首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Question: Will a non‐indigenous, invasive, understorey shrub, such as Lonicera maackii (Amur honeysuckle) have an impact on the productivity of overstorey trees in hardwood forests? Location: Trees from 12 invaded and four non‐invaded sites were sampled in hardwood forests of southwestern Ohio, US. Methods: Changes in radial and basal area tree growth in the ten years prior to L. maackii invasion vs. ten years after invasion were examined using dendrochronological techniques. Intervention analysis was used to detect growth changes 25 years prior to and 25 years following invasion, and estimates of load impacts for L. maackii population and biomass were also calculated. Results: We found that the rate of radial and basal area growth of overstorey trees was reduced significantly in eleven out of twelve invaded sites. Non‐invaded sites did not exhibit this consistent pattern of reduced growth. For invaded vs. non‐invaded sites, the mean basal area growth was reduced by 15.8%, and the overall rate of basal area growth was reduced by 53.1%. Intervention analysis revealed that the first significant growth reductions were 6.25 ± 1.24 (mean ± SE) years after invasion with the greatest frequency of negative growth changes occurring 20 years after invasion. In invaded stands, 41% of trees experienced negative growth changes. In terms of invasive load estimates per 1000 L. maackii individuals, radial tree growth was reduced by 0.56 mm.a?1, and basal area growth was reduced by 0.74 cm2.a?1, Given these findings, significant economic losses could occur in hardwood forests of Ohio. Conclusions: To our knowledge, this is the first study using dendrochronological techniques to investigate the impact of a non‐indigenous, understorey plant on overstorey tree growth. Active management will likely be needed to maintain forest productivity in L. maackii impacted landscapes.  相似文献   

2.
By relating species presence, number and density to the perimeter and isolation of small (0.1–2.75 ha) homogeneous woodlots (n = 43), indications were obtained that some fleshy-fruited species are negatively affected by woodlot isolation. The number of fruit-bearing herbaceous perennial species increased with woodlot area, probably because of the increasing heterogeneity of the herb layer. The density of individuals of the investigated species were negatively correlated to woodlot area. There were also some indications thatthe presence/absence of species was related to the length of the forest edge (e.g. Hederá helix). Because woodlot area and shape index were strongly correlated, the effects of increased forest area and forest edge were hard to separate. The probability of occurrence of Lonicera periclymenum and the density oí Ilex aquifolium decreased with an increasing degree of isolation of present forest islands. The chance of occurrence of L. periclymenum decreased also with the degree of isolation in the past, measured from topographical maps of about 60 yr ago. The total area of broad-leaved forest within a radius of 500 m, as well as the distance to the nearest connecting landscape element, seem to be good indicators of woodlot isolation.  相似文献   

3.
Orrock JL  Christopher CC  Dutra HP 《Oecologia》2012,168(4):1103-1110
Soil-borne seed pathogens may play an important role in either hindering or facilitating the spread of invasive exotic plants. We examined whether the invasive shrub Lonicera maackii (Caprifoliaceae) affected fungi-mediated mortality of conspecific and native shrub seeds in a deciduous forest in eastern Missouri. Using a combination of L. maackii removal and fungicide treatments, we found no effect of L. maackii invasion on seed viability of the native Symphoricarpos orbiculatus (Caprifoliaceae) or Cornus drummondii (Cornaceae). In contrast, fungi were significant agents of L. maackii seed mortality in invaded habitats. Losses of L. maackii to soil fungi were also significant in invaded habitats where L. maackii had been removed, although the magnitude of the effect of fungi was lower, suggesting that changes in soil chemistry or microhabitat caused by L. maackii were responsible for affecting fungal seed pathogens. Our work suggests that apparent competition via soil pathogens is not an important factor contributing to impacts of L. maackii on native shrubs. Rather, we found that fungal seed pathogens have density-dependent effects on L. maackii seed survival. Therefore, while fungal pathogens may provide little biotic resistance to early invasion by L. maackii, our study illustrates that more work is needed to understand how changes in fungal pathogens during the course of an invasion contribute to the potential for restoration of invaded systems. More generally, our study suggests that increased rates of fungal pathogen attack may be realized by invasive plants, such as L. maackii, that change the chemical or physical environment of the habitats they invade.  相似文献   

4.
The incorporation of an animal-dispersed exotic plant species into the diet of native frugivores can be an important step to that species becoming invasive. We investigated bird dispersal of Lonicera maackii, an Asian shrub invasive in eastern North America. We (i) determined which species of birds disperse viable L. maackii seeds, (ii) tested the effect of gut passage on L. maackii seeds, and (iii) projected the seed shadow based on habitat use by a major disperser. We found that four native and one exotic bird species dispersed viable L. maackii seeds. Gut passage through American robins did not inhibit germination, but gut passage through cedar waxwings did. American robins moved mostly along woodlot edges and fencerows, leading us to project that most viable seeds would be defecated in such habitats, which are very suitable for L. maackii. We conclude that L. maackii has been successfully incorporated into the diets of native and exotic birds and that American robins preferentially disperse seeds to suitable habitat.  相似文献   

5.
Invasive shrubs can increase ecosystem transpiration and potentially affect hydrology in forested ecosystems. We examined two adjacent sites in a wetland forest in northern Kentucky, USA. One site contained little Lonicera maackii (Amur honeysuckle), while the other contained considerably more. Using Granier (thermal dissipation) and heat balance probes, transpiration was determined for trees, vines and shrubs at the two sites. Tree and vine transpiration in 2009 was usually 1–2 mm day−1, typical of that seen in humid temperate forests. Additional transpiration from L. maackii was roughly proportional to its basal area, and it totaled 1.0% of tree and vine transpiration from the site with less L. maackii cover and 6.0% from the site with considerable cover. This additional transpiration amounts to roughly 10% of stream flow draining the study area. As L. maackii basal areas at these sites are at the lower end of that seen in other invaded forests in the region, regional impacts on transpiration and hydrology may be larger than those reported here. We expect L. maackii to shorten the lives of ephemeral ponds and streams in wetlands and cause adverse impacts on the organisms, such as amphibians, that require these aquatic environments to complete their life cycle.  相似文献   

6.
  1. Mid-field woodlots play an important role in maintaining biodiversity in agricultural landscapes. However, it is not clear whether non-linear or linear woodlots are most beneficial for wild bee conservation.
  2. We assessed the attractiveness of two common types of woodlots in an agricultural landscape in northern Poland (non-linear and linear: 7 and 9 sites, respectively) in terms of wild bee abundance, species richness, and functional diversity.
  3. Linear habitats had higher abundance of wild bees. However, woodlot type did not affect wild bee species composition or functional trait composition. Species composition responded significantly to measures of syntaxonomic heterogeneity and landscape heterogeneity. Woodlot area, landscape context (isolation and landscape heterogeneity), and syntaxonomic heterogeneity explained most of the differences among habitats (non-linear vs. linear) in wild bee abundance and species richness, regardless of the habitat type. The higher attractiveness of linear woodlots was due to increased food availability in the herbaceous layer in the spring–summer (June) and summer (July–August) periods.
  4. Linear woodlots have the potential to be used as tools for integrating agricultural production with biodiversity conservation and ecosystem services.
  相似文献   

7.
Plant invasions disrupt native plant reproduction directly via competition for light and other resources and indirectly via competition for pollination. Furthermore, shading by an invasive plant may reduce pollinator visitation and therefore reproduction in native plants. Our study quantifies and identifies mechanisms of these direct and indirect effects of an invasive shrub on pollination and reproductive success of a native herb. We measured pollinator visitation rate, pollen deposition, and female reproductive success in potted arrays of native Geranium maculatum in deciduous forest plots invaded by the non-native shrub Lonicera maackii and in two removal treatments: removal of aboveground L. maackii biomass and removal of flowers. We compared fruit and seed production between open-pollinated and pollen-supplemented plants to test for pollen and light limitation of reproduction. Plots with L. maackii had significantly lower light, pollinator visitation rate, and conspecific pollen deposition to G. maculatum than biomass removal plots. Lonicera maackii flower removal did not increase pollinator visitation or pollen deposition compared to unmanipulated invaded plots, refuting the hypothesis of competition for pollinators. Thus, pollinator-mediated impacts of invasive plants are not limited to periods of co-flowering or pollinator sharing between potential competitors. Geranium maculatum plants produced significantly fewer seeds in plots containing L. maackii than in plant removal plots. Seed set was similar between pollen-supplemented and open-pollinated plants, but pollen-supplemented plants exhibited higher seed set in plant removal plots compared to invaded plots. Therefore, we conclude that the mechanism of impact of L. maackii on G. maculatum reproduction was increased understory shade.  相似文献   

8.
Exotic ecosystem engineers induce structural and qualitative habitat changes in invaded landscapes, yet studies rarely examine the effects of both of these changes on native taxa. We used a factorial experiment in natural, predator‐containing environments to determine whether performance of amphibian larvae was affected by predators and/or changes in habitat structure or chemistry associated with the invasive shrub Lonicera maackii. Invertebrate predators significantly reduced survival of American toad Anaxyrus americanus larvae, whereas tadpole development was accelerated in pools inoculated with the chemical signature of L. maackii. The significant effect of L. maackii chemistry on A. americanus larvae suggests that invasive species may have non‐intuitive effects even on native taxa with which they share no trophic connection, and may represent cryptic components of the multiple, interactive drivers of biodiversity change.  相似文献   

9.
  • 1 Boundaries between woodlots and agricultural habitats are numerous in temperate agricultural landscapes and influence ecological processes in both woodlots and agricultural habitats.
  • 2 We aimed to determine how far the species assemblage of ground beetles in woodlot and open habitats was influenced by the presence of the woodlot–field boundary.
  • 3 We studied the distribution of ground beetles on both sides of the boundaries of four woodlots along transects of pitfall traps (n = 140). The depth of edge influence (i.e. the distance from the boundary at which the presence of the boundary has no more significant influence) on the species assemblage of ground beetles in each woodlot and in each agricultural habitat was determined with nonlinear canonical analysis of principal coordinates, an ordination method that is followed by nonlinear regression of the principal coordinates on distance from the boundary.
  • 4 The depth of edge influence on the species assemblages of ground beetles was asymmetrical relative to the boundary: it was generally higher and had higher variability in open habitats (14.4 ± 12.3 m) than in woodlots (4.9 ± 2.3 m). Species assemblages of ground beetles in edges were a mix between both adjacent species assemblages. Edge effects in woodlots were deeper in the woodlots exhibiting a deeper penetration of open habitat species. Symmetrically, edge effects in open habitat were deeper in the open habitats with a deeper diffusion of forest species into the open habitat.
  • 5 Forest ground beetles were not threatened by edge effects. Rather, edge effects are likely to benefit agriculture, mostly through the dispersal of predatory forest species into agricultural fields.
  相似文献   

10.
Preventing and controlling exotic plants remains a key challenge in any ecological restoration, and most efforts are currently aimed at local scales. We combined local‐ and landscape‐scale approaches to identify factors that were most closely associated with invasion of riparian forests by exotic shrubs (Amur honeysuckle [Lonicera maackii] and Tatarian honeysuckle [L. tatarica]) in Ohio, U.S.A. Twenty sites were selected in mature riparian forests along a rural–urban gradient (<1–47% urban land cover). Within each site, we measured percent cover of Lonicera spp. and native trees and shrubs, percent canopy cover, and facing edge aspect. We then developed 10 a priori models based on local‐ and landscape‐level variables that we hypothesized would influence percent cover of Lonicera spp. within 25 m of the forest edge. To determine which of these models best fit the data, we used an information‐theoretic approach and Akaike's information criterion. Percent cover of Lonicera was best explained by the proportion of urban land cover within 1 km of riparian forests. In particular, percent cover of Lonicera was greater in forests within more urban landscapes than in forests within rural landscapes. Results suggest that surrounding land uses influence invasion by exotic shrubs, and explicit consideration of land uses may improve our ability to predict or limit invasion. Moreover, identifying land uses that increase the risk of invasion may inform restoration efforts.  相似文献   

11.
Allelopathic effects of invasive plants on native flora may be mitigated by the abiotic and biotic environment into which the allelochemicals are released. Lonicera maackii (Amur honeysuckle), an invasive plant of the eastern deciduous forest, suppresses seed germination in laboratory assays. We investigated how L. maackii leachate interacts with abiotic conditions and with the soil microbial community. First, we tested the effects of leaf extract from L. maackii on germination of the native woodland herb, Blephilia hirsuta, under different light and soil conditions. We found that germination of Blephilia hirsuta was reduced by L. maackii extract, but abiotic conditions did not interact with this effect. We also tested the effects of leaf extract on germination of five native woodland species and L. maackii placed in sterile or live soil. There was an overall suppressive effect of L. maackii extract on itself and the other five native species tested. However, L. maackii extract interacted with live soil in ways that differed with the species being tested and, in some cases, changed over time. Our results indicate that allelopathic potential of L. maackii shows context dependency with respect to soil microorganisms and native species identity but not to light conditions or soil type. Our results imply that restoration of invaded areas may require active reintroduction of species sensitive to allelopathy in live soil. Further, laboratory assays of allelopathy should consider the interaction of allelochemicals with biotic and abiotic conditions to more accurately predict the impacts of allelopathy on plant communities.  相似文献   

12.
Despite the widespread recognition that urban areas are frequently dominated by exotic and invasive plants, the consequences of these changes in community structure have not been explicitly considered as an explanation for the pattern of advanced leaf phenology, or early greenup, reported in many urban areas. As such, we evaluated two hypotheses that could account for advanced greenup in forests along an urban to rural gradient: advanced phenology within individual species or differences in woody plant community. We monitored the spring leafing phenology of Aesculus glabra (Ohio buckeye), Lonicera maackii (Amur honeysuckle), and Acer negundo (box elder) in 11 forests spanning an urban to rural gradient in central Ohio, USA. From February to April 2006, we monitored these species, recorded woody plant composition, and documented daily minimum and maximum temperatures at each site. We found a weak but general trend of advanced phenology within species in more urban landscapes. Monthly average minimum temperatures were higher with increasing urbanization while monthly average maximum temperatures were similar across the urban to rural gradient. We also found evidence for shifts in woody plant communities along the urbanization gradient, mainly driven by the abundance of L. maackii, an invasive exotic species, in the more urban forests. Because L. maackii leafs out weeks earlier than native woody species and is very abundant in urban forests, we suggest that the invasion of forests by this species can generate earlier greenup of urban forests.  相似文献   

13.
Predation risk is one of the largest costs associated with foraging in small mammals. Small mammals select microhabitat features such as tree and shrub canopy cover, woody debris and vegetative ground cover that can lower the risk of detection from predators and provide greater protection if discovered. Small mammals also increase foraging activity and decrease selection for cover when cloud cover increases and moon illumination is less. Often researchers assume small mammals in urban areas respond to these cues in the same manner as in natural areas, but these cues themselves are altered in urban zones. In this study, we investigated how Amur honeysuckle (Lonicera maackii) and coarse woody debris (CWD) affected giving‐up density (GUD) in white‐footed mice (Peromyscus leucopus). Each of three habitat treatments (open flood channel, the edge and interior of the honeysuckle patch) contained cover treatments with coarse woody debris present or absent. The six treatment combinations were compared to environmental variables (temperature, humidity and illumination) and habitat variables to test their effect on GUD. Peromyscus leucopus foraged to lower densities in areas with CWD present and also under the honeysuckle canopy, using this invasive shrub to decrease predation risk, potentially increasing survivability within this urban park. Increased human presence negatively affected foraging behavior across treatments. Human presence and light pollution significantly influenced P. leucopus, modifying their foraging behavior and demonstrating that both fine‐ and coarse‐scale urban factors can affect small mammals. Foraging increased as humidity increased, particularly under the honeysuckle canopy. Changes in illumination due to moonlight and cloud cover did not affect foraging behavior, suggesting urban light pollution may have altered behavioral responses to changes in light levels. Lonicera maackii seemed to facilitate foraging in P. leucopus, even though it adversely affects the plant community, suggesting that its impact may not be entirely negative.  相似文献   

14.
The ‘enemy release hypothesis’ argues when a species is introduced to a novel habitat, release from regulation by herbivores results in increased vigor, abundance, and distribution. The invasive Asian shrub Lonicera maackii appears to benefit from an absence of arthropod herbivores in North America. We assessed the incidence, amount, and type of herbivory occurring on L. maackii in forest edge and interior habitats and investigated differences in timing of damage. In October 2008, leaves were sampled from shrubs in forest interior and edge habitat from 8 sites in Ohio. In 2009, sampling was repeated at 3 sites in spring, summer, and fall with a distinction made between long and short branches. Leaf area removed averaged 1.83% across the 8 populations in 2008 and 3.09% across the 3 populations in 2009, with forest edge plants receiving slightly more damage than forest interior plants in 2008. Additionally, long shoots received more damage than short shoots in 2009. Damage incidence was also higher in the edge habitat and on long shoots compared to short shoots. As measured in 2009, damage accumulated steadily throughout the season. Chewing was the most prevalent type of damage (76. 8%) and low level of pathogen infection was observed (4.81%). Results indicate that levels of herbivory experienced by L. maackii are relatively consistent across sites, vary slightly with habitat and branch identity, but are likely too low to impact fitness of shrubs. These findings indicate that low amounts of arthropod herbivory occur for L. maackii across its introduced range, which may contribute to its invasive success.  相似文献   

15.
Invasive plants are often associated with reduced cover of native plants, but rarely has competition between invasives and natives been assessed experimentally. The shrub Lonicera maackii, native to northeastern Asia, has invaded forests and old fields in numerous parts of eastern North America, and is associated with reduced tree seedling density in Ohio forests. A field experiment was conducted to test the effects of established L. maackii on the survival and growth of transplanted native tree species. The experiment examined above-ground competition (by removing L. maackii shoots) and below-ground competition (by trenching around transplanted seedlings). The effects of above-ground competition with L. maackii were generally more important than below-ground competition, though both were detected. Shoot treatment was the key determinant for the survival of all species except P. serotina, whereas trenching only enhanced survival for A. saccharum caged and P. serotina, and only in the shoot removal treatment. For the surviving seedlings, L. maackii shoot removal increased growth of A. saccharum seedlings protected with cages, but actually reduced the growth of unprotected Q. rubra and A. saccharum seedlings, indicating that L. maackii shoots confer some protection from deer browsing. Significant interactions between root and shoot treatment on Q. rubra growth parameters, specifically greatest growth in the shoot present & trenched treatment, is attributed to protection from deer browsing combined with release from below-ground competition. Despite this protective function of L. maackii shoots, the overall effect of this invasive shrub is increased mortality of native tree seedlings, suggesting it impacts the natural regeneration of secondary forests.  相似文献   

16.
Many studies have demonstrated the changes in the spatial patterns of plant and animal communities with respect to habitat fragmentation. Insular communities tend to exhibit some special patterns in connection with the characteristics of island habitats. In this paper, the relationships between richness, assemblage, and abundance of bird communities with respect to island features were analyzed in 20 urban woodlots in Hangzhou, China. Field investigations of bird communities, using the line transect method, were conducted from January to December, 1997. Each woodlot was surveyed 16 times during the year. Results indicated that bird richness was higher, per unit area, in the smaller woodlots than the larger ones, and overall bird density decreased with the increase in the size of woodlot. However, the evenness of species abundance increased with the area, and small woodlots were usually dominated by higher density species and large woodlots by medium density species. Most species occurring in the small woodlots also occurred in larger woodlots. Also, bird communities among urban woodlots showed a nestedness pattern in assemblage. These patterns implied that the main impacts of woodland habitat fragmentation are: (1) species are constricted and thus species number will increase at a given sample size; (2) as surface area decreases, the proportion of forest edge species as to interior species will increase; (3) community abundance will therefore increase per unit area but most individuals will be from a few dominant species; and (4) overall species diversity will decrease at a habitat level as well as at a region level. These patterns of community in response to the island features were therefore summarized as “island effects in community”. The underlying processes of such observations were also examined in this paper. Woodlot area, edge ratio, isolation, and habitat nestedness were considered as the important factors forming the island effects in community. High heterogeneity between habitats usually contributed most to the maintenance of regional biodiversity, especially in urban woodlots. __________ Translated from Acta Ecologica Sinica, 2005, 25(4): 657–663 [译自: 生态学报, 2005, 25(4): 657–663]  相似文献   

17.
Miller KE  Gorchov DL 《Oecologia》2004,139(3):359-375
Effects of invasive plant species on native plant species are frequently assumed or inferred from comparisons, but rarely quantified experimentally. Such quantification is important to assessing risks and impacts of invasives. We quantified the effects of Lonicera maackii, an exotic shrub invasive in many eastern North American forests, on survival, growth, and reproduction of three perennial herbs: Allium burdickii, Thalictrum thalictroides , and Viola pubescens. We predicted that the spring ephemeral, A. burdickii , would be most impacted, due to early leaf expansion of L. maackii. Field experiments were carried out in two deciduous forest stands, one (Greggs Woodlot, GW) disturbed and the other (Western Woods, WW) relatively undisturbed. In each stand, individual herbs were transplanted into a blocked design of 60 plots where L. maackii was present, absent, or removed, and monitored for 5 growing seasons. Lonicera maackii did not affect survival of transplants, but reduced growth and final size of individuals of all three species. For two of the species, A. burdickii and V. pubescens, L. maackii reduced the proportion of live plants flowering in both stands, and reduced the seed or fruit number per flowering individual in GW. For T. thalictroides the proportion flowering was not affected, but seed number per flowering plant was reduced by L. maackii in both stands. For all three species, cumulative seed production over the course of the study was reduced by L. maackii. Overall, effects on the spring ephemeral, A. burdickii, were similar to effects on the other herbs. Because mortality of these established individuals was not affected, short-term studies might conclude forest herbs are unaffected by invasive shrubs. However, the growth and reproduction impacts documented here suggest that populations are impacted in the long-term.  相似文献   

18.
城市鸟类对斑块状园林栖息地的选择性   总被引:61,自引:3,他引:58  
园林因在城市中呈斑块状分布而具有许多岛屿栖息地的特性,其内部结构和景观水平的结构同时也受到城市化的影响。对杭州市20个园林中鸟类物种的选择性分布进行了调查和分析,重点探讨了鸟类物种与园林面积、内部结构、微栖息地类型的分布、景观水平的结构、人为干扰等栖息地因素的关系。结果表明,杭州城市鸟类对园林栖息地具有较强的选择性,这不仅与园林的面积有关,还与园林的形状、植被盖度、微栖息地类型、连通性、隔离度、周围用地以及人为干扰等多种因素密切相关。园林栖息地间的异质性以及鸟类物种与栖息地结构的密切关系是园林鸟类选择性分布的主要原因。  相似文献   

19.
Floral displays of invasive plants have positive and negative impacts on native plant pollination. Invasive plants may also decrease irradiance, which can lead to reduced pollination of native plants. The effects of shade and flowers of invasive plant species on native plant pollination will depend on overlap in flowering phenologies. We examined the effect of the invasive shrub Lonicera maackii on female reproductive success of the native herb Hydrophyllum macrophyllum at two sites: one with asynchronous flowering phenologies (slight overlap) and one with synchronous (complete overlap). At each site, we measured light availability, pollinator visitation, pollen deposition, and seed set of potted H. macrophyllum in the presence and absence of L. maackii. At both sites, understory light levels were lower in plots containing L. maackii. At the asynchronous site, H. macrophyllum received fewer pollinator visits in the presence of L. maackii, suggesting shade from L. maackii reduced visitation to H. macrophyllum. Despite reduced visitation, H. macrophyllum seed set did not differ between treatments. At the synchronous site, H. macrophyllum received more pollinator visits and produced more seeds per flower in the presence of co-flowering L. maackii compared to plots in which L. maackii was absent, and conspecific pollen deposition was positively associated with seed set. Our results support the hypothesis that co-flowering L. maackii shrubs facilitated pollination of H. macrophyllum, thereby mitigating the negative impacts of shade, leading to increased seed production. Phenological overlap appears to influence pollinator-mediated interactions between invasive and native plants and may alter the direction of impact of L. maackii on native plant pollination.  相似文献   

20.
In addition to effects mediated by resource competition, some invasive plants may impact surrounding vegetation by secreting compounds that are directly inhibitory to growth. Lonicera maackii, an invasive Asian shrub of forests and open areas in eastern and midwestern North America, has devastating effects on understory vegetation, some of which persist even after this shrub is removed. In this study, we explored the potential of aqueous extracts of the leaves and roots of this plant to inhibit seed germination of Impatiens capensis, Alliaria petiolata, Arabidopsis thaliana, and L. maackii in Petri dish bioassays. Both L. maackii root and leaf extracts significantly decreased germination in the three herb species. This inhibitory effect generally increased with increasing extract concentration and was more pronounced with application of leaf extract than root extract. However, when the same extracts were applied to seeds of L. maackii itself, germination was delayed in some cases, but was not significantly reduced by the end of the experiment. Germination of L. maackii seeds even reached significantly higher levels in some extract treatments than in no-extract controls. This implies that L. maackii can successfully inhibit the germination of other plants with few autotoxic effects and may even promote the germination of its own seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号