共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Blocker state dependence and trapping in hyperpolarization-activated cation channels: evidence for an intracellular activation gate 总被引:9,自引:0,他引:9
Hyperpolarization-activated cation currents (I(h)) are key determinants of repetitive electrical activity in heart and nerve cells. The bradycardic agent ZD7288 is a selective blocker of these currents. We studied the mechanism for ZD7288 blockade of cloned I(h) channels in excised inside-out patches. ZD7288 blockade of the mammalian mHCN1 channel appeared to require opening of the channel, but strong hyperpolarization disfavored blockade. The steepness of this voltage-dependent effect (an apparent valence of approximately 4) makes it unlikely to arise solely from a direct effect of voltage on blocker binding. Instead, it probably indicates a differential affinity of the blocker for different channel conformations. Similar properties were seen for ZD7288 blockade of the sea urchin homologue of I(h) channels (SPIH), but some of the blockade was irreversible. To explore the molecular basis for the difference in reversibility, we constructed chimeric channels from mHCN1 and SPIH and localized the structural determinant for the reversibility to three residues in the S6 region likely to line the pore. Using a triple point mutant in S6, we also revealed the trapping of ZD7288 by the closing of the channel. Overall, the observations led us to hypothesize that the residues responsible for ZD7288 block of I(h) channels are located in the pore lining, and are guarded by an intracellular activation gate of the channel. 相似文献
4.
Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node 总被引:22,自引:0,他引:22
Ishii TM Takano M Xie LH Noma A Ohmori H 《The Journal of biological chemistry》1999,274(18):12835-12839
We cloned a cDNA (HAC4) that encodes the hyperpolarization-activated cation channel (If or Ih) by screening a rabbit sinoatrial (SA) node cDNA library using a fragment of rat brain If cDNA. HAC4 is composed of 1150 amino acid residues, and its cytoplasmic N- and C-terminal regions are longer than those of HAC1-3. The transmembrane region of HAC4 was most homologous to partially cloned mouse If BCNG-3 (96%), whereas the C-terminal region of HAC4 showed low homology to all HAC family members so far cloned. Northern blotting revealed that HAC4 mRNA was the most highly expressed in the SA node among the rabbit cardiac tissues examined. The electrophysiological properties of HAC4 were examined using the whole cell patch-clamp technique. In COS-7 cells transfected with HAC4 cDNA, hyperpolarizing voltage steps activated slowly developing inward currents. The half-maximal activation was obtained at -87.2 +/- 2.8 mV under control conditions and at -64.4 +/- 2.6 mV in the presence of intracellular 0.3 mM cAMP. The reversal potential was -34.2 +/- 0.9 mV in 140 mM Na+o and 5 mM K+o versus 10 mM Na+i and 145 mM K+i. These results indicate that HAC4 forms If in rabbit heart SA node. 相似文献
5.
Dorsal root ganglion(DRG)neurons have peripheral terminals in skin,muscle,and other peripheral tissues,andcentral terminals 相似文献
6.
Dorsal root ganglion DRG neurons have peripheral ter-minals in skin, muscle, and other peripheral tissues, andcentral terminals in the spinal cord dorsal horn. 相似文献
7.
8.
A key role for TRPM7 channels in anoxic neuronal death 总被引:36,自引:0,他引:36
Aarts M Iihara K Wei WL Xiong ZG Arundine M Cerwinski W MacDonald JF Tymianski M 《Cell》2003,115(7):863-877
Excitotoxicity in brain ischemia triggers neuronal death and neurological disability, and yet these are not prevented by antiexcitotoxic therapy (AET) in humans. Here, we show that in neurons subjected to prolonged oxygen glucose deprivation (OGD), AET unmasks a dominant death mechanism perpetuated by a Ca2+-permeable nonselective cation conductance (IOGD). IOGD was activated by reactive oxygen/nitrogen species (ROS), and permitted neuronal Ca2+ overload and further ROS production despite AET. IOGD currents corresponded to those evoked in HEK-293 cells expressing the nonselective cation conductance TRPM7. In cortical neurons, blocking IOGD or suppressing TRPM7 expression blocked TRPM7 currents, anoxic 45Ca2+ uptake, ROS production, and anoxic death. TRPM7 suppression eliminated the need for AET to rescue anoxic neurons and permitted the survival of neurons previously destined to die from prolonged anoxia. Thus, excitotoxicity is a subset of a greater overall anoxic cell death mechanism, in which TRPM7 channels play a key role. 相似文献
9.
An unexpected role for ion channels in brain tumor metastasis 总被引:2,自引:0,他引:2
Sontheimer H 《Experimental biology and medicine (Maywood, N.J.)》2008,233(7):779-791
Over the past two decades it has become apparent that essentially all living cells express voltage-activated ion channels. While the role of ion channels for electrical signaling between excitable cells is well known, their function in non-excitable cells is somewhat enigmatic. Research on cancer cells suggests that certain ion channels, K+ channels in particular, may be involved in aberrant tumor growth and channel inhibitors often lead to growth arrest. An unsuspected role for K+ and Cl(-) channels has now been documented for primary brain tumors, glioma, where the concerted activity of these channels promotes cell invasion and the formation of brain metastasis. Specifically, Ca2+-activated K+ (BK) channels colocalize with ClC-3 Cl(-) channels to the invading processes of these tumor cells. Upon a rise in intracellular Ca2+, these channels activate and release K+ and Cl(-) ions together with obligated water causing a rapid shrinkage of the leading process. This in turn facilitates the invasion of the cell into the narrow and tortuous extracellular brain spaces. The NKCC1 cotransporter accumulates intracellular Cl(-) to unusually high concentrations, thereby establishing an outward directed gradient for Cl(-) ions. This allows glioma cells to utilize Cl(-) as an osmotically active anion during invasion. Importantly, the inhibition of Cl(-) channels retards cell volume changes, and, in turn, compromises tumor cell invasion. These findings have led to the clinical evaluation of a Cl(-) channel blocking peptide, chlorotoxin, in patients with malignant glioma. Data from this clinical trial shows remarkable tumor selectivity for chlorotoxin. The experimental therapeutic was well tolerated and is now evaluated in a multi-center phase II clinical trial. A similar role for Cl(-) and K+ channels is suspected in other metastatic cancers, and lessons learned from studies of gliomas may pave the way towards the development of novel therapeutics targeting ion channels. 相似文献
10.
Activity-dependent heteromerization of the hyperpolarization-activated, cyclic-nucleotide gated (HCN) channels: role of N-linked glycosylation 总被引:1,自引:0,他引:1
Formation of heteromeric complexes of ion channels via co-assembly of different subunit isoforms provides an important mechanism for enhanced channel diversity. We have previously demonstrated co-association of the hyperpolarization activated cyclic-nucleotide gated (HCN1/HCN2) channel isoforms that was regulated by network (seizure) activity in developing hippocampus. However, the mechanisms that underlie this augmented expression of heteromeric complexes have remained unknown. Glycosylation of the HCN channels has been implicated in the stabilization and membrane expression of heteromeric HCN1/HCN2 constructs in heterologous systems. Therefore, we used in vivo and in vitro systems to test the hypothesis that activity modifies HCN1/HCN2 heteromerization in neurons by modulating the glycosylation state of the channel molecules. Seizure-like activity (SA) increased HCN1/HCN2 heteromerization in hippocampus in vivo as well as in hippocampal organotypic slice cultures. This activity increased the abundance of glycosylated HCN1 but not HCN2-channel molecules. In addition, glycosylated HCN1 channels were preferentially co-immunoprecipitated with the HCN2 isoforms. Provoking SA in vitro in the presence of the N-linked glycosylation blocker tunicamycin abrogated the activity-dependent increase of HCN1/HCN2 heteromerization. Thus, hippocampal HCN1 molecules have a significantly higher probability of being glycosylated after SA, and this might promote a stable heteromerization with HCN2. 相似文献
11.
Vazquez G Wedel BJ Kawasaki BT Bird GS Putney JW 《The Journal of biological chemistry》2004,279(39):40521-40528
Members of the canonical transient receptor potential (TRPC) subfamily of cation channels are candidates for capacitative and non-capacitative Ca2+ entry channels. When ectopically expressed in cell lines, TRPC3 can be activated by phospholipase C-mediated generation of diacylglycerol or by addition of synthetic diacylglycerols, independently of Ca2+ store depletion. Apart from this mode of regulation, little is known about other receptor-dependent signaling events that modulate TRPC3 activity. In the present study the role of tyrosine kinases in receptor- and diacylglycerol-dependent activation of TRPC3 was investigated. In HEK293 cells stably expressing TRPC3, pharmacological inhibition of tyrosine kinases, and specifically of Src kinases, abolished activation of TRPC3 by muscarinic receptor stimulation and by diacylglycerol. Channel regulation was lost following expression of a dominant-negative mutant of Src, or when TRPC3 was expressed in an Src-deficient cell line. In both instances, wild-type Src restored TRPC3 regulation. We conclude that Src plays an obligatory role in the mechanism for receptor and diacylglycerol activation of TRPC3. 相似文献
12.
The positively charged S4 transmembrane segment of voltage-gated channels is thought to function as the voltage sensor by moving charge through the membrane electric field in response to depolarization. Here we studied S4 movements in the mammalian HCN pacemaker channels. Unlike most voltage-gated channel family members that are activated by depolarization, HCN channels are activated by hyperpolarization. We determined the reactivity of the charged sulfhydryl-modifying reagent, MTSET, with substituted cysteine (Cys) residues along the HCN1 S4 segment. Using an HCN1 channel engineered to be MTS resistant except for the chosen S4 Cys substitution, we determined the reactivity of 12 S4 residues to external or internal MTSET application in either the closed or open state of the channel. Cys substitutions in the NH2-terminal half of S4 only reacted with external MTSET; the rates of reactivity were rapid, regardless of whether the channel was open or closed. In contrast, Cys substitutions in the COOH-terminal half of S4 selectively reacted with internal MTSET when the channel was open. In the open state, the boundary between externally and internally accessible residues was remarkably narrow (approximately 3 residues). This suggests that S4 lies in a water-filled gating canal with a very narrow barrier between the external and internal solutions, similar to depolarization-gated channels. However, the pattern of reactivity is incompatible with either classical gating models, which postulate a large translational or rotational movement of S4 within a gating canal, or with a recent model in which S4 forms a peripheral voltage-sensing paddle (with S3b) that moves within the lipid bilayer (the KvAP model). Rather, we suggest that voltage sensing is due to a rearrangement in transmembrane segments surrounding S4, leading to a collapse of an internal gating canal upon channel closure that alters the shape of the membrane field around a relatively static S4 segment. 相似文献
13.
14.
Francis K van Beek J Canova C Neal JW Gasque P 《Expert reviews in molecular medicine》2003,5(15):1-19
The complement inflammatory cascade is an essential component of the phylogenetically ancient innate immune response and is crucial to our natural ability to ward off infection. Complement is involved in host defence by triggering the generation of a membranolytic complex (the C5b-9 complex) at the surface of the pathogen. Complement fragments (opsonins; C1q, C3b and iC3b) interact with complement cell-surface receptors (C1qRp, CR1, CR3 and CR4) to promote phagocytosis and a local pro-inflammatory response that, ultimately, contributes to the protection and healing of the host. Complement is of special importance in the brain, where entrance of elements of the adaptive immune system is restricted by a blood-brain barrier. There is now compelling evidence that complement is produced locally in response to an infectious challenge. Moreover, complement biosynthesis and activation also occurs in neurodegenerative disorders such as Alzheimer's, Huntington's and Pick's diseases, and the cytolytic/cytotoxic activities of complement are thought to contribute to neuronal loss and brain tissue damage. However, recent data suggest that at least some of the complement components have the ability to contribute to neuroprotective pathways. The emerging paradigm is that complement is involved in the clearance of toxic cell debris (e.g. amyloid fibrils) and apoptotic cells, as well as in promoting tissue repair through the anti-inflammatory activities of C3a. Knowledge of the unique molecular and cellular innate immunological interactions that occur in the development and resolution of pathology in the brain should facilitate the design of effective therapeutic strategies. 相似文献
15.
G. Mayer-Kress F.E. Yates L. Benton M. Keidel W. Tirsch S.J. Pppl K. Geist 《Mathematical biosciences》1988,90(1-2)
We present some numerical studies on the dimensional analysis of temporal oscillations observed in human electroencephalograms (EEG), heart rates, and muscle tremors. We show that it is insufficient to characterize the individual system by a single dimension value alone. We also present some detailed numerical analysis of the scaling structure of the attractors reconstructed from the time signal. Our methods are based on the concept of local gauge functions, which we derive from the raw signals and from transformed signals obtained through singular value decomposition. We are able to confirm and improve earlier results on the change of dimensionality of EEG signals. For heart rates we observe an increase of the dimensional complexity during sleep, and for muscle tremor data we find significant changes in the dimensionality depending on the isometrical contraction of the muscle. We attempt to indicate which factors are important in determining dimension estimates and where specific problems lie in each of the examples. 相似文献
16.
17.
Structural elements of instantaneous and slow gating in hyperpolarization-activated cyclic nucleotide-gated channels 总被引:3,自引:0,他引:3
Hyperpolarization-activated cyclic nucleotide-gated (HCN) subunits produce a slowly activating current in response to hyperpolarization (If) and an instantaneous voltage-independent current (Iinst) when expressed in Chinese hamster ovary (CHO) cells. Here we found that a mutation in the S4-S5 linker of HCN2 (Y331D) produced an additional mixed cationic instantaneous current. However, this current was inhibited by external Cs+ like If and unlike Iinst. Together with a concomitant reduction in If, the data suggest that the Y331D mutation disrupted channel closing placing the channel in a "If-like," and not an "Iinst-like," state. The "If-like" instantaneous current represented approximately 70% of total If over voltages ranging from +20 to -150 mV in high K+ solutions. If activated at more depolarized potentials and the activation curve was less steep, whereas deactivation was significantly slowed, consistent with the idea that the mutation inhibited channel closing. The data suggest that the mutation produced allosteric effects on the activation gate (S6 segment) and/or on voltage-sensing elements. We also found that decreases in the ratio of external K+/Na+ further disrupted channel closing in the mutant channel. Finally, our data suggest that the structures involved in producing Iinst are similar between the HCN1 and HCN2 isoforms and that excess HCN protein on the plasma membrane of CHO cells relative to native cells is not responsible for Iinst. The data are consistent with Iinst flowing through a "leaky" closed state but do not rule out flow through a second configuration of recombinant HCN channels or up-regulated endogenous channels/subunits. 相似文献
18.
Regulation of hyperpolarization-activated HCN channels by cAMP through a gating switch in binding domain symmetry 总被引:5,自引:0,他引:5
Recent X-ray structures show that the binding domains of tetrameric ligand-gated channels form either a 4-fold symmetric gating ring or a 2-fold symmetric dimer of dimers. To determine how such structures function to coordinate the binding of multiple ligands during channel activation, we examined the action of cAMP to enhance the opening of the hyperpolarization-activated HCN2 channels, whose cytoplasmic C terminus forms a gating ring in the presence of cAMP. Using tandem dimers and tetramers in which cAMP binding to selected HCN2 subunits was prevented by a point mutation or deletion, we provide the first direct determination of the energetic effects on gating of each of four ligand binding events and demonstrate the importance of the gating ring for cAMP regulation. We suggest that cAMP binding enhances channel opening by promoting assembly of the gating ring from an unliganded state in which the four subunits interact as a 2-fold symmetric dimer of dimers. 相似文献
19.
Narcolepsy: a key role for hypocretins (orexins) 总被引:6,自引:0,他引:6
J M Siegel 《Cell》1999,98(4):409-412
20.
Single Na channel currents were compared in ventricular myocytes and cortical neurons of neonatal rats using the gigaseal patch-clamp method to determine whether tissue-specific differences in gating can be detected at the single-channel level. Single-channel currents were recorded in cell-attached and excised membrane patches at test potentials of -70 to -20 mV and at 9-11 degrees C. In both cell-attached and excised patches brain Na channel mean open time progressively increased from less than 1 ms at -70 mV to approximately 2 ms at -20 mV. Near threshold, single openings with dispersed latencies were observed. By contrast, in cell-attached patches, heart Na channel mean open time peaked near -50 mV, was three times brain Na channel mean open time, and declined continuously to approximately 2 ms at -20 mV. Near threshold, openings occurred frequently usually as brief bursts lasting several milliseconds and rarely as prolonged bursts lasting tens of milliseconds. Unlike what occurs in brain tissue where excision did not change gating, in excised heart patches both the frequency of prolonged bursting and the mean open time of single units increased markedly. Brain and cardiac Na channels can therefore be distinguished on the basis of their mean open times and bursting characteristics. 相似文献