首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural bacteriophages of Pseudomonas fluorescens are rare and its temperate phages have not been described so far. In search for these phages, we have found that one of the P. fluorescens strains forms numerous small transparent autoplaques of different size and shape, which contained material reproducible on the same strains. When centrifuged in a cesium chloride gradient, this material yielded a band in the density zone of about 1.3 g/cm3, where protein components or bacteriophages with a relatively low content of nucleic acid are usually located. In the band material, electron microscopy revealed phagelike particles with empty and mostly undamaged heads and tails carrying in their distal region a formation resembling contracted sheath. DNA isolated from the preparation consisted of two components: a distinct 54-kb fragment, and a diffuse fragment ranging in size from 20 to 9.5 kb. Treatment of the large DNA fragment with various endonucleases yielded 42.2- and 29.5-kb fragments (on average for different endonucleases); whereas the same treatment of the diffuse fragment yielded two- to three distinct fragments with the overall molecular sizes of 8.9 and 6.2 kb (for different nucleases). We have suggested that cells harbor two different genetic elements whose interaction results in the autoplaque appearance and in the formation of negative colonies after infection with the autoplaque material. One of the two elements displays properties of a defective prophage with disturbed DNA synthesis and assembly, whereas the other exhibits the properties of a transposable phage. After complementation or some other interaction between these elements (transactivation, prophage induction caused by repressor inactivation), a bulk of defective phage particles devoid of DNA and a few DNA-containing particles were produced. It remains unclear whether both DNA types are contained in the same or different particles. The phage (or a system of elements) referred to as PT3 is noninducible. The phage mutants forming larger negative colonies (NCs) were also revealed. Some of bacterial mutants resistant to PT3 infection produce the mutant phage with small and turbid NCs. PT3 produces no NCs on the lawns of other strains of the same or other pseudomonade species. This is the first case of describing a natural temperate bacteriophage in P. fluorescens. The two different elements of this phage may represent the same genome of the defective prophage divided into two portions within a bacterial chromosome, each of which is capable of packaging into the phage head.  相似文献   

2.
Seventeen virulent bacteriophages specific to Pseudomonas aeruginosa strains were isolated by screening various environmental samples. These isolated bacteriophages were grouped based on results obtained from restriction fragment analysis of phage genomes, random amplification of polymorphic DNA (RAPD) typing, morphology observations under transmission electron microscope, and host range analysis. All 17 bacteriophages are double-stranded DNA viruses and can be divided into 5 groups based on DNA restriction profiles. A set of 10-mer primers was used in RAPD typing of phages, and similar conclusions were obtained as for restriction fragment analysis. One phage was randomly selected from each of the 5 groups for morphology observations. Four of them had an icosahedral head with a long contractile tail, belonging to the Myoviridae family, and one phage had an icosahedral head with a short tail, thereby belonging to the Podoviridae family. Host range experiments were conducted on 7 laboratory strains and 12 clinical strains of P.?aeruginosa. The results showed that 13 phages had the same infection profile, killing 8 out of 19 tested P.?aeruginosa strains, and the remaining 4 phages had different and unique infection profiles. This study highlights the diversity of bacteriophages specific to P.?aeruginosa in the environment.  相似文献   

3.
Aims: Frequency of lysogeny in Lactobacillus delbrueckii strains (from commercial and natural starters) and preliminary characterization of temperate bacteriophages isolated from them. Methods and Results: Induction of strains (a total of 16) was made using mitomycin C (MC) (0·5 μg ml−1). For 37% of the MC-treated supernatants, it was possible to detect phage particles or presence of killing activity, but only two active bacteriophages were isolated. The two temperate phages isolated were prolate-headed phages which belonged to group c of Lact. delbrueckii bacteriophages classification. Different DNA restriction patterns were obtained for each phage, while the structural protein profiles and packaging sites were identical. Distinctive one-step growth curves were exhibited by each phage. An influence of calcium ions was observed for their lysis in broth but not on the adsorption levels. Conclusions: Our study showed that lysogeny is also present in Lact. delbrueckii strains, including commercial strains. Significance and Impact of the Study: Commercial strains could be lysogenic and this fact has a great practical importance since they could contribute to the dissemination of active-phage particles in industrial environments.  相似文献   

4.
Summary The phenomenon that natural phages are only released in mixed cultures and are not found in pure cultures of bacterial strains has been discussed. It was described how an infecting phage absorbs material from the natural phage in the bacterium and the other way round, that the natural phage absorbs material from the infecting phage. Hereby the bacteriophages can change serologically. Simultaneously the bacteriophage can be adapted. The phenomenon that natural phages are only released in mixed cultures is in some cases explained by assuming that the prophage is incompletely present in the bacterium and is completed by material from an infecting phage.  相似文献   

5.
Study of two recently isolated giant bacteriophages Lu11 and OBP that are active on Pseudomonas putida var. Manila and Pseudomonas fluorescens, respectively, demonstrated their similarity in morphotype, genome size, and size of phage particles, with giant bacteriophages of Pseudomonas aeruginosa assigned to the supergroup of ?KZ-like phages of the family Myoviridae. This supergroup was designated in this manner according to the best studied phage ?KZ that belongs to the species of this group widely distributed in nature. Comparison of major polypeptide sizes of mature particles suggests similarity of certain proteins in the phages examined. In OBP particles visualized with an electron microscope, an “inner body” was detected, which points to specific DNA package intrinsic to phages of ?KZ group. In the meantime, phages Lu11 and OBP do not exhibit resemblance among themselves or with any of earlier described ?KZ-like phages in respect to detectable DNA homology. Note that phage Lu11 of P. putida var. Manila exhibits very slight homology with phage Lin68 of the family of P. aeruginosa ?KZ-like phages detected only in blot hybridization. This suggests the possible involvement of these phages in interspecies recombination (“gene shuffling”) between phages of various bacterial species. Results of partial sequencing of phage genomes confirmed the phylogenetic relatedness of phage OBP to phages of the ?KZ supergroup, whereas phage Lu11 most probably belongs to a novel species that is not a member of supergroup ?KZ composition. The results of the study are discussed in terms of the evolution of these phages.  相似文献   

6.
The genomes of four Lactobacillus delbrueckii subsp. lactis bacteriophages were characterized by restriction endonuclease mapping, Southern hybridization, and heteroduplex analysis. The phages were isolated from different cheese processing plants in Finland between 1950 and 1972. All four phages had a small isometric head and a long noncontractile tail. Two different types of genome (double-stranded DNA) organization existed among the different phages, the pac type and the cos type, corresponding to alternative types of phage DNA packaging. Three phages belonged to the pac type, and a fourth was a cos-type phage. The pac-type phages were genetically closely related. In the genomes of the pac-type phages, three putative insertion/deletions (0.7 to 0.8 kb, 1.0 kb, and 1.5 kb) and one other region (0.9 kb) containing clustered base substitutions were discovered and localized. At the phenotype level, three main differences were observed among the pac-type phages. These concerned two minor structural proteins and the efficiency of phage DNA packaging. The genomes of the pac-type phages showed only weak homology with that of the cos-type phage. Phage-related DNA, probably a defective prophage, was located in the chromosome of the host strain sensitive to the cos-type phage. This DNA exhibited homology under stringent conditions to the pac-type phages.  相似文献   

7.
Summary The physical maps of the LP51 and LP52 prophages in lysogenic strains of Bacillus licheniformis were constructed on the basis of data obtained by hybridization of phage DNA probes with Southern blots of restricted DNA of the lysogens. The data were compatible with the Campbell model for chromosomal integration; the attP site was mapped at 58.7–61.8 map units of the genomes of both phages. Identification of prophage-host DNA junction fragments indicated the presence of a unique attB site on the bacterial chromosome; the set of junction fragments in the strain B. licheniformis ATCC 10716 was identical to that of ATCC 11946, but different from ATCC 8187. Both the LP51 and LP52 phages used the same integration sites. Upon reinfection with either phage, the cured strains UM12 and UM18 (i.e. 10716 and 11946 cured of LP52 or LP51, respectively) turned out to be integration deficient. In surface cultures the reinfected bacteria could be maintained in the lysogenic state without, however, integrating the phage genome; when these bacteria were passaged in submerged cultures, several modes of anomalous integration were observed, and the phage segregated into a variety of forms, discernible by virulence and plaque morphology. In liquid cultures of UM12(LP51) or UM12(LP52) lytic forms finally predominated, while most lysogenized UM18 were converted into defective lysogens which contained a defective prophage in a stably integrated form.  相似文献   

8.
The prevalence of bacteriophages was investigated in 24 strains of four species of plant growth-promoting rhizobacteria belonging to the genus Azospirillum. Upon induction by mitomycin C, the release of phage particles was observed in 11 strains from three species. Transmission electron microscopy revealed two distinct sizes of particles, depending on the identity of the Azospirillum species, typical of the Siphoviridae family. Pulsed-field gel electrophoresis and hybridization experiments carried out on phage-encapsidated DNAs revealed that all phages isolated from A. lipoferum and A. doebereinerae strains had a size of about 10 kb whereas all phages isolated from A. brasilense strains displayed genome sizes ranging from 62 to 65 kb. Strong DNA hybridizing signals were shown for most phages hosted by the same species whereas no homology was found between phages harbored by different species. Moreover, the complete sequence of the A. brasilense Cd bacteriophage (ΦAb-Cd) genome was determined as a double-stranded DNA circular molecule of 62,337 pb that encodes 95 predicted proteins. Only 14 of the predicted proteins could be assigned functions, some of which were involved in DNA processing, phage morphogenesis, and bacterial lysis. In addition, the ΦAb-Cd complete genome was mapped as a prophage on a 570-kb replicon of strain A. brasilense Cd, and a region of 27.3 kb of ΦAb-Cd was found to be duplicated on the 130-kb pRhico plasmid previously sequenced from A. brasilense Sp7, the parental strain of A. brasilense Cd.  相似文献   

9.
Lysogenic conversion has been suggested as a mechanism of control of group A streptococcal pyrogenic exotoxin type A production. Digestion of DNA from two converting bacteriophages, 3GL16 and T12, with a variety of restriction endonucleases yielded identical DNA fragments upon electrophoresis in agarose gels. Several known A toxin-positive strains that did not appear to produce converting phage upon induction were analyzed for toxin and phage DNA. Strains, including NY5, 594, and C203S, were shown by hybridization studies to carry the A toxin gene (speA) adjacent to chromosomally inserted phage fragments, homologous to phage T12 DNA, which may represent defective converting phages. The phage T12 att site mapped adjacent to speA. These data suggest that phage T12 acquired the A toxin gene from the bacterial genome. All streptococcal strains tested that were A toxin negative by Ouchterlony immunodiffusion failed to show any hybridization to speA-specific probes.  相似文献   

10.
This report describes a comparison of the efficiency of transduction of genes in E. coli by the generalized transducing bacteriophages T4GT7 and P1CM. Both phages are capable of transducing many genetic markers in E. coli although the frequency of transduction for particular genes varies over a wide range. The frequency of transduction for most genes depends on which transducing phage is used as well as on the donor and recipient bacterial strains. Analysis of T4GT7 phage lysates by cesium chloride density gradient centrifugation shows that transducing phage particles contain primarily bacterial DNA and carry little, if any, phage DNA. In this regard transducing phages P1CM and T4GT7 are similar; both phages package either bacterial or phage DNA but not both DNAs into the same particle.  相似文献   

11.
Aims: Salmonella is a worldwide foodborne pathogen causing acute enteric infections in humans. In the recent years, the use of bacteriophages has been suggested as a possible tool to combat this zoonotic pathogen in poultry farms. This work aims to isolate and perform comparative studies of a group of phages active against a collection of specific Salmonella Enteritidis strains from Portugal and England. Also, suitable phage candidates for therapy of poultry will be selected. Methods and Results: The Salm. Enteritidis strains studied were shown to have a significantly high occurrence of defective (cryptic) prophages; however, no live phages were found in the strains. Bacteriophages isolated from different environments lysed all except one of the tested Salm. Enteritidis strains. The bacteriophages studied were divided into different groups according to their genetic homology, RFLP profiles and phenotypic features, and most of them showed no DNA homology with the bacterial hosts. The bacteriophage lytic efficacy proved to be highly dependent on the propagation host strain. Conclusions: Despite the evidences shown in this work that the Salm. Enteritidis strains used did not produce viable phages, we have confirmed that some phages, when grown on particular hosts, behaved as complexes of phages. This is most likely because of the presence of inactive phage‐related genomes (or their parts) in the bacterial strains which are capable of being reactivated or which can recombine with lytic phages. Furthermore, changes of the bacterial hosts used for maintenance of phages must be avoided as these can drastically modify the parameters of the phage preparations, including host range and lytic activity. Significance and Impact of the Study: This work shows that the optimal host and growth conditions must be carefully studied and selected for the production of each bacteriophage candidate for animal therapy.  相似文献   

12.
The Classical Vibrio cholerae strain NIH 41 contains two temperate bacteriophages, designated VcA-1 and VcA-2, that are distinguished by immunity, plaque morphology, induction kinetics, and particle morphology. Both phage are serologically related to phage Kappa. However, only phage VcA-2 has the Kappa type host range and immunity. The induction kinetics and immunity patterns of Classical vibrios suggest that these strains may contain defective phage related to the phages isolated from NIH 41. Classical strain 569B releases phage-tail structures upon induction that are morphologically and serologically related to both phages VcA-1 and VcA-2. The possible reason for the defectiveness of these phages in 569B is discussed. It is concluded that complete or defective bacteriophages of the Kappa type morphology and serology are extremely prevalent in V. cholerae, regardless of biotype.  相似文献   

13.
Lysogenic bacteriophages are a significant source of variability in closely related Salmonella strains. In this study, screening for diversity of 152 Salmonella Typhimurium strains was performed using PCR detection of selected prophage regions derived from phages P22, Gifsy-1, Gifsy-2, Fels-1, ST104 and SopEPhi. A high degree of variability was observed in the presence of specific genes. Based on the presence of particular prophage genes, we divided strains into 37 different PCR-prophage profiles; 20 of them were represented by only a single strain. Using multilocus variable number tandem repeats analysis (MLVA), 152 Salmonella strains were separated into 82 MLVA strings. Similar grouping of Salmonella strains was observed in the case of PCR-prophage detection and MLVA and the results corresponded well with the phage type of strains. However, several Salmonella strains were detected, which were closely related according to MLVA; yet, they differed in PCR phage profiles. The observations support a view that integration/excision of bacteriophages in Salmonella strains are frequent events shaping the bacterial genome.  相似文献   

14.
Lysogeny has long been proposed as an important long-term maintenance strategy for autochthonous soil bacteriophages (phages). Whole genome sequence data indicate that prophage-derived sequences pervade prokaryotic genomes, but the connection between inferred prophage sequence and an active temperate phage is tenuous. Thus, definitive evidence of phage production from lysogenic prokaryotes will be critical in determining the presence and extent of temperate phage diversity existing as prophage within bacterial genomes and within environmental contexts such as soils. This study optimized methods for systematic and definitive determination of lysogeny within a collection of autochthonous soil bacteria. Twenty bacterial isolates from a range of Delaware soil environments (five from each soil) were treated with the inducing agents mitomycin C (MC) or UV light. Six isolates (30%) carried inducible temperate phages as evidenced by an increase in virus direct counts. The magnitude of induction response was highly dependent upon specific induction conditions, and corresponding burst sizes ranged from 1 to 176. Treatment with MC for 30 min yielded the largest induction responses for three of the six lysogens. Morphological analysis revealed that four of the lysogens produced lambda-like Siphoviridae particles, whereas two produced Myoviridae particles. Additionally, pulsed-field gel electrophoresis data indicated that two of the six lysogens were polylysogens, producing more than one distinct type of phage particle. These results suggest that lysogeny is relatively common among soil bacteria.  相似文献   

15.
Aims:  To isolate and characterize bacteriophages, and to evaluate its lytic performance against avian pathogenic Escherichia coli (APEC) strains with high patterns of antibiotic resistance, in order to select phages for a therapeutic product to treat colibacillosis in chickens.
Methods and Results:  Bacteriophages were isolated from poultry sewage and tested against 148 O-serotyped APEC strains. The morphological characterization of the bacteriophages was made by transmission electronic microscopy (TEM) observations and the genetic comparison between bacteriophages DNA was performed by restriction fragment length polymorphism (RFLP) patterns. Results showed that 70·5% of the tested E. coli strains were sensitive to a combination of three of the five isolated phages, that seemed to be virulent and taxonomically belong to the Caudovirales order. Two of them look like 16–19, T4-like phages ( Myoviridae ) and the third is a T1-like phage and belongs to Syphoviridae family. All of them are genetically different.
Conclusions:  It was possible to obtain a combination of three different lytic bacteriophages with broad lytic spectra against the most prevalent O-serotypes of APEC.
Significance and Impact of the Study:  Data reported in this study, presents an in vitro well studied phage product to be used as antimicrobial agent to treat colibacillosis in poultry industry.  相似文献   

16.
Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins.  相似文献   

17.
Prophage Lrm1 was induced with mitomycin C from an industrial Lactobacillus rhamnosus starter culture, M1. Electron microscopy of the lysate revealed relatively few intact bacteriophage particles among empty heads and disassociated tails. The defective Siphoviridae phage had an isometric head of approximately 55 nm and noncontractile tail of about 275 nm with a small baseplate. In repeated attempts, the prophage could not be cured from L. rhamnosus M1, nor could a sensitive host be identified. Sequencing of the phage Lrm1 DNA revealed a genome of 39,989 bp and a G+C content of 45.5%. A similar genomic organization and mosaic pattern of identities align Lrm1 among the closely related Lactobacillus casei temperate phages A2, ΦAT3, and LcaI and with L. rhamnosus virulent phage Lu-Nu. Of the 54 open reading frames (ORFs) identified, all but 8 shared homology with other phages of this group. Five unknown ORFs were identified that had no homologies in the databases nor predicted functions. Notably, Lrm1 encodes a putative endonuclease and a putative DNA methylase with homology to a methylase in Lactococcus lactis phage Tuc2009. Possibly, the DNA methylase, endonuclease, or other Lrm1 genes provide a function crucial to L. rhamnosus M1 survival, resulting in the stability of the defective prophage in its lysogenic state. The presence of a defective prophage in an industrial strain could provide superinfection immunity to the host but could also contribute DNA in recombination events to produce new phages potentially infective for the host strain in a large-scale fermentation environment.  相似文献   

18.
Plaque-forming, galactose-transducing lambda strains have been isolated from lysogens in which bacterial genes have been removed from between the galactose operon and the prophage by deletion mutation.—A second class has been isolated starting with a lysogenic strain which carries a deletion of the genes to the right of the galactose operon and part of the prophage. This strain was lysogenized with a second lambda phage to yield a lysogen from which galactose-transducing, plaque-forming phages were obtained. These plaque-forming phages were found to be genetically unstable, due to a duplication of part of the lambda chromosome. The genetic instability of these partial diploid strains is due to homologous genetic recombindation between the two identical copies of the phage DNA comprising the duplication. The galactose operon and the duplication of phage DNA carried by these strains is located between the phage lambda P and Q genes.  相似文献   

19.
Virulent bacteriophages of colistin--producing Bacillus polymyxa strains were studied. The phages were found to differ in lytic spectrum and were active only against strains of B. polymyxa. They did not attack other strains of the genus Bacillus. The virulent bacteriophages belong to two morphological groups differing in size. The size of the DNA of the bacteriophages of both groups is similar and ranges from 74.9 X 10(6) to 87.8 X 10(6) daltons. The cells of different B. polymyxa strains were also found to carry various defective phages which could be shown after mitomycin C induction of cell cultures. The antibacterial activity of mitomycin C induced cell lysates was not detected. Strains of B. polymyxa most probably devoid of defective bacteriophages (delysogenized) were isolated.  相似文献   

20.
The recent boom in phage therapy and phage biocontrol requires the design of suitable cocktails of genetically different bacteriophages. The current methods for typing phages need significant quantities of purified DNA, may require a priori genetic information and are cost and time consuming. We have evaluated the randomly amplified polymorphic DNA (RAPD)-PCR technique to produce unique and reproducible band patterns from 26 different bacteriophages infecting Staphylococcus epidermidis, Staphylococcus aureus, Lactococcus lactis, Escherichia coli, Streptococcus thermophilus, Bacillus subtilis and Lactobacillus casei bacterial strains. Initially, purified DNA and phage suspensions of seven selected phages were used as a template. The conditions that were found to be optimal 8 μM of 10-mer primers, 3 μM magnesium oxalacetate and 5% dimethyl sulfoxide. The RAPD genomic fingerprints using a phage titer suspension higher than 10(9) PFU mL(-1) were highly reproducible. Clustering by the Pearson correlation coefficient and the unweighted pair group method with arithmetic averages clustering algorithm correlated largely with genetically different phages infecting the same bacterial species, although closely related phages with a similar DNA restriction pattern were indistinguishable. The results support the use of RAPD-PCR for quick typing of phage isolates and preliminary assessment of their genetic diversity bypassing tedious DNA purification protocols and previous knowledge of their sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号