首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arteriovenous differences for several potential metabolic substrates were measured across the fundic wall of the stomach of rats that had been starved overnight. There was an uptake of glucose and D-3-hydroxybutyrate, but no significant arteriovenous differences for acetoacetate, pyruvate, non-esterified fatty acids and glycerol were apparent. Lactate output represented a substantial fraction of glucose uptake when the arterial lactate concentration was within the resting physiological range, but when the arterial lactate concentration was above 1.3 mM, lactate was taken up by the stomach. Stimulation of acid secretion by pentagastrin did not affect the value of arteriovenous differences. Thus blood flow to the fundic mucosa and substrate metabolism may be similarly enhanced by pentagastrin. It is concluded that metabolism of glucose and D-3-hydroxybutyrate, and to a lesser extent of glutamine and branched-chain amino acids [Anderson & Hanson (1983) Biochem. J. 210, 451-455], could supply energy to power acid secretion.  相似文献   

2.
Hyperammonemia has been suggested to induce enhanced cerebral cortex ammonia uptake, subsequent glutamine synthesis and accumulation, and finally net glutamine release into the blood stream, but this has never been confirmed in liver insufficiency models. Therefore, cerebral cortex ammonia- and glutamine-related metabolism was studied during liver insufficiency-induced hyperammonemia by measuring plasma flow and venous-arterial concentration differences of ammonia and amino acids across the cerebral cortex (enabling estimation of net metabolite exchange), 1 day after portacaval shunting and 2, 4, and 6 h after hepatic artery ligation (or in controls). The intra-organ effects were investigated by measuring cerebral cortex tissue ammonia and amino acids 6 h after liver ischemia induction or in controls. Arterial ammonia and glutamine increased in portacaval-shunted rats versus controls, and further increased during liver ischemia. Cerebral cortex net ammonia uptake, observed in portacaval-shunted rats, increased progressively during liver ischemia, but net glutamine release was only observed after 6 h of liver ischemia. Cerebral cortex tissue glutamine, gamma-aminobutyric acid, most other amino acids, and ammonia levels were increased during liver ischemia. Glutamate was equally decreased in portacaval-shunted and liver-ischemia rats. The observed net cerebral cortex ammonia uptake, cerebral cortex tissue ammonia and glutamine accumulation, and finally glutamine release into the blood suggest that the rat cerebral cortex initially contributes to net ammonia removal from the blood during liver insufficiency-induced hyperammonemia by augmenting tissue glutamine and ammonia pools, and later by net glutamine release into the blood. The changes in cerebral cortex glutamate and gamma-aminobutyric acid could be related to altered ammonia metabolism.  相似文献   

3.
1. Arteriovenous differences of plasma free amino acids across the lactating mammary glands of six goats have been measured. 2. In four experiments, measurements of blood flow, amino acid arteriovenous differences, milk yield and milk nitrogen showed that the uptake of nitrogen in the form of amino acids was sufficient to provide all the nitrogen of the milk proteins synthesized in the mammary gland. 3. In the same four experiments the uptake from the plasma and output into the milk of individual amino acids per unit time were compared. The uptakes of essential amino acids and glutamic acid were approximately equal to the corresponding output figures. The uptake of serine was consistently less than the output, and the uptake of other non-essential amino acids was very variable, in some experiments being approximately equal to the output figures and in others being considerably less. 4. As in cows, there was an uptake of ornithine in all experiments, though ornithine is absent from milk. In goats, though not in cows, the uptake of arginine was consistently greatly in excess of the requirement for arginine residues in milk protein. 5. The possible significance of the uptakes of arginine and ornithine for the synthesis of serine and other non-essential amino acids in the mammary gland is discussed. 6. The importance of clamping the external pudic vein, when sampling mammary venous blood from the caudal superficial epigastric vein, is indicated.  相似文献   

4.
1. Total α-amino N and the amounts of 24 ninhydrin-positive substances were determined in several samples of plasma and lymph from the cow's udder. The arteriovenous differences of these substances across the mammary glands were measured in several experiments performed on lactating cows and in one experiment on a `dry' cow. Udder lymph obtained from live lactating cows by a lymph fistula and taken after killing lactating cows was analysed. 2. The concentrations of the individual free amino acids in udder lymph obtained from the live cow were similar to those found in cow's plasma. The concentrations of many amino acids in udder lymph taken immediately after death were two- to four-fold higher than those of the corresponding amino acids in udder lymph obtained from the live cow. 3. Most amino acids of the blood showed a considerable decrease in concentration by passage across the lactating mammary gland. Ornithine, a non-casein amino acid, showed arteriovenous differences of up to 60% of the arterial plasma concentration. No substantial amino acid uptake by the udder could be demonstrated in the experiment on the non-lactating cow. 4. The arteriovenous differences obtained for arginine, glutamine, isoleucine, leucine, lysine, valine, threonine and histidine were probably large enough to provide all the respective amino acid residues in milk protein. 5. The uptake of aspartic acid, asparagine, glutamic acid, serine and proline by the lactating cow's udder was not sufficient to account for all these respective amino acid residues found in milk protein.  相似文献   

5.
In mammalian cell culture technology glutamine is required for biomass synthesis and as a major energy source together with glucose. Different pathways for glutamine metabolism are possible, resulting in different energy output and ammonia release. The accumulation of ammonia in the medium can limit cell growth and product formation. Therefore, numerous ideas to reduce ammonia concentration in cultivation broths have been developed. Here we present new aspects on the energy metabolism of mammalian cells. The replacement of glutamine (2 mM) by pyruvate (10 mM) supported cell growth without adaptation for at least 19 passages without reduction in growth rate of different adherent commercial cell lines (MDCK, BHK21, CHO-K1) in serum-containing and serum-free media. The changes in metabolism of MDCK cells due to pyruvate uptake instead of glutamine were investigated in detail (on the amino acid level) for an influenza vaccine production process in large-scale microcarrier culture. In addition, metabolite profiles from variations of this new medium formulation (1-10 mM pyruvate) were compared for MDCK cell growth in roller bottles. Even at very low levels of pyruvate (1 mM) MDCK cells grew to confluency without glutamine and accumulation of ammonia. Also glucose uptake was reduced, which resulted in lower lactate production. However, pyruvate and glutamine were both metabolized when present together. Amino acid profiles from the cell growth phase for pyruvate medium showed a reduced uptake of serine, cysteine, and methionine, an increased uptake of leucine and isoleucine and a higher release of glycine compared to glutamine medium. After virus infection completely different profiles were found for essential and nonessential amino acids.  相似文献   

6.
Abstract: Enhanced cerebral cortex ammonia uptake, subsequent glutamine synthesis, and glutamine release into the bloodstream have been hypothesized to deplete cerebral cortex glutamate pools. We investigated this hypothesis in rats with chronic liver insufficiency-induced hyperammonemia and in pair-fed controls to rule out effects of differences in food intake. Cerebral cortex plasma flow and venous-arterial concentration differences of ammonia and amino acids, as well as cerebral cortex tissue concentrations, were studied 7 and 14 days after surgery in portacaval-shunted/bile duct-ligated, portacaval-shunted, and sham-operated rats, while the latter two were pair-fed to the first group, and in normal unoperated ad libitum-fed control rats. At both time points, arterial ammonia was elevated in the chronic liver insufficiency groups and arterial glutamine was elevated in portacaval shunt/biliary obstruction rats compared to the other groups. In the chronic liver insufficiency groups net cerebral cortex ammonia uptake was observed at both time points and was accompanied by net glutamine release. Also in these groups, cerebral cortex tissue glutamine, many other amino acid, and ammonia levels were elevated. Tissue glutamate levels were decreased to a similar level in all operated groups compared with normal unoperated rats, irrespective of plasma and tissue ammonia and glutamine levels. These results demonstrate that during chronic liver insufficiency-induced hyperammonemia, the rat cerebral cortex enhances net ammonia uptake and glutamine release. However, the decrease in tissue glutamate concentrations in these chronic liver insufficiency models seems to be related primarily to nutritional status and/or surgical trauma.  相似文献   

7.
Arteriovenous differences of amino acids across the mammary glands of lactating rats are diminished when the rats are starved for 24 h. When 24 h-starved rats were refed for 2 1/2 h, the arteriovenous differences of amino acids returned to values similar to those found in well-fed rats. In order to find a possible explanation for these rapid changes, we tested the effect of ketone bodies on amino acid uptake by the gland. At 5 min after injection of acetoacetate to fed rats, when the total concentration of ketone bodies in blood was similar to that found in starvation, the uptake of amino acids by the mammary gland was similar to that found after starvation, i.e. lower than in fed rats. However, 30 min after administration of acetoacetate, when the arterial concentration of ketone bodies had returned to values similar to those in fed rats, the arteriovenous differences of amino acids were similar to those found in fed rats. We conclude that the changes in blood ketone bodies may be responsible, at least in part, for the changes in amino acid uptake that occur in starvation and in the starvation--refeeding transition.  相似文献   

8.
The changes in hind leg tissue (muscle and skin) amono acid pool size and arteriovenous balance were measured in rats subjected to 0–90 min of cold exposure (4°C). Tissue free amino acid pools presented a different composition pattern from protein amino acids. Muscle rapidly reacted to cold exposure by releasing small amounts of some amino acids (alanine, aspartate), with only small changes in pool size during the first 30 min. Amino acid oxidation was very limited during the whole period of cold exposure, since at all times tested there was either nil ammonia efflux or net absorption of ammonia and glutamine; i.e. the muscle was in positive nitrogen balance throughout the period studied. Thus most of the amino acid nitrogen taken up from the blood and not found in the free amino pools must have been incorporated into protein, since it was not oxidized, as shown by the glutamine and ammonia blance. The data on amino acid incorporation into proteins indicate that hind leg protein turnover is rapidly and widely modulated from a low initial setting upon cold exposure to a higher protein synthesis rate immediately afterwards, suggesting that protein turnover may have an important role in short-term events in cold-exposed muscle, in addition to its influence in long-term adaptation.  相似文献   

9.
Glutamine transport by rat basolateral membrane vesicles   总被引:1,自引:0,他引:1  
Glutamine, a neutral amino acid, is unlike most amino acids, has two amine moieties which underlies its importance as a nitrogen transporter and a carrier of ammonia from the periphery to visceral organs. The gastrointestinal tract utilizes glutamine as a respiratory substrate. The intestinal tract receives glutamine from the luminal side and from the arterial side through the basolateral membranes of the enterocyte. This study characterizes the transport of glutamine by basolateral membrane vesicles of the rat. Basolateral membranes were prepared by a well validated technique of separation on a percoll density gradient. Membrane preparations were enriched with Na+/K+-ATPase and showed no 'overshoot' phenomena with glucose under sodium-gradient conditions. Glutamine uptake represented transport into the intravesicular space as evident by an osmolality study. Glutamine uptake was temperature sensitive and driven by an inwardly directed sodium gradient as evident by transient accumulation of glutamine above the equilibrium values. Kinetics of glutamine uptake under both sodium and potassium gradients at glutamine concentrations between 0.01 and 0.6 mM showed saturable processes with Vmax of 0.39 +/- 0.008 and 0.34 +/- 0.05 nmol/mg protein per 15 s for both sodium-dependent and sodium-independent processes, respectively. Km values were 0.2 +/- 0.01 and 0.55 +/- 0.01 mM, respectively. pH optimum for glutamine uptake was 7.5. Imposition of negative membrane potential by valinomycin and anion substitution studies enhanced the sodium-dependent uptake of glutamine suggesting an electrogenic process, whereas the sodium-independent uptake was not enhanced suggesting an electroneutral process. Other neutral amino acids inhibited the initial uptake of glutamine under both sodium-dependent and sodium-independent conditions. We conclude that glutamine uptake by basolateral membranes occurs by carrier-mediated sodium-dependent and sodium-independent processes. Both processes exhibit saturation kinetics and are inhibited by neutral amino acids. The sodium-dependent pathway is electrogenic whereas the sodium-independent pathway is electroneutral.  相似文献   

10.
In non-photosynthetic, yellow or colourless mutant cells of Chlorella kessleri , grown with nitrate as sole nitrogen source, blue light inhibited the uptake of the amino acids glycine, proline and arginine and of ammonia in growing cells, while it enhanced the uptake of these amino acids in resting cells. On the other hand, in cells grown with ammonia as the only nitrogen source without nitrate reductase activity, blue light did not influence the uptake of amino acids and of ammonia in growing cells, while it enhanced the uptake of amino acids in resting cells. Addition of methionine sulphoximine, a potent inhibitor of glutamine synthetase, to growing cells, resulted in intracellular ammonia-accumulation and inhibition of uptake of glycine and of ammonia. For the colourless mutant, blue light was shown to activate purified nitrate reductase. These results indicate that in the mutant cells of Chlorella examined, uptake of ammonia seems to be influenced by nitrate reductase and the uptake of amino acids was influenced by both nitrate reductase and an unknown blue-light-receptor(s). The uptake of urea in mutant cells is not influenced by the irradiation with blue light. Uptake of glycine was also increased after addition of glucose (hexose) in the dark. Because blue light is known to enhance the breakdown of starch, a reaction producing glucose for oxidative degradation in the algae used, the role of glucose (hexose) in the blue light-affected uptake of amino acids is discussed.  相似文献   

11.
To determine whether Salmonella typhimurium has a nitrogen control response, we have examined the regulation of nitrogen utilization in two mutants with fivefold and threefold elevations in their glutamine synthetase activities. The mutants do not require glutamine for growth on glucose--ammonia medium but do have altered growth on other nitrogen sources. They grow better than an isogenic control on media containing arginine or asparate, but more slowly with proline or alanine as nitrogen sources. This unusual growth pattern is not due to altered regulation of the ammonia assimilatory enzymes, glutamate dehydrogenase and glutamate synthase, or to changes in the enzymes for aspartate degradation. However, transport for several amino acids may be affected. Measurement of amino acid uptake show that the mutants with high glutamine synthetase levels have increased rates for glutamine, arginine, aspartate, and lysine, but a decreased rate for proline. The relationship between glutamine synthetase levels and uptake was examined in two mutants with reduced, rather than increased, glutamine synthetase production. The uptake rates for glutamine and lysine were lower in these two glutamine auxotrophs than in the Gln+ controls. These results show a correlation between the glutamine synthetase levels and the uptake rates for several amino acids. In addition, the pleiotropic growth of the mutants with elevated glutamine synthetase activities suggests that a nitrogen control response exists for S. typhimurium and that it can be altered by mutations affecting glutamine synthetase regulation.  相似文献   

12.
重组CHO细胞培养过程中氨对细胞代谢的影响   总被引:4,自引:2,他引:4  
研究了重组CHO细胞批培养过程中,氨浓度对细胞的葡萄糖、谷氨酰胺及其它氨基酸代谢的影响。表明,细胞对葡萄糖和谷氨酰胺的得率系数随着氨浓度的增加而降低,起始氨浓度为566mmol/L的批培养过程与起始氨浓度为021mmol/L的批培养过程相比,细胞对葡萄糖和谷氨酰胺的得率系数分别下降了78%和74%,细胞对其它氨基酸的得率系数也分别下降了50%~70%。氨浓度的增加明显地改变了细胞的代谢途径,葡萄糖代谢更倾向于厌氧的乳酸生成。在谷氨酰胺的代谢过程中,谷氨酸经谷氨酸脱氢酶进一步生成α酮戊二酸的过程受到了氨的抑制,而氨对谷氨酸经谷氨酸转氨酶反应生成α酮戊二酸的过程有促进作用,但总体上谷氨酸进一步脱氨生成α酮戊二酸的反应受到了氨的限制。  相似文献   

13.
Nitrogen flux across the hindquarters of fetal and maternal sheep (n = 15) was determined during normal feeding and following 5 days of maternal fasting. Arterial and venous whole blood concentrations of free amino acids, ammonia and oxygen were measured entering and exiting the hindquarters. Further, the DNA, protein and nitrogen contents of the hindlimb skeletal muscle of the fetus were determined in the fed state and following the 5-day fast. Results of these studies indicate that maternal and fetal hindlimb metabolism differ during fasting. There is a net efflux of alanine, glutamine and total nitrogen from the maternal hindquarters following 5 days of fasting. The fetus also releases glutamine and alanine from the hindquarters during the fast, presumably as potential energy substrate. However, nitrogen balance across the fetal hindquarter remains positive as a result of increased positive arteriovenous differences for other amino acids (particularly leucine and isoleucine). The concentrations of DNA, protein and nitrogen in fetal skeletal muscle remain unchanged during fasting. These data indicate that, whereas the mother undergoes protein catabolism and net nitrogen loss from the hindquarter during fasting, the fetus maintains a positive nitrogen balance across the hindquarter.  相似文献   

14.
The effect of different nitrogen compounds on the induction of reduced nicotinamide adenine dinucleotide phosphate-nitrate reductase was examined in Neurospora crassa. Whereas in the wild-type strain several amino acids and ammonia inhibit the formation of nitrate reductase, only glutamine, cysteine, and histidine are shown to inhibit the synthesis of nitrate reductase in a glutamine-requiring auxotroph. None of the amino acids inhibited nitrate reductase activity in vitro. The effects of cysteine and histidine are nonspecific, these amino acids being inhibitory of the growth of the organism. The effect of glutamine on the induction of nitrate reductase is not due to an inhibition of the uptake of the inducer nitrate. By the use of histidine-, pyrimidine-, and arginine-requiring auxotrophs, it was shown that glutamine appears to act per se and does not seem to be converted to another product in order to be effective in repression. The repression of nitrate reductase by ammonia appears, from the results described herein, to be indirect; ammonia has to be converted first to glutamine in order to be effective in repression.  相似文献   

15.
Amino acid uptake and utilization of various nitrogen sources (amino acids, nitrite, nitrate and ammonia) were studied in Nostoc ANTH and i ts mu tant (Het(-)Nif(-)) isolate defective in heterocyst formation and N2-fixation. Both parent and its mutant grew at the expense of glutamine, asparagine and arginine as a source of fixed-nitrogen. Growth was better in glutamine-and asparagine-media as compared to that in arginine media. Glutamine and asparagine repressed heterocyst formation, N2-fixation and nitrate reduction in Nostoc ANTH, but arginine did so only partially. The poor growth in arginine-medium was not due to poor uptake rates, since the uptake rates were not significantly different from those for glutamine or asparagine. The glutamine synthetase activity remained unaffected during cultivation in media containing any one of the three amino acids tested. The uptake of amino acids was substrate-inducible, energy-dependent and required de novo protein synthesis. Nitrate and ammonium repressed ammonium uptake, but did not repress uptake of amino acids. In N2-medium (BG-11(0)), the uptake of ammonium and amino acids in the mutant was significantly higher than its parent strain. This was apparently due to nitrogen limitation since the mutant was unable to fix N2 and the growth medium lacked combined-N.  相似文献   

16.
The transient and steady-state responses of hybridoma growth and metabolism to glutamine pulse and step changes have been examined. Metabolic quotients are reported for oxygen, glucose, lactate, ammonia, glutamine, alanine, and other amino acids. The specific glutamine consumption rate increased rapidly after all glutamine additions, but the responses of the glucose and oxygen consumption rates and the cell concentration were found to depend on the intial feed glutamine concentration. The glucose consumption rate was 1.4-10.9 times that of glutamine, and serine and branched-chain amino acids were consumed in larger amounts at the higher glucose: glutamine uptake ratios. It was estimated that maintenance accounted for ca. 60% of the cellular ATP requirements at specific growth rates ranging from 0.57 to 0.68 day(-1).  相似文献   

17.
Ethanol (50 mM) inhibited proteolysis in the perfused rat liver during stringent amino acid deprivation and also in the presence of normal and 10 times normal concentrations of plasma amino acids. The concentration-response curve of ethanol reached a plateau after 5 mM in both the presence and the absence of normal plasma amino acids, suggesting inhibition by oxidation products of ethanol. Intracellular glutamine, tyrosine and proline increased in concentration with ethanol, but the increases were too small to explain the observed inhibition of proteolysis. The uptake of 125I-asialofetuin was slightly decreased and the output of ammonia increased in the presence of ethanol. These, together with a significant suppression of basal proteolysis in the presence of amino acids, suggest that lysosomal function was directly affected. Electron-microscopic examination of lysosomal components showed that the aggregate volume of autophagosomes (initial vacuoles) were significantly smaller in livers perfused with ethanol than in controls. However, the equivalent volume of autolysosomes (degradative vacuoles) was the same in both groups. According to these results, ethanol inhibits protein degradation in the liver by two discrete mechanisms: one decreasing the formation of autophagic vacuoles and the other involving lysosomotropic inhibition, possibly via ammonia.  相似文献   

18.
Metabolic flux analysis is a useful tool to analyze cell metabolism. In this study, we report the use of a metabolic model with 34 fluxes to study the 293 cell, in order to improve its growth capacity in a DMEM/F12 medium. A batch, fed-batch with glutamine feeding, fed-batch with essential amino acids, and finally a fed-batch experiment with both essential and nonessential amino acids were compared. The fed-batch with glutamine led to a maximum cell density of 2.4x10(6) cells/ml compared to 1.8x10(6) cells/ml achieved in a batch mode. In this fed-batch with glutamine, it was also found that 2.5 mM ammonia was produced compared to the batch which had a final ammonia concentration of 1 mM. Ammonia was found to be growth inhibiting for this cell line at a concentration starting at 1 mM. During the fed-batch with glutamine, the flux analysis shows that a majority of amino acid fluxes and Kreb's cycle fluxes, except for glutamine flux, are decreased. This observation led to the conclusion that the main nutrient used is glutamine and that during the batch there is an overflow in the Kreb's cycle. Thus, a fed-batch with glutamine permits a better utilization of this nutrient. A fed-batch with essential amino acid without glutamine was also assayed in order to reduce ammonia production. The maximum cell density was increased further to 3x10(6) cells/ml and ammonia production was reduced below 1 mM. Flux analysis shows that the cells could adapt to a medium with low glutamine by increasing the amino acid fluxes toward the Kreb's cycle. Adding nonessential amino acids during this feeding strategy did not improve growth further and the nonessential amino acids accumulated in the medium.  相似文献   

19.
The uptake of a number of amino acids and dipeptides by cells and spheroplasts of Bacteroides melaninogenicus was stimulated by the presence of glutamine; 50 mM glutamine induced maximum uptake of glycine or alanine, and glutamine stimulated the uptake of glycine over a wide concentration range (0.17 to 170 mM). Glutamine stimulated the uptake of the dipeptides glycylleucine and glycylproline at significantly faster rates compared with glycine and leucine. The amino acids whose uptake was stimulated by glutamine were incorporated into trichloroacetic acid-precipitable material, and the inclusion of chloramphenicol or puromycin did not affect this incorporation. The uptake of glutamine by cells was concentration dependent. In contrast, in the absence of chloramphenicol 79% of the glutamine taken up by cells supplied with a high external concentration (4.4 mM) was trichloroacetic acid soluble. Glutamate and alpha-ketoglutarate were identified in the intracellular pool of glutamine-incubated spheroplasts. The amino acids and peptides were incorporated into cell envelope material, and a portion (30 to 50%) of the incorporated amino acids could be removed by trypsinization or treatment with papain. The effect of glutamine was depressed by inhibitors of energy metabolism, suggesting that glutamine-stimulated incorporation is an energy-mediated effect.  相似文献   

20.
The uterine uptake of amino acids was studied in 10 pregnant sheep with gestational ages of 114-146 days. After recovery from surgery, arterial and uterine venous samples were drawn simultaneously via indwelling catheters and analysed for amino acid and oxygen content. In seven ewes, amino acid concentrations were measured by a chromatographic technique. In four ewes, glutamate and glutamine arterio-venous differences across the uterine and umbilical circulations were measured by an enzymatic method. The uptake of neutral and basic amino acids was 66 mumol/mmol O2 and 17.3 mumol/mmol O2, respectively. Comparison of uterine and umbilical uptake shows that the bulk of the neutral and basic amino acids taken up by the pregnant uterus are transferred to the fetus. there was no significant uptake of acidic amino acids (i.e. glutamate, aspartate and taurine). glutamate was delivered from the fetus to the placenta but excretion of glutamate into the uterine circulation was negligible. Glutamine and asparagine were delivered to the fetus in amount which were two to three times larger than the placental uptake of glutamate and aspartate. Therefore placental conversion of exogenous glutamate and aspartate to glutamine and asparagine cannot account entirely for the fetal uptake of these amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号