首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
【目的】辣椒是中国种植面积最大的蔬菜作物,随着土地盐碱化问题的日趋严重,加强辣椒耐盐机制研究对促进产业可持续发展具有重要意义。因而,急需加快辣椒耐盐相关关键基因的功能研究。【方法】研究组前期挖掘到与辣椒耐盐性相关的转录因子CaNAC36,在此基础上,以耐盐辣椒PI201224和敏盐辣椒PI438643为供试品种,克隆获得CaNAC36全长gDNA和cDNA序列,通过荧光定量分析CaNAC36及可能的互作基因在盐胁迫条件下不同组织部位的表达情况,并进一步结合生物信息学分析探究CaNAC36及其互作基因之间存在的潜在关系。【结果】结果表明,CaNAC36序列在耐盐和敏盐材料中DNA和cDNA同源性分别为99.86%和100%;荧光定量的结果表明,CaNAC36在耐盐材料根和茎组织中表现为诱导上调表达,在敏盐材料根和叶中表现为诱导下调表达;对可能与CaNAC36存在互作关系的48个基因的注释信息进行分析后,发现跨膜蛋白、转运蛋白、水孔蛋白、氯离子通道蛋白、解毒蛋白等14个基因可能与CaNAC36存在功能互作。进一步分析发现,在PI201224和PI438643盐胁迫处理不同时间点、不同组织中,5个相关基因(Capana08g002748、Capana00g004514、Capana09g000275、Capana07g001450、Capana02g001031)的表达呈现显著差异。同时发现,CaNAC36及5个关联基因启动子域含有大量的逆境相关顺式作用元件。【结论】结合基因克隆、基因表达水平分析以及生物信息学分析,表明CaNAC36是辣椒响应盐胁迫的重要转录因子,并可能与其他基因相互作用以提高植株的耐盐性,可为深度研究辣椒耐盐性以及选育耐盐品种提供数据支撑。  相似文献   

4.
5.
6.
7.
8.
9.
10.
Hwang IS  Hwang BK 《Plant physiology》2011,155(1):447-463
Plant mannose-binding lectins (MBLs) are crucial for plant defense signaling during pathogen attack by recognizing specific carbohydrates on pathogen surfaces. In this study, we isolated and functionally characterized a novel pepper (Capsicum annuum) MBL gene, CaMBL1, from pepper leaves infected with Xanthomonas campestris pv vesicatoria (Xcv). The CaMBL1 gene contains a predicted Galanthus nivalis agglutinin-related lectin domain responsible for the recognition of high-mannose N-glycans but lacks a middle S-locus glycoprotein domain and a carboxyl-terminal PAN-Apple domain. The CaMBL1 protein exhibits binding specificity for mannose and is mainly localized to the plasma membrane. Immunoblotting using a CaMBL1-specific antibody revealed that CaMBL1 is strongly expressed and accumulates in pepper leaves during avirulent Xcv infection. The transient expression of CaMBL1 induces the accumulation of salicylic acid (SA), the activation of defense-related genes, and the cell death phenotype in pepper. The G. nivalis agglutinin-related lectin domain of CaMBL1 is responsible for cell death induction. CaMBL1-silenced pepper plants are more susceptible to virulent or avirulent Xcv infection compared with unsilenced control plants, a phenotype that is accompanied by lowered reactive oxygen species accumulation, reduced expression of downstream SA target genes, and a concomitant decrease in SA accumulation. In contrast, CaMBL1 overexpression in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to Pseudomonas syringae pv tomato and Alternaria brassicicola infection. Together, these data suggest that CaMBL1 plays a key role in the regulation of plant cell death and defense responses through the induction of downstream defense-related genes and SA accumulation after the recognition of microbial pathogens.  相似文献   

11.
12.
Lee DH  Choi HW  Hwang BK 《Plant physiology》2011,156(4):2011-2025
Ubiquitination is essential for ubiquitin/proteasome-mediated protein degradation in plant development and defense. Here, we identified a novel E3 ubiquitin ligase RING1 gene, CaRING1, from pepper (Capsicum annuum). In pepper, CaRING1 expression is induced by avirulent Xanthomonas campestris pv vesicatoria infection. CaRING1 contains an amino-terminal transmembrane domain and a carboxyl-terminal RING domain. In addition, it displays in vitro E3 ubiquitin ligase activity, and the RING domain is essential for E3 ubiquitin ligase activity in CaRING1. CaRING1 also localizes to the plasma membrane. In pepper plants, virus-induced gene silencing of CaRING1 confers enhanced susceptibility to avirulent X. campestris pv vesicatoria infection, which is accompanied by compromised hypersensitive cell death, reduced expression of PATHOGENESIS-RELATED1, and lowered salicylic acid levels in leaves. Transient expression of CaRING1 in pepper leaves induces cell death and the defense response that requires the E3 ubiquitin ligase activity of CaRING1. By contrast, overexpression of CaRING1 in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to hemibiotrophic Pseudomonas syringae pv tomato and biotrophic Hyaloperonospora arabidopsidis infections. Taken together, these results suggest that CaRING1 is involved in the induction of cell death and the regulation of ubiquitination during the defense response to microbial pathogens.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Thioredoxins (TRXs) are distributed ubiquitously in prokaryotic and eukaryotic organisms. Plants have the most complex forms of TRXs. The functional roles of such TRXs have been studied in abiotic stress but their roles in plant defense responses against biotic stresses have been less well studied. Here, we identified an h-type TRX gene from pepper, CaTRXh1, and characterized its possible effect on Type II nonhost resistance, which entails localized programmed cell death in response to nonhost pathogens. Peptide sequences of CaTRXh1 showed a high degree of similarity with TRXhs from tobacco and Arabidopsis thaliana. Southern blot analyses revealed that CaTRXh1 was present as a single copy in the pepper genome. Intriguingly, leaf infiltration by Xanthomonas axonopodis pv. glycines 8ra, eliciting a visible type II nonhost hypersensitive response (HR), and its type III secretion-system null mutant 8–13, eliciting a type I nonhost non-HR, both induced CaTRXh1 at a level similar to that of pathogenesis-related protein 4, an HR marker gene in pepper. More surprisingly, expression of CaTRXh1 was significantly increased when X. axonopodis pv. vesicatoria race 3 infiltrated the leaf of a pepper cultivar containing a resistance gene, but not with infiltration of a susceptible pepper cultivar. Taken together, our study suggests that the expression of CaTRXh1 has a critical role in HR-mediated active defense responses in pepper. GenBank accession number: EF371503.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号