首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel mixed-ligand nickel(II) complex that contains 1-methylimidazole and thiocyanate, Ni(NCS)2(Mim)4 (Mim = 1-methylimidazole), was synthesized and its structure was determined by X-ray crystallography, IR spectrum and elemental analysis, etc. Its DNA-binding properties were studied by electronic absorption spectral, viscositive and electrochemical measurements. The absorption spectral and viscositive results suggest that the nickel(II) complex binds to DNA via partial intercalation. The addition of DNA results in the decrease of the peak current of the nickel(II) complex proved their interaction. The slight differences of peak profiles and electrochemical parameters between free and DNA-bound Ni(NCS)2(Mim)4 showed the formation of an electrochemical inactive complex between Ni(NCS)2(Mim)4 and DNA. The binding site and binding constant of the complex to DNA were determined by electrochemical titration method.  相似文献   

2.
Cobalt(II), copper(II) and nickel(II) complexes of the ligands 1,5,9-triazacyclotetradecane (tatd) and 1,5,9-triazacyclopentadecane (tapd), which have 8- and 9-membered chelate rings, respectively, have been prepared and characterised. Crystal structures of [Ni(tatd)(NCS)2]·H2O and [Co(tatd)(NCS)2] have been determined. The nickel(II) complex has a distorted square pyramidal geometry and the cobalt(II) complex has a distorted trigonal bipyramidal geometry. Agostic interactions between a hydrogen on the central carbon of the 8-membered chelate ring and the metal ion are observed in both complexes.  相似文献   

3.
Two mixed ligand complexes of the type [M(phen)(2)(qbdp)](PF(6))n.xH(2)O where M = Co(III) and Ni(II), qbdp = quinolo[3,2-b] benzodiazepine and phen = 1,10-phenanthroline, n = 3 or 2, x = 2 or 3 have been synthesized and characterized by employing analytical and spectral methods. The DNA binding property of the complexes with calf thymus-DNA has been investigated by using absorption spectra, viscosity measurements as well as thermal denaturation studies. The absorption spectral results indicate that the Co(III) and Ni(II) complexes intercalate between the base pairs of the DNA tightly with intrinsic DNA binding constant of 6.4 x 10(4) and 4.8 x 10(4) M(-1) in Tris HCl buffer containing 50 mM NaCl, respectively. The large enhancement in the relative viscosity of DNA on binding to the quinolo [3,2-b] benzodiazepine supports the proposed DNA binding modes. The complexes on reaction with super coiled (SC) DNA shows nuclease activity.  相似文献   

4.
Two new cobalt complexes, [Co(pytpy)(2)](ClO(4))(2), 1, and [Co(pytpy)(2)](ClO(4))(3), 2 where pytpy=pyridine terpyridine, have been synthesized and characterized. Single-crystal X-ray structure of both the complexes has been resolved. The structure shows the complexes to be a monomeric cobalt(II) and cobalt(III) species with two pytpy ligands coordinated to the metal ion to give a six coordinate complex. Both cobalt(II) and cobalt(III) complexes crystallize in meridional configuration. The interaction of these complexes with calf thymus DNA has been explored by using absorption, emission spectral, electrochemical studies and viscosity measurements. From the experimental results the DNA binding constants of 1 and 2 are found to be (1.97+/-0.15)x10(4)M(-1) and (2.7+/-0.20)x10(4)M(-1) respectively. The ratio of DNA binding constants of 1 and 2 have been estimated to be 0.82 from electrochemical studies, which is in close agreement with the value of 0.73 obtained from spectral studies. The observed changes in viscosity of DNA in the presence of increasing amount of complexes 1 and 2 suggest intercalating binding of these complexes to DNA. Results of DNA cleaving experiments reveal that complex 2 efficiently cleaves DNA under photolytic conditions while complex 1 does not cleave DNA under similar conditions.  相似文献   

5.
Qiu B  Guo L  Guo C  Guo Z  Lin Z  Chen G 《Biosensors & bioelectronics》2011,26(5):2270-2274
A new DNA sensor using a nickel(II) phenanthroline complex ([Ni(phen)(2)PHPIP]·2ClO(4)) as the electrochemical probe was developed. The sensor is very sensitive and selective for calf thymus DNA (ctDNA) detection in aqueous medium. The Ni-phenanthroline probe was synthesized by a two-step preparation using p-hydroxy-phenylimidazo-1,10-phenanthroline (PHPIP) as the ligand and characterized with IR, UV and MS. Some interesting electrochemical properties of the Ni-complex and the interactions of the complex with ctDNA were reported. The calculated dynamics parameters of the electrode process indicate that there are obvious interactions between the probe and the ctDNA in aqueous solution. Under constant potential conditions, the redox current peak of the probe (Ni-complex) decreases obviously as the probe interacts/binds with ctDNAs. This unexpected electrochemical behavior may suggest that a new adduct through the binding of Ni-phenanthroline complex with ctDNA is formed electrochemically. By estimation, the binding ratio of the probe and ctDNA was found to be 1:1 with a binding constant β=4.29×10(5) mol L(-1) in aqueous solution at room temperature.  相似文献   

6.
A new bis(N-benzyl-benzotriazole)dichloro Co(II) complex (Co(bbt)(2)Cl(2)) was synthesized and the structure was characterized by X-ray crystallography, IR spectrum and elemental analysis. The electrochemical characterization of Co(bbt)(2)Cl(2) was measured in detail, and the interaction of this Co(II) complex with fish sperm DNA was studied by electrochemical techniques and ultraviolet-visible (UV-Vis) spectrophotometry. The cyclic voltammetry (CV) showed that Co(bbt)(2)Cl(2) had two reduction peaks and one oxidation peak on gold electrode. It was found that the currents of both the reduction peaks and the oxidation peak decreased significantly in the presence of DNA compared with those in the absence of DNA, which indicated that Co(bbt)(2)Cl(2) could interact with DNA. The binding of DNA with the complex was not only electrostatic binding but also intercalation.  相似文献   

7.
Four new mixed-ligand complexes, namely [Co(phen)(2)(qdppz)](3+), [Ni(phen)(2)(qdppz)](2+), [Co(phen)(2)(dicnq)](3+) and [Ni(phen)(2)(dicnq)](2+) (phen=1,10-phenanthroline, qdppz=naptho[2,3-a]dipyrido[3,2-H:2',3'-f]phenazine-5,18-dione and dicnq=dicyanodipyrido quinoxaline), were synthesized and characterized by FAB-MS, UV/Vis, IR, 1H NMR, cyclic voltammetry and magnetic susceptibility methods. Absorption and viscometric titration as well as thermal denaturation studies revealed that each of these octahedral complexes is an avid binder of calf-thymus DNA. The apparent binding constants for the dicnq- and qdppz-bearing complexes are in the order of 10(4) and >10(6) M(-1), respectively. Based on the data obtained, an intercalative mode of DNA binding is suggested for these complexes. While both the investigated cobalt(III) complexes and also [Ni(phen)(2)(qdppz)](2+) affected the photocleavage of DNA (supercoiled pBR 322) upon irradiation by 360 nm light, the corresponding dicnq complex of nickel(II) was found to be ineffective under a similar set of experimental conditions. The physico-chemical properties as well as salient features involved in the DNA interactions of the cobalt(III) and nickel(II) complexes investigated here were compared with each other and also with the corresponding properties of the previously reported ruthenium(II) analogues.  相似文献   

8.
Three new nickel(II) complexes with ligands 1,8-bis(2'-pyridyl)-3,6-dithiaoctane (Pdto) and dithiosemicarbazone of 4,7-dithiadecane-2,9-dione (DtdtzH2) of composition Ni(Pdto)(H2O)2(ClO4)2, Ni(DtdtzH2)(ClO4)2 and Ni(Dtdtz) were prepared, their molecular structures, spectral and redox-properties were studied. The possibilities of chemical reduction of Ni(Pdto)(H2O)2(ClO4)2 to nickel(I) and nickel(0) species and the reaction of nickel(I) complex with CO were shown, which may be described as the modeling of one of the stages of reactions with CO on active Ni-Fe-site of Ni-CO-dehydrogenases. It was found that Ni(DtdtzH2)(ClO4)2 reacted with (Et4N)2[Fe4S4(SBz)4] (BzSH = C6H5 CH2SH) forming adduct. In the row of studied complexes Ni(Pdto) (H2O)2(ClO4)2 may be described as the best structural model of Ni-Fe-site of Ni-CO-dehydrogenases on the redox properties.  相似文献   

9.
To investigate the relationship between antimicrobial activities and the molecular structures of nickel(II) complexes with thiosemicarbazone and semicarbazone ligands, nickel(II) complexes with ligands Hmtsc, Hatsc, Hasc and H2dmtsc, were prepared and characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopies, magnetic susceptibility measurements, UV-Vis absorption spectra, TG/DTA and single-crystal X-ray analysis. Their antimicrobial activities were evaluated by the MIC against four bacteria (B. subtilis, S. aureus, E. coli and P. aeruginosa), two yeasts (C. albicans and S. cerevisiae) and two molds (A. niger and P. citrinum). The 4-coordinate, diamagnetic nickel(II) complexes showed antimicrobial activities which were different from those of free ligands or the starting nickel(II) compounds; [Ni(mtsc)(OAc)] 1 showed selective and effective antimicrobial activities against two Gram-positive bacteria (B. subtilis and S. aureus) and modest activities against a yeast (S. cerevisiae), [Ni(mtsc)Cl] 3 exhibited moderate activities against a Gram-positive bacterium (S. aureus), and [Ni(atsc)(OAc)] 5 showed modest activities against two Gram-positive bacteria (B. subtilis and S. aureus). On the other hand, the 6-coordinate, paramagnetic nickel(II) complexes with two protonated or deprotonated ligands ([Ni(mtsc)2] 2, [Ni(atsc)(mtsc)] 4, [Ni(atsc)2] 6, [Ni(Hatsc)2](NO3)(2)7, [Ni(Hatsc)2]Cl(2)8 and [Ni(Hasc)2](OAc)(2)9) and the sterically crowded 4-coordinate, diamagnetic nickel(II) complex ([Ni(dmtsc)] 10) did not inhibit the growth of the test organisms. The structure-activity correlation in this series of nickel(II) complexes was discussed based on their ligand-replacement abilities.  相似文献   

10.
The water soluble polymer-copper(II) complex samples, [Cu(bpy)(2)(BPEI)]Cl(2).4H(2)O (bpy=2,2'-bipyridine, BPEI=branched polyethyleneimine), with varying degrees of copper(II) chelates content in the polymer chain, were prepared by ligand substitution method in water-ethanol medium and characterized by Infra-red, UV-visible, EPR spectral and elemental analysis methods. The interaction of these polymer-copper(II)-bipyridyl complex samples with calf thymus DNA has been explored by using electronic absorption spectroscopy, emission spectroscopy and gel electrophoresis techniques. The observed changes in the physico-chemical features of the polymer-copper(II) complex on binding to DNA suggest that the complex binds to DNA with electrostatic interaction mode. A sample of polymer-copper(II) complex was tested for its antibacterial and antifungal activity and it was found to have good antibacterial and antifungal activities.  相似文献   

11.
An electrically neutral cobalt complex, Co(Eim)(4)(NCS)(2) (Eim=1-ethylimidazole, NCS=isothiocyanate) was synthesized and its interaction with double-stranded DNA (dsDNA) was comprehensively studied by electrochemical methods on a glassy carbon electrode (GCE). The experimental results revealed that the cobalt complex could interact with dsDNA via a specific groove-binding mode with an affinity constant of 3.6×10(5)M(-1). The surface-based studies showed that Co(Eim)(4)(NCS)(2) could electrochemically accumulate within the immobilized dsDNA layer rather than single-stranded DNA (ssDNA) layer. Based on this fact, the cobalt complex was utilized as an electrochemical hybridization indicator for the detection of oligonucleotides related to CaMV35S promoter gene. The results showed that the developed biosensor presented very low background interference due to the negligible affinity of the Co(Eim)(4)(NCS)(2) complex with ssDNA. The hybridization specificity experiments further indicated that the biosensor could well discriminate the complementary sequence from the base-mismatched and the non-complementary sequences. The complementary target sequence could be quantified over the range from 5.0×10(-9)M to 2.0×10(-6)M with a detection limit of 2.0×10(-10)M.  相似文献   

12.
Two new Ru(II) complexes [Ru(L)(4)(dppz)](2+) (L=imidazole (Im), 1-methylimidazole (MeIm); dppz=dipyrido[3,2-a:2',3'-c]phenazine), have been synthesized and characterized in detail by elemental analysis, (1)H NMR, Electrospray ionization mass spectrometry (ESI-MS) and UV-visible (UV-Vis) spectroscopic techniques. The interaction of these complexes with calf thymus DNA (CT-DNA) has been explored by using electronic absorption titration, competitive binding experiment, circular dichroism (CD), thermal denaturation and viscosity measurements. The experimental results show that: both the two complexes can bind to DNA in an intercalation mode; the DNA-binding affinity of complex [Ru(Im)(4)(dppz)](2+)1 (K(b)=2.5 x 10(6)M(-1)) is greater than that of complex [Ru(MeIm)(4)(dppz)](2+)2 (K(b)=1.1 x 10(6)M(-1)). Moreover, it is very interesting to find that the circular dichroic spectrum of DNA-complex 1 adduct, in which both bands centered at 277 nm and 236 nm are all negative, is very different from those of DNA-complex 2 adduct and other Ru(II) complexes binding to DNA in general intercalation mode. It may be due to the hydrogen-bonding effect or the contribution of induced CD signals of complex 1. Another interesting finding is that the hypochromism of the complexes is not linear relation to their DNA-binding affinities. In order to deeply study these experimental phenomena and trends, the density functional theory (DFT) and time-dependent DFT (TDDFT) computations were carried out, and on the basis of the DFT/TDDFT results and the frontier molecular orbital theory, the trend in DNA-binding affinities, the spectral properties as well as the interesting phenomena of larger extent of hypochromism but relatively smaller K(b) values for the title complexes have been reasonably explained.  相似文献   

13.
New Ni(II) thiosemicarbazone complexes containing triphenylphosphine namely [Ni(Sal-mtsc)(PPh3)](2) and [Ni(Nap-mtsc)(PPh3)] (3) (where Sal-mtsc = salicylaldehyde-N(4)-methylthiosemicarbazone and Nap-mtsc = 2-hydroxy-1-naphthaldehyde-N(4)-methylthiosemicarbazone) have been synthesised and characterized by elemental analysis, IR, electronic and 1H NMR spectroscopy. The crystal structures of the complexes have been determined by single crystal X-ray diffraction technique. In all the complexes the thiosemicarbazone ligand coordinated to nickel through ONS mode. The electrochemical behavior of the complexes has been investigated by using cyclic voltammetry in acetonitrile. The new complexes were subjected to test their DNA topoisomerase II inhibition efficiency. The complex [Ni(Nap-mtsc)(PPh3)] (3) showed 95% inhibition. The observed inhibition activity was found to be more potent than the activity of conventional standard Nalidixic acid.  相似文献   

14.
The interaction between hexakis(imidazole) manganese(II) terephthalate ([Mn(Im)(6)](teph).4H(2)O) and salmon sperm DNA in 0.2M pH 2.30 Britton-Robinson buffer solution was studied by fluorescence spectroscopy and cyclic voltammetry. Increasing fluorescence was observed for [Mn(Im)(6)](2+) with DNA addition, while quenching fluorescence phenomenon appeared for EB-DNA system when [Mn(Im)(6)](2+) was added. There were a couple quasi-reversible redox peaks of [Mn(Im)(6)](2+) from the cyclic voltammogram on the glassy carbon electrode. The peak current of [Mn(Im)(6)](2+) decreased with positive shift of the formal potential in the presence of DNA compared with that in the absence of DNA. All the experimental results indicate that [Mn(Im)(6)](2+) can bind to DNA mainly by intercalative binding mode. The binding ratio of the DNA-[Mn(Im)(6)](2+) association complex is calculated to be 1:1 and the binding constant is 4.44x10(3) M(-1). By using [Mn(Im)(6)](teph).4H(2)O as the electrochemical hybridization indicator, the DNA electrochemical sensor was prepared by covalent interaction and the selectivity of ssDNA modified electrode were described. The results demonstrate the use of electrochemical DNA biosensor in the determination of complementary ssDNA.  相似文献   

15.
The complex [CoL(2)](ClO(4)).MeOH (1), where HL is the tridentate 3N ligand 1,3-bis(2-pyridylimino)isoindoline, has been isolated and its X-ray crystal structure successfully determined. It possesses a distorted octahedral structure in which both the ligands are coordinated meridionally to cobalt(III) via one deprotonated isoindoline (L(-)) and two pyridine nitrogen atoms. Interestingly, the average dihedral angle between pyridine and isoindoline rings is 25.9 degrees , indicating that the ligand is twisted upon coordination to cobalt(III). The interaction of the complex with calf-thymus DNA has been studied using various spectral methods and viscosity and electrochemical measurements. For comparison, the DNA interaction of [Co(tacn)(2)]Cl(3) (2), where tacn is facially coordinating 1,4,7-triazacyclononane, has been also studied. The ligand-based electronic spectral band of 1 and the N(sigma)-->Co(III) charge transfer band of 2 exhibit moderate hypochromism with small or no blue shift on interaction with DNA. The intrinsic binding constants calculated reveal that the monopositive complex ion [CoL(2)](+) exhibits a DNA-binding affinity lower than the tripositive complex ion [Co(tacn)(2)](3+). The steric clashes with DNA exterior caused by the second L(-) ligand bound to cobalt(III), apart from the lower overall positive charge on the [CoL(2)](+) complex, dictates its DNA-binding mode to be surface binding rather than partial intercalative interaction expected of the extended aromatic chromophore of deprotonated isoindoline anion. An enhancement in relative viscosity of CT DNA on binding to 1 is consistent with its DNA surface binding. On the other hand, a slight decrease in viscosity of CT DNA was observed on binding to 2 revealing that the smaller cation leads to bending (kinking) and hence shortening of DNA chain length. The electrochemical studies indicate that the DNA-bound complexes are stabilised in the higher Co(III) rather than the lower Co(II) oxidation state, suggesting the importance of electrostatic forces of DNA interaction.  相似文献   

16.
DNA-binding properties of novel binulear copper(II) complex [Cu(2)(Dmbiim)(4)(H(2)O)(2)](ClO(4))(4).6H(2)O, where Dmbiim = 1,1'-Dimethyl-2,2'-biimidazole are investigated using electronic absorption spectroscopy, fluorescence spectroscopy, viscosity measurement and voltammetry. The results show that the copper(II) complex interacts with DNA through minor groove binding. The interaction between the complex and DNA has also been investigated by gel electrophoresis, interestingly, we found that the copper(II) complex can cleave circular plasmid pBR322 DNA efficiently in the presence of AH(2) (ascorbic acid) at pH 8.0 and 37 degrees C.  相似文献   

17.
An efficient and simple one-pot synthesis of a new 1,2,3-triazole-1-oxide via reaction between isonitrosoacetophenone hydrazone and dipyridyl ketone in the EtOH/AcOH at room temperature has been developed smoothly in high yield. The reaction proceeds via metal salt free, in-situ formation of asymmetric azine followed by cyclization to provide 1,2,3-triazole 1-oxide compound. It has been structurally characterized. The 1:1 ratio reaction of the 1,2,3-triazole 1-oxide ligand with nickel(II) chloride gives the mononuclear complex [Ni(L)(DMF)Cl2], hexa-coordinated within an octahedral geometry. Characterization of the 1,2,3-triazole compound and its Ni(II) complex with FTIR, 1H and 13C NMR, UV–vis and elemental analysis also confirms the proposed structures of the compounds. The interactions of the compounds with Calf thymus DNA (CT-DNA) have been investigated by UV–visible spectra and viscosity measurements. The results suggested that both ligand and Ni(II) complex bind to DNA in electrostatic interaction and/or groove binding, also with a slight partial intercalation in the case of ligand. DNA cleavage experiments have been also investigated by agarose gel electrophoresis in the presence and absence of an oxidative agent (H2O2). Both 1,2,3-triazole 1-oxide ligand and its nickel(II) complex show nuclease activity in the presence of hydrogen peroxide. DNA binding and cleavage affinities of the 1,2,3-triazole 1-oxide ligand is stronger than that of the Ni(II) complex.  相似文献   

18.
Complexes of the formula Ni(L)X, where L=1,3-bis(2′-pyridylimino)isoindolinato and X=Cl, Br, N3, NCS, 2-Clpcyd, 4-Clpcyd, 2,3-Cl2pcyd,2,6-Cl2pcyd, 2,4,5-Cl3pcyd and 2,3,5,6-Cl4pcyd, have been synthesized and characterized by elemental analysis, and IR, 1H NMR and UV---Vis spectroscopies. A crystal structure determination of Ni(L)(2-Clpcyd) showed nickel in a distorted square planar coordination sphere of nitrogen donor atoms in which the phenylcyanamido ligand is coordinated to Ni(II) via the terminal nitrogen. The solvent coordination equilibria of Ni(L)(pcyd) complexes was also investigated and the results suggest that both electronic and steric factors play important roles in determining the stability of the solvated complex.  相似文献   

19.
Absorption, fluorescence spectral, cyclic voltammetry and agarose gel electrophoresis studies have been carried out on the interaction of Ni(II) complex with all-trans retinoic acid ([Ni(RA)(2)(H(2)O)(2)] * H(2)O) with DNA. The results indicate that the [Ni(RA)(2)(H(2)O)(2)] * H(2)O can more effectively promote the cleavage of plasmid DNA than that of all-trans retinoic acid (HRA) and Ni(II) at physiological pH and temperature, which may be one of the reasons why the inhibitory effect of [Ni(RA)(2)(H(2)O)(2)] * H(2)O on the human bladder line EJ cells is much greater than that of retinoic acid. It was found that the process of plasmid DNA cleavage was sensitive to ionic strength and pH, however, these radical scavengers almost had no effect on the DNA cleavage reaction. The above results suggested that the cleavage of plasmid DNA by [Ni(RA)(2)(H(2)O)(2)]* H(2)O did not produce diffusible hydroxyl radicals via the Fenton reaction. The results of UV-absorption studies and fluorescence characterization of the interaction of [Ni(RA)(2)(H(2)O)(2)] * H(2)O with Calf thymus DNA show that the [Ni(RA)(2)(H(2)O)(2)] * H(2)O binds to DNA mainly in an intercalating mode.  相似文献   

20.
The effect on DNA and the antibacterial activity of a series of high nuclearity nickel compounds with three, four and five metal atoms were examined. The compounds have a mixed ligand composition with salicylhydroxamic acid and di-2-pyridyl-ketonoxime as chelate agents. In the trinuclear compound Ni(3)(shi)(2)(Hpko)(2)(py)(2)(1), two metal ions show a square planar geometry while the third one is in an octahedral environment. The compounds with four and five nickel atoms construct metallacrown cores with two distinct connectivities. The tetranuclear vacant metallacrown [12-MC(Ni(II)N(Hshi)2(pko)2)-4](2+) shows the connectivity pattern [-O-Ni-O-N-Ni-N-](2), while the pentanuclear ([Ni(II)][12-MC(Ni(II)N(shi)2(pko)2)-4])(2+) follows the pattern [-Ni-O-N-](4). Two distinct arrangements of the chelates around the ring metal ions were observed; a 6-5-6-5-6-5-6-5 arrangement for the [12-MC(Ni(II)N(Hshi)2(pko)2)-4] core and a 6-6-5-5-6-6-5-5 arrangement for the [12-MC(Ni(II)N(shi)2(pko)2)-4] core. Magnetic variable temperature susceptibility study of the trinuclear compound revealed the presence of one paramagnetic nickel(II) ion with strong crystal field dependence, with D=5.0(4) cm(-1), g(xy)=2.7(3) and g(z)=2.3(3). The effect of the synthesized Ni(II) complexes on the integrity and electrophoretic mobility of nucleic acids was examined. Only compounds 2, 3 and 4 altered the mobility of pDNA, forming high molecular weight concatamers at low concentrations or precipitates at higher concentrations. Antibacterial activity screening of the above compounds suggests that nickel compounds 2, 3 and 4 were the most active and can act as potent antibacterial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号