物、植物和微生物体内的一类具有混合功能的血红素氧化酶系。它不但能够催化苯丙烷类、萜类化合物和脂肪酸等内源性物质的生物合成 ,而且参与许多外源性物质包括除草剂等的生物氧化。综述了代谢除草剂的细菌、哺乳动物和植物细胞色素P450酶系 ,概述了细胞色素P450酶系参与除草剂代谢的作用方式 :脱烷基化作用、环甲基化羟基化作用和芳环的羟基化作用等。这些细胞色素P450酶系在培育除草剂抗性作物、生物安全和生物修复方面表现出了巨大的潜能  相似文献   

7.
菊科植物化感作用研究进展   总被引:60,自引:3,他引:57  
周凯  郭维明  徐迎春 《生态学报》2004,24(8):1776-1784
对菊科植物化感作用的研究进展进行了综述。菊科植物中至少有 39个属存在化感作用 ,特别是一枝黄花属、向日葵属、胜红蓟属、银胶菊属、蒿属植物等有较多的研究报道。鉴定出的化感物质多为萜类、聚乙炔类、酚类、有机酸类等 ,这些化感物质对多种受体植物表现出程度不同的抑制或促进的效应。其化感作用机理表现在破坏受体膜系统的稳定性及水分平衡关系、抑制氧化磷酸化、促进或阻滞叶绿素的合成、影响矿质元素的吸收利用等。并对菊科植物化感物质在植物生长调节剂、天然除草剂和生物杀虫剂 ,或人工合成除草剂和杀虫剂上应用的前景进行了探讨。本文显示菊科植物的化感作用将在控制外来恶性杂草及维护生态平衡上扮演重要的角色。在当前菊科植物化感作用研究的基础上 ,提出了进一步研究的 6个方向 :(1)化感物质的生物合成途径与关键酶的特性研究 ;(2 )具化感潜势物种资源的调查评价及利用研究 ;(3)化感作用在自然生态系统中的演变规律 ;(4 )菊科重要作物自毒的生化机制及克服途径 ;(5 )具应用前景的菊科植物化感关键酶的基因克隆和转基因 ,并对受体植物基因的表达与调控进行研究 ;(6 )化感作用在可持续发展农业应用上的研究与开发 ,特别是作为天然除草剂及杀虫剂  相似文献   

8.
白藜芦醇是一种具有多种医疗保健作用的植物芪类次生代谢产物,在农业、医药、食品和化妆品等领域受到广泛的关注。白藜芦醇合酶是白藜芦醇生物合成中唯一必需的关键酶,决定植物体内白藜芦醇的合成。将中间锦鸡儿中克隆到的CiRS基因(Gen Bank登录号MF678590)转入野生型拟南芥,实验结果显示:野生型的总黄酮含量明显高于转基因株系。HPLC测得转基因拟南芥中有白藜芦醇的生成,并且含量最高达335μg/g FW。紫外照射处理后转基因植物中丙二醛的积累量明显少于野生型。转基因植物提取物DPPH自由基清除能力均高于野生型。这些结果表明,中间锦鸡儿CiRS基因异源表达后利用与黄酮类物质的共同底物合成了白藜芦醇,使得转基因植物的抗氧化性增强。  相似文献   

9.
乙酰乳酸合成酶(ALS)是支链氨基酸、缬氨酸、亮氨酸和异亮氨酸生物合成途径中的关键酶,也是多种除草剂的靶点。为了研究als基因不同突变位点组合后其抗除草剂抗性的变化,并整合和增强植株对不同类型除草剂的抗性,本研究对已知抗性位点进行组合并进行了拟南芥转基因分析。我们通过重叠延伸PCR技术体外突变扩增四个已知位点突变的P197S/R199A/W574S/S653F拟南芥Atals,克隆到pCAMBIA1 300-GFP载体上,从而构建了四个位点突变的m4Atals-GFP融合蛋白过表达载体。然后用农杆菌介导法转化野生型拟南芥Col-0,获得转基因株系。采用潮霉素抗性筛选鉴定阳性转基因植株,并利用荧光体式显微镜观察过表达植株以及在蛋白水平检测GFP-m4Atals融合蛋白表达情况。对纯合转基因株系进行除草剂抗性分析。分析表明转基因拟南芥具有磺酰脲和咪唑啉酮两种除草剂的整合抗性。此研究有助于系统地分析als基因不同突变位点对抑制剂的抗性,有效避免和应对自然界als单一位点突变的杂草的困扰。  相似文献   

10.
农作物抗除草剂遗传工程研究进展   总被引:2,自引:0,他引:2  
控制杂草提高农作物产量是农业生产中共同面临的问题,发展抗除草剂农作物将是最经济最方便控制杂草的技术。由于对除草剂的作用模式和除草剂代谢途径的了解,弄清了除草剂的关键靶酶及其基因,因此分离除草剂靶酶基因,克隆能解毒除草剂的酶基因,通过转化技术可获得抗除草剂农作物,大量的抗除草剂转基因农作物大田试验表明,将最有希望在2000年进入市场。  相似文献   

11.
The use of mutants and transgenic plants to study amino acid metabolism   总被引:7,自引:0,他引:7  
Mutants of higher plants with alterations in amino acid metabolism have now been available for 20 years. Following the realization that at least four distinct classes of herbicides (phosphinothricins, glyphosates, imidazolinones and sulphonylureas) act by the inhibition of amino acid biosynthesis, mutants resistant to the herbicides have also been obtained. More recently, transgenic plants containing altered levels of enzymes of amino acid biosynthesis have been constructed. In this article, we have attempted to review several areas of amino acid biosynthesis including ammonia assimilation, the aspartate pathway, branched chain amino acids, aromatic amino acids and proline.  相似文献   

12.
Impairment of carbon metabolism induced by the herbicide glyphosate   总被引:1,自引:0,他引:1  
The herbicide glyphosate reduces plant growth and causes plant death by inhibiting the biosynthesis of aromatic amino acids. The objective of this work was to determine whether glyphosate-treated plants show a carbon metabolism pattern comparable to that of plants treated with herbicides that inhibit branched-chain amino acid biosynthesis. Glyphosate-treated plants showed impaired carbon metabolism with an accumulation of carbohydrates in the leaves and roots. The growth inhibition detected after glyphosate treatment suggested impaired metabolism that impedes the utilization of available carbohydrates or energy at the expected rate. These effects were common to both types of amino acid biosynthesis inhibitors. Under aerobic conditions, ethanolic fermentative metabolism was enhanced in the roots of glyphosate-treated plants. This fermentative response was not related to changes in the respiratory rate or to a limitation of the energy charge. This response, which was similar for both types of herbicides, might be considered a general response to stress conditions.  相似文献   

13.
Acetohydroxy acid synthase (AHAS) is an essential enzyme for many organisms as it catalyzes the first step in the biosynthesis of the branched-chain amino acids valine, isoleucine, and leucine. The enzyme is under allosteric control by these amino acids. It is also inhibited by several classes of herbicides, such as the sulfonylureas, imidazolinones and triazolopyrimidines, that are believed to bind to a relic quinone-binding site. In this study, a mutant allele of AHAS3 responsible for sulfonylurea resistance in a Brassica napus cell line was isolated. Sequence analyses predicted a single amino acid change (557 TrpLeu) within a conserved region of AHAS. Expression in transgenic plants conferred strong resistance to the three classes of herbicides, revealing a single site essential for the binding of all the herbicide classes. The mutation did not appear to affect feedback inhibition by the branched-chain amino acids in plants.  相似文献   

14.
Quinate (1,3,4,5-tetrahydroxycyclohexanecarboxylate) is a compound synthesized in plants through a side branch of the shikimate biosynthesis pathway. Plants treated with herbicides that inhibit amino acid biosynthesis (branched-chain and aromatic) accumulate quinate in their leaves. The objective of this study was to evaluate whether quinate mimics the effects of herbicides in plants. In pea plants, exogenous application of quinate through the nutrient solution was compared with leaf spraying at a concentration of 4 and 400 mM, respectively, and evaluated in parallel to the effects of herbicides. The analysis facilitated an assessment of the phytotoxicity and potential use of quinate as a natural herbicide. The application of quinate through the nutrient solution, but not the spray, was lethal, although both treatments affected plant growth. Quinate was absorbed and translocated to other plant organs remote from the application site, and an increase in the levels of aromatic amino acids and caffeic acid (that is, compounds located after quinate in the shikimate biosynthesis pathway) was detected, which indicates that quinate was metabolized and incorporated into the shikimate pathway. Exogenous application of quinate affected the carbohydrate content in the leaves and roots in a way similar to the toxic effects of herbicides. The phytotoxic effects of quinate reported in this study suggest that this compound deregulates the shikimate pathway and mimics some physiological effects described in the mode of action of herbicides inhibiting amino acid biosynthesis.  相似文献   

15.
Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops   总被引:15,自引:0,他引:15  
Tan S  Evans R  Singh B 《Amino acids》2006,30(2):195-204
Summary. Acetohydroxyacid synthase (AHAS) inhibitors interfere with branched-chain amino acid biosynthesis by inhibiting AHAS. Glyphosate affects aromatic amino acid biosynthesis by inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Glufosinate inhibits glutamine synthetase and blocks biosynthesis of glutamine. AHAS gene variants that confer tolerance to AHAS inhibitors have been discovered in plants through selection or mutagenesis. Imidazolinone-tolerant crops have been commercialized based on these AHAS gene variants. A modified maize EPSPS gene and CP4-EPSPS gene from Agrobacterium sp. have been used to transform plants for target-based tolerance to glyphosate. A gox gene isolated from Ochrobactrum anthropi has also been employed to encode glyphosate oxidoreductase to detoxify glyphosate in plants. Glyphosate-tolerant crops with EPSPS transgene alone or both EPSPS and gox transgenes have been commercialized. Similarly, bar and pat genes isolated from Streptomyces hygroscopicus and S. viridochromogenes, respectively, have been inserted into plants to encode phosphinothricin N-acetyltransferase to detoxify glufosinate. Glufosinate-tolerant crops have been commercialized using one of these two transgenes.  相似文献   

16.
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of branched-chain amino acids in plants and is the target of several herbicides. ALS inhibitors have enjoyed popularity as herbicides due to numerous attributes, although their current adequacy in weed control programs is hampered by herbicide resistance. Most cases of ALS-inhibitor resistance have resulted from selection of an altered target site. The study herein reports on an alanine by threonine amino acid substitution at position 122 of ALS as the basis for imidazolinone-specific resistance in an A. hybridus population from Illinois. In vitro inhibition of enzymatic activity (I(50)) required 1000-fold greater concentration of imazethapyr in the resistant population compared with a susceptible control. This mutation represents the second ALS alteration associated with herbicide resistance in a natural A. hybridus population.  相似文献   

17.
The herbicidal action of N-pyridylaminomethylenebisphosphonic acids is accompanied by an impairment of anthocyanin biosynthesis. This suggests that they might act as inhibitors of some steps in aromatic amino acid biosynthesis. Herbicidal effects were reversed by aromatic amino acids using both bacterial and plant models, a finding that strongly supports this hypothesis. Structural features of these compounds suggest the sixth enzyme in the shikimate pathway 5-enol-pyruvoylshikimate-3-phosphate (EPSP) synthase as a possible target, since a strong structural similarity exists between aminomethylenebisphosphonic acid and an inhibitor of EPSP synthase, the herbicide glyphosate. This is, however, not the case since they did not act as inhibitors of this enzyme. Received July 29; 1996; accepted May 27, 1997  相似文献   

18.
The substrate specificity of tryptophan (Trp) decarboxylase (TDC) for Trp and tyrosine (Tyr) decarboxylase (TYDC) for Tyr was used to modify the in vivo pools of these amino acids in transgenic tobacco. Expression of TDC and TYDC was shown to deplete the levels of Trp and Tyr, respectively, during seedling development. The creation of artificial metabolic sinks for Trp and Tyr also drastically affected the levels of phenylalanine, as well as those of the non-aromatic amino acids methionine, valine, and leucine. Transgenic seedlings also displayed a root-curling phenotype that directly correlated with the depletion of the Trp pool. Non-transformed control seedlings could be induced to display this phenotype after treatment with inhibitors of auxin translocation such as 2,3,5-triiodobenzoic acid or N-1-naphthylphthalamic acid. The depletion of aromatic amino acids was also correlated with increases in the activities of the shikimate and phenylpropanoid pathways in older, light-treated transgenic seedlings expressing TDC, TYDC, or both. These results provide in vivo confirmation that aromatic amino acids exert regulatory feedback control over carbon flux through the shikimate pathway, as well as affecting pathways outside of aromatic amino acid biosynthesis.  相似文献   

19.
Acetohydroxyacid synthase (AHAS) (acetolactate synthase, EC ) catalyzes the first step in branched-chain amino acid biosynthesis and is the target for sulfonylurea and imidazolinone herbicides. These compounds are potent and selective inhibitors, but their binding site on AHAS has not been elucidated. Here we report the 2.8 A resolution crystal structure of yeast AHAS in complex with a sulfonylurea herbicide, chlorimuron ethyl. The inhibitor, which has a K(i) of 3.3 nm, blocks access to the active site and contacts multiple residues where mutation results in herbicide resistance. The structure provides a starting point for the rational design of further herbicidal compounds.  相似文献   

20.
周俭民  曹立冬 《植物学报》2020,55(5):533-536
病原微生物通过其特有的机制破坏植物的防御屏障, 引发病害, 给农业生产造成损失。研究病菌致病机制, 能够启发人们探索病害防控的新思路。四川农业大学陈学伟团队阐明了稻瘟病菌的一种特殊结构——侵染钉的发生机制, 发现超长碳链脂肪酸合成酶在此过程中发挥重要作用。以超长碳链脂肪酸合成酶为靶点, 该团队寻找到了抑制超长碳链脂肪酸生物合成, 进而抑制侵染结构发生的化合物。这些化合物可广谱抑制多种病原真菌在动物和植物宿主上的致病力, 为创制新型农药开拓了新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号