首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The present investigation was undertaken to examine the usefulness of cultured human sweat duct cells for ion transport and related studies in the genetic disease, cystic fibrosis. Electrical properties of cultured duct (CD) cells were compared with electrical properties of microperfused duct (MPD) cells. The resting apical membrane potential (V a ) of the CD cells was −26.4±0.9 mV,n=158 cells as compared to −24.3±0.6 mV,n=105 of MPD cells. The Na+−K+ pump inhibitor ouabain, when applied to the apical surface of the CD cells and basolateral surface of MPD cells, depolarized both CD cells (from −28.6±3.6 to −16.8±2.4 mV,n=5) and MPD cells (from −23.8±0.5 mV to −19.5±1.8 mV,n=6). The Na+ conductance inhibitor amiloride applied to the apical surface hyperpolarized the apical membrane potentials (Va) of CD cells and MPD cells by −13.2±1.4 mV,n=43 and −34.3±3.1 mV,n=19), respectively, indicating the presence of amiloride sensitive Na+ channels in both groups of cells. However, the amiloride sensitivity of CD cells was dependent on the age of the culture. Cl substitution at the apical side by the impermeant anion gluconate depolarized the V a of CD cells and MPD cells by 12.2±0.9 mV,n=32 and 37.9±4.3 mV,n=12, respectively. The effect of β-adrenergic agonist isoproterenol (IPR), was inconsistent. In CD cells, IPR either hyperpolarized (ΔV a =−8.3±1.2mV,n=5) or depolarized (ΔV a =8.2±2.3 mV,n=4) or had no effect,n=2. In contrast, most of the MPD cells did not respond to IPR, but three cells had a varied response to IPR. Our results suggest that CD cells, like MPD cells, retain significant Na+ and Cl conductances. CD cells seem to have developed a higher sensitivity to β-adrenergic stimulation in tissue culture as compared to MPD cells. This work was supported by grants from the National Institutes of Health, Bethesda, MD, DK26547, Getty Oil Co., the Gillette Co., Cystic Fibrosis Research Inc., and the U.S. National Cystic Fibrosis Foundation.  相似文献   

2.
The giant marine alga Valonia utricularis is a classical model system for studying the electrophysiology and water relations of plant cells by using microelectrode and pressure probe techniques. The recent finding that protoplasts can be prepared from the giant ``mother cells' (Wang, J., Sukhorukov, V.L., Djuzenova, C.S., Zimmermann, U., Müller, T., Fuhr, G., 1997, Protoplasma 196:123–134) allowed the use of the patch-clamp technique to examine ion channel activity in the plasmalemma of this species. Outside-out and cell-attached experiments displayed three different types of voltage-gated Cl channels (VAC1, VAC2, VAC3, Valonia Anion Channel 1,2,3), one voltage-gated K+ channel (VKC1, Valonia K + Channel 1) as well as stretch-activated channels. In symmetrical 150 mm Cl media, VAC1 was most frequently observed and had a single channel conductance of 36 ± 7 pS (n= 4) in the outside-out and 33 ± 5 pS (n= 10) in the cell-attached configuration. The reversal potential of the corresponding current-voltage curves was within 0 ± 4 mV (n= 4, outside-out) and 9 ± 7 mV (n= 10, cell-attached) close to the Nernst potential of Cl and shifted towards more negative values when cell-attached experiments were performed in asymmetrical 50:150 mm Cl media (bath/pipette; E Cl− −20 ± 7 mV (n= 4); Nernst potential −28 mV). Consistent with a selectivity for Cl, VAC1 was inhibited by 100 μM DIDS (4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid). VAC1 was activated by a hyperpolarization of the patch. Boltzmann fits of the channel activity under symmetrical 150 mm Cl conditions yielded a midpoint potential of −12 ± 5 mV (n= 4, outside-out) and −3 ± 6 mV (n= 9, cell-attached) and corresponding apparent minimum gating charges of 15 ± 3 (n= 4) and 18 ± 5 (n= 9). The midpoint potential shifted to more negative values in the presence of a Cl gradient. VAC2 was activated by voltages more negative than E Cl− and was always observed together with VAC1, but less frequently. It showed a ``flickering' gating. The single channel conductance was 99 ± 10 pS (n= 6). VAC3 was activated by membrane depolarization and frequently exhibited several subconductance states. The single channel conductance of the main conductance state was 36 ± 5 pS (n= 5). VKC1 was also activated by positive clamped voltages. Up to three conductance states occurred whereby the main conductance state had a single channel conductance of 124 ± 27 pS (n= 6). In the light of the above results it seems to be likely that VAC1 contributes mainly to the Cl conductance of the plasmalemma of the turgescent ``mother cells' and that this channel (as well as VAC2) can operate in the physiological membrane potential range. The physiological significance of VAC3 and VKC1 is unknown, but may be related (as the stretch-activated channels) to processes involved in turgor regulation. Received: 24 June 1999/Revised: 2 September 1999  相似文献   

3.
Cell pH regulation was investigated in the T84 cell line derived from epithelial colon cancer. Cell pH was measured by ratiometric fluorescence microscopy using the fluorescent probe BCECF. Basal pH was 7.17 ± 0.023 (n= 48) in HEPES Ringer. After acidification by an ammonium pulse, cell pH recovered toward normal at a rate of 0.13 ± 0.011 pH units/min in the presence of Na+, but in the absence of this ion or after treatment with 0.1 mm hexamethylene amiloride (HMA) no significant recovery was observed, indicating absence of Na+ independent H+ transport mechanisms in HEPES Ringer. In CO2/HCO 3 Ringer, basal cell pH was 7.21 ± 0.020 (n= 35). Changing to HEPES Ringer, a marked alkalinization was observed due to loss of CO2, followed by return to the initial pH at a rate of −0.14 ± 0.012 (n= 8) pH/min; this return was retarded or abolished in the absence of Cl or after addition of 0.2 mm DIDS, suggesting extrusion of bicarbonate by Cl/HCO 3 exchange. This exchange was not Na+ dependent. When Na+ was added to cells incubated in 0 Na+ Ringer while blocking Na+/H+ exchange by HMA, cell alkalinization by 0.19 ± 0.04 (n= 11) pH units was observed, suggesting the presence of Na+/HCO 3 cotransport carrying HCO 3 into these cells, which was abolished by DIDS. These experiments, thus, show that Na+/H+ and Cl/HCO 3 exchange and Na+/HCO 3 cotransport participate in cell pH regulation in T84 cells. Received: 3 April 2000/Revised: 22 June 2000  相似文献   

4.
Summary The intact human reabsorptive sweat duct (RD) has been a reliable model for investigations of the functional role of “endogenous” CFTR (cystic fibrosis transmembrane conductance regulator) in normal and abnormal electrolyte absorptive function. But to overcome the limitations imposed by the use of fresh, intact tissue, we transformed cultured RD cells using the chimeric virus Ad5/SV40 1613 ori-. The resultant cell line, RD2(NL), has remained differentiated forming a polarized epithelium that expressed two fundamental components of absorption, a cAMP activated Cl conductance (Gcl) and an amiloride-sensitive Na+ conductance (GNa). In the unstimulated state, there was a low level of transport activity; however, addition of forskolin (10−5 M) significantly increased the Cl diffusion potential (Vt) generated by a luminally directed Cl gradient from − 15.3 ± 0.7 mV to −23.9 ± 1.1 mV,n=39; and decreased the transepithelial resistance (Rt) from 814.8 ± 56.3 Ω.cm2 to 750.5 ± 47.5 Ω.cm2,n=39, (n=number of cultures). cAMP activation, anion selectivity (Cl>I>gluconate), and a dependence upon metabolic energy (metabolic poisoning inhibited GCl), all indicate that the GCl expressed in RD2(NL) is in fact CFTR-GCl. The presence of an apical amiloride-sensitive GNa was shown by the amiloride (10−5 M) inhibition of GNa as indicated by a reduction of Vt and equivalent short circuit current by 78.0 ± 3.1% and 77.9 ± 2.6%, respectively, and an increase in Rt by 7.2 ± 0.8%,n=36. In conclusion, the RD2(NL) cell line presents the first model system in which CFTR-GCl is expressed in a purely absorptive tissue. It provides an opportunity to study the properties and role of CFTR in the context of absorptive function in immortalized epithelial cells.  相似文献   

5.
Collapsed proximal convoluted tubules (PCT) shrink to reach a volume 20% lower than control and do not exhibit regulatory volume increase when submitted to abrupt 150 mOsm/kg hypertonic shock. The shrinking is accompanied by a rapid depolarization of the basolateral membrane potential (V BL) of 8.4 ± 0.5 mV, with respect to a control value of −54.5 ± 1.9 mV (n= 15). After a small and transient hyperpolarization, V BL further depolarizes to reach a steady depolarization of 19.5 ± 1.5 mV (n= 15) with respect to control. In the post-control period, V BL returns to −55.8 ± 1.5 mV. The basolateral partial conductance to K+ (t K ) which is 0.17 ± 0.01 (n= 5) in control condition, decreases rapidly to nonmeasurable values during the hypertonic shock and returns to 0.23 ± 0.03 in the post-control period. The basolateral partial conductance to Cl (t Cl), which is 0.05 ± 0.02 (n= 5) in control, also decreases in hypertonicity to a nonmeasurable value and returns to 0.03 ± 0.01 in post control. The partial conductance mediated by the Na-HCO3 cotransporter (t NaHCO3), which is 0.48 ± 0.06 (n= 5) in control condition, remains the same at 0.44 ± 0.05 (n= 5) during the hypertonic period. Similarly, the membrane absolute conductance mediated by the Na-HCO3 cotransporter (G Na-HCO3) does not vary appreciably. Concomitant with cell shrinkage, intracellular pH (pH i ) decreases from a control value of 7.26 ± 0.01 to 7.13 ± 0.02 (n= 12) and then remains constant. Return to control solution brings back pH i to 7.28 ± 0.03. From these results, we conclude that in collapsed PCT, a sustained decrease in cellular volume leads to cell acidification and to inhibition of K+ and Cl conductances. Received: 6 February 1996/Revised: 10 October 1996  相似文献   

6.
Macroscopic and unitary currents through stretch-activated Cl channels were examined in isolated human atrial myocytes using whole-cell, excised outside-out and inside-out configurations of the patch-clamp technique. When K+ and Ca2+ conductances were blocked and the intracellular Ca2+ concentration ([Ca2+] i ) was reduced, application of positive pressure via the pipette activated membrane currents under whole-cell voltage-clamp conditions. The reversal potential of the current shifted by 60 mV per 10-fold change in the external Cl concentration, indicating that the current was Cl selective. The current was inhibited by bath application of 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) and 9-anthracenecarboxylic acid (9-AC). β-Adrenergic stimulation failed to activate a Cl current. In single channel recordings from outside-out patches, positive pressure in the pipette activated the unitary current with half-maximal activation of 14.7 mm Hg at +40 mV. The current-voltage relationship of single channel activity obtained in inside-out patches was linear in symmetrical Cl solution with the averaged slope conductance of 8.6 ± 0.7 pS (mean ±sd, n= 10). The reversal potential shift of the channel by changing Cl concentration was consistent with a Cl selective channel. The open time distribution was best described by a single exponential function with mean open lifetime of 80.4 ± 9.6 msec (n= 9), while at least two exponentials were required to fit the closed time distributions with a time constant for the fast component of 11.5 ± 2.2 msec (n= 9) and that for the slow component of 170.2 ± 21.8 msec (n= 9). Major changes in the single channel activity in response to pressure were caused by changes in the interburst interval. Single channel activity was inhibited by DIDS and 9-AC in a manner similar to whole-cell configuration. These results suggest that membrane stretch induced by applying pressure via the pipette activated a Cl current in human atrial myocytes. The current was sensitive to Cl channel blockers and exhibited membrane voltage-independent bursting opening without sensitive to β-adrenergic stimulation. Received: 21 October 1996/Revised: 17 December 1997  相似文献   

7.
Resting proton, ammonium and sodium fluxes in Salmo trutta were 492.6 ± 19.5 (n = 29); 122.9 ± 34.2 (n = 28) and 277.1 ± 18.5 (n = 50) μmol · kg−1 · h−1, respectively. The resting transepithelial potential was found to be composed of three successive potentials, the outermost averaging −7.36 ± 0.19mV, the second, −14.3 ± 1.4 mV and the third −37 ± 1.7 mV. Amiloride inhibits the proton, ammonium and sodium fluxes in a dose-dependent manner at concentrations of 0.5 mmol · 1−1 and 0.1 mmol · l−1, but at 0.01 mmol · l−1, proton and ammonium fluxes remained at control levels whilst the sodium was reduced to 70.59 ± 7.29 μmol · kg−1 · h−1. The trans-epithelial potential was effected in a bi-phasic manner by 0.5 mmol · l−1 amiloride. An initial hyperpolarisation of ca. 6 mV was followed by a sustained depolarisation of ca. 14 mV (towards zero) which persisted until the amiloride was washed off the gill. The initial hyperpolarisation was thought to reflect a rapid inhibition of a positive inward sodium current and the subsequent depolarisation was due to the inhibition of a positive outward current (proton) which would abolish the transepithelial potential. However, at 0.01 mmol ·  l−1 only the hyperpolarisation was seen, due to the inhibition of only the inward sodium current. Acetazolamide (0.1 mmol · l−1) was found to have no significant effect on the proton, ammonium and sodium fluxes. These results indicate that the proton and sodium fluxes across the gill of the freshwater trout are not tightly linked. While this suggests that the trout gill resembles the model of Ehrenburg et al. (1985) of sodium uptake in frog skin, the apical potentials measured in the pavement epithelial cell(s) are too low to account for sodium uptake unless the activity of the sodium in the cells is very low. Accepted: 8 August 1996  相似文献   

8.
MDCK cells display several acid-base transport systems found in intercalated cells, such as Na+-H+ exchange, H+–K+ ATPase and Cl/HCO 3 exchange. In this work we studied the functional activity of a vacuolar H+-ATPase in MDCK cells and its chloride dependence. We measured intracellular pH (pHi) in monolayers grown on glass cover slips utilizing the pH sensitive probe BCECF. To analyze the functional activity of the H+ transporters we observed the intracellular alkalinization in response to an acute acid load due to a 20 mm NH+ 4 pulse, and calculated the initial rate of pHi recovery (dpHi/dt). The cells have a basal pHi of 7.17 ± 0.01 (n= 23) and control dpHi/dt of 0.121 ± 0.006 (n= 23) pHi units/min. This pHi recovery rate is markedly decreased when Na+ was removed, to 0.069 ± 0.004 (n= 16). It was further reduced to 0.042 ± 0.005 (n= 12) when concanamycin 4.6 × 10−8 m (a specific inhibitor of the vacuolar H+-ATPase) was added to the zero Na+ solution. When using a solution with zero Na+, low K+ (0.5 mm) plus concanamycin, pHi recovery fell again, significantly, to 0.023 ± 0.006 (n= 14) as expected in the presence of a H+–K+-ATPase. This result was confirmed by the use of 5 × 10−5 m Schering 28080. The Na+ independent pHi recovery was significantly reduced from 0.069 ± 0.004 to 0.042 ± 0.004 (n= 12) when NPPB 10−5 m (a specific blocker of Cl channels in renal tubules) was utilized. When the cells were preincubated in 0 Cl/normal Na+ solution for 8 min. before the ammonium pulse, the pHi recovery fell from 0.069 ± 0.004 to 0.041 ± 0.007 (n= 12) in a Na+ and Cl free solution. From these results we conclude that: (i) MDCK cells have two Na+-independent mechanisms of pHi recovery, a concanamycin sensitive H+-ATPase and a K+ dependent, Schering 28080 sensitive H+–K+ ATPase; and, (ii) pHi recovery in Na+-free medium depends on the presence of a chloride current which can be blocked by NPPB and impaired by preincubation in Cl–free medium. This finding supports a role for chloride in the function of the H+ ATPase, which might be electrical shunting or a biochemical interaction. Received: 24 October 1997/Revised: 19 February 1998  相似文献   

9.
We present a new invertebrate model for the study of epithelial sodium transport in tight epithelia, the earthworm integument. Dissected segments of earthworm integument were mounted in modified Ussing chambers and perfused with either pond water (PW) or earthworm ringer solution (ERS) on the apical side. In order to investigate ion transport under near-in vivo physiological conditions, measurements were performed under current-clamp conditions by monitoring the transepithelial potential (V T), as well as the transepithelial resistance (R T). These were recorded continuously and the virtual short circuit current (I SC) was calculated. The integument has a high transepithelial resistance (R T=9,037±502 Ω cm2 for PW, n=24, and 11,055±1,320 Ω cm2 for ERS, n=32). V T was −3.7±2.2 mV for PW (n=24) and −1.5±1.0 mV for ERS (n=32), and I SC was −0.57±0.30 μA/cm2 for PW (n=24) and −0.44±0.24 μA/cm2 for ERS (n=32). Only under PW, but not under ERS conditions, was there a pronounced inhibition of I SC by low doses of amiloride or its analogues phenamil and benzamil. The resistance of the paracellular pathway was found to be very high. The terrestrial oligochaete Lumbricus seems especially adapted to the environmental conditions because it has an ultra-tight integument and a very fast up- and down-regulation of apical Na+ channels.  相似文献   

10.
Using the voltage/current clamp technique in the whole-cell configuration, we studied the role of the highly tetraethylammonium (TEA) -sensitive component of integral potassium current in the generation of high-frequency tonic impulsation by rat retinal ganglion cells (RGCs). Application of 0.5 mM TEA led to a decrease in the frequency of evoked tonic impulsation by RGCs by 63% (from 55 ± 10 sec–1 in the control to 26 ± 5 sec–1 in the presence of the blocker; n = 11). In this case, the duration of single action potentials at the level of 50% their amplitude increased by 64% (from 1.1 ± 0.1 to 1.8 ± 0.1 msec; n = 11), the rate of repolarization decreased by 54% (from −101 ± 9 to −46 ± 5 mV/msec; n = 11), and the amplitude of afterhyperpolarization dropped by 62% (from −16 ± 2 to −6 ± 2 mV; n = 11). Upon the action of 0.5 mM TEA, the amplitude of the integral potassium current in RGCs decreased; the current component sensitive to the above blocker was equal to 0.41 ± 0.05 nA (n = 6), while the respective value in the control was 1.62 ± 0.14 nA (n = 12). Thus, a moderate (on average, by 25%) decrease in the amplitude of the above potassium current significantly influenced the characteristics of impulse activity generated by RGCs. The TEA-sensitive component of the current was similar to the Kv3.1/Kv3.2 potassium current described earlier. The obtained data are indicative of the key role of the highly TEA-sensitive component of the potassium current (passed probably via Kv3.1/Kv3 channels) in high-frequency tonic activity generated by RGCs.  相似文献   

11.
Knoche M  Peschel S  Hinz M  Bukovac MJ 《Planta》2000,212(1):127-135
Water conductance of the cuticular membrane (CM) of mature sweet cherry fruit (Prunus avium L. cv. Sam) was investigated by monitoring water loss from segments of the outer pericarp excised from the cheek of the fruit. Segments consisted of epidermis, hypodermis and several cell layers of the mesocarp. Segments were mounted in stainless-steel diffusion cells with the mesocarp surface in contact with water, while the outer cuticular surface was exposed to dry silica (22 ± 1 °C). Conductance was calculated by dividing the amount of water transpired per unit area and time by the difference in water vapour concentration across the segment. Conductance values had a log normal distribution with a median of 1.15 × 10−4 m s−1 (n=357). Transpiration increased linearly with time. Conductance remained constant and was not affected by metabolic inhibitors (1 mM NaN3 or 0.1 mM carbonylcyanide m-chlorophenylhydrazone) or thickness of segments (range 0.8–2.8 mm). Storing fruit (up to 42 d, 1 °C) used as a source of segments had no consistent effect on conductance. Conductance of the CM increased from cheek (1.16 ± 0.10 × 10−4 m s−1) to ventral suture (1.32 ± 0.07 × 10−4 m s−1) and to stylar end (2.53 ± 0.17 × 10−4 m s−1). There was a positive relationship (r2=0.066**; n=108) between conductance and stomatal density. From this relationship the cuticular conductance of a hypothetical astomatous CM was estimated to be 0.97 ± 0.09 × 10−4 m s−1. Removal of epicuticular wax by stripping with cellulose acetate or extracting epicuticular plus cuticular wax by dipping in CHCl3/methanol increased conductance 3.6- and 48.6-fold, respectively. Water fluxes increased with increasing temperature (range 10–39 °C) and energies of activation, calculated for the temperature range from 10 to 30 °C, were 64.8 ± 5.8 and 22.2 ± 5.0 kJ mol−1 for flux and vapour-concentration-based conductance, respectively. Received: 23 March 2000 / Accepted: 28 July 2000  相似文献   

12.
We have obtained and modeled the electrical characteristics of the plasma membrane of Chara internodal cells: intact, without turgor and perfused with and without ATP. The cells were voltage and space-clamped to obtain the I/V (current-voltage) and G/V (conductance-voltage) profiles of the cell membrane. The intact cells yielded similar I/V characteristics with resting p.d.s of −221 ± 12 mV (cytoplasmic clamp, 5 cells) and −217 ± 12 mV (vacuolar clamp, 5 cells). The cut unperfused cells were depolarized at −169 ± 12 mV (7 cells) compared to the vacuole-clamped intact cells. The cells perfused with ATP fell into three groups: hyperpolarized group with resting p.d. −175 ± 12 mV (4 cells) and I/V profile similar to the intact and cut unperfused cells; depolarized group with resting p.d. of −107 ± 12 mV (6 cells) and I/V profiles close to linear; and excited cells with profiles showing a negative conductance region and resting p.d. at −59 ± 12 mV (5 cells). The cells perfused with medium containing no ATP showed upwardly concave I/V characteristics and resting p.d. at −81 ± 12 mV (6 cells). The I/V curves were modeled employing the ``Two-state' model for the H+ pump (Hansen et al., 1981). The inward and outward rectifiers were fitted to exponential functions and combined with a linear background current. The excitation state in perfused cells was modeled by including an inward current, i excit, with p.d.-dependence described by a combination of hyperbolic tangent functions. An inward current, i no-ATP, with a smaller amplitude, but very similar p.d.-dependence was also included in the simulation of the I/V curves from cells without ATP. This approach avoided I/V curve subtraction. The modeling of the total I/V and G/V characteristics provided more information about the parameters of the ``Two-state' pump model, as well as more quantitative understanding of the interaction of the major transport systems in the plasmalemma in generation of the resting potential under a range of circumstances. ATP had little effect on nonpump currents except the excitation current; depolarization profoundly affected the pump characteristics. Received: 23 January/Revised: 10 October 1995  相似文献   

13.
The Ca2+-activated maxi K+ channel was found in the apical membrane of everted rabbit connecting tubule (CNT) with a patch-clamp technique. The mean number of open channels (NP o ) was markedly increased from 0.007 ± 0.004 to 0.189 ± 0.039 (n= 7) by stretching the patch membrane in a cell-attached configuration. This activation was suggested to be coupled with the stretch-activation of Ca2+-permeable cation channels, because the maxi K+ channel was not stretch-activated in both the cell-attached configuration using Ca2+-free pipette and in the inside-out one in the presence of 10 mm EGTA in the cytoplasmic side. The maxi K+ channel was completely blocked by extracellular 1 μm charybdotoxin (CTX), but was not by cytoplasmic 33 μm arachidonic acid (AA). On the other hand, the low-conductance K+ channel, which was also found in the same membrane, was completely inhibited by 11 μm AA, but not by 1 μm CTX. The apical K+ conductance in the CNT was estimated by the deflection of transepithelial voltage (ΔV t ) when luminal K+ concentration was increased from 5 to 15 mEq. When the tubule was perfused with hydraulic pressure of 0.5 KPa, the ΔV t was only −0.7 ± 0.4 mV. However, an increase in luminal fluid flow by increasing perfusion pressure to 1.5 KPa markedly enhanced ΔV t to −9.4 ± 0.9 mV. Luminal application of 1 μm CTX reduced the ΔV t to −1.3 ± 0.6 mV significantly in 6 tubules, whereas no significant change of ΔV t was recorded by applying 33 μm AA into the lumen of 5 tubules (ΔV t =−7.2 ± 0.5 mV in control vs.ΔV t =−6.7 ± 0.6 mV in AA). These results suggest that the Ca2+-activated maxi K+ channel is responsible for flow-dependent K+ secretion by coupling with the stretch-activated Ca2+-permeable cation channel in the rabbit CNT. Received: 21 August 1997/Revised: 20 March 1998  相似文献   

14.
Protonema explants of Splachnum ampullaceum Hedw. were grown in vitro on 10 different mineral media with different sources and contents of nitrogen, in each case with or without added sucrose (30 g dm−3) and/or B5 vitamins. The cultures were maintained at day/night temperatures 24 ± 4/20 ± 2 °C and a 16-h photoperiod (irradiance of 25 μmol m−2 s−1). Sucrose had little or no effect on protonema diameter and bud number in nitrate-only media or in high-ammonium media but markedly reduced bud number in low-ammonium media. Sucrose markedly reduced one-year explant survival rate in the low-ammonium media. The presence of B5 vitamins in such media markedly improved one-year survival, suggesting that the best medium for long-term culture of Splachnum ampullaceum is a medium containing ammonium at relatively low concentration as ammonium phosphate or sulphate (e.g. Gamborg's B5 medium), with added B5 vitamins but without added sucrose.  相似文献   

15.
Smooth muscle cells isolated from the secondary and tertiary branches of the rabbit mesenteric artery contain large Ca2+-dependent channels. In excised patches with symmetrical (140 mm) K+ solutions, these channels had an average slope conductance of 235 ± 3 pS, and reversed in direction at −6.1 ± 0.4 mV. The channel showed K+ selectivity and its open probability (P o ) was voltage-dependent. Iberiotoxin (50 nm) reversibly decreased P o , whereas tetraethylammonium (TEA, at 1 mm) reduced the unitary current amplitude. Apamin (200 nm) had no effect. The channel displayed sublevels around 1/3 and 1/2 of the mainstate level. The effect of [Ca2+] on P o was studied and data fitted to Boltzmann relationships. In 0.1, 0.3, 1.0 and 10 μm Ca2+, V 1/2 was 77.1 ± 5.3 (n= 18), 71.2 ± 4.8 (n= 16), 47.3 ± 10.1 (n= 11) and −14.9 ± 10.1 mV (n= 6), respectively. Values of k obtained in 1 and 10 μm [Ca2+] were significantly larger than that observed in 0.1 μm [Ca2+]. With 30 μm NS 1619 (a BKCa channel activator), V 1/2 values were shifted by 39 mV to the left (hyperpolarizing direction) and k values were not affected. TEA applied intracellularly, reduced the unitary current amplitude with a K d of 59 mm. In summary, BKCa channels show a particularly weak sensitivity to intracellular TEA and they also display large variation in V 1/2 and k. These findings suggest the possibility that different types (isoforms) of BKCa channels may exist in this vascular tissue. Received: 22 December 1997/Revised: 27 March 1998  相似文献   

16.
Single-channel properties of a delayed rectifier voltage-gated K+ channel (I-type) were investigated in peripheral myelinated axons from Xenopus laevis. Channels activated between −60 and −40 mV with a potential of half-maximal activation, E50, at −47.5 mV. Averaged single-channel currents activated with a time delay at all membrane potentials tested. Time to half-maximal activation decreased from 80 to 1.6 msec between −60 and +40 mV. The channel inactivated monoexponentially with a time constant of 10.9 sec at −40 mV. The time constant of deactivation was 126 msec at −80 mV and 16.9 msec at −110 mV. In symmetrical 105 mm K+, the single-channel conductance (γ) was 22 and 13 pS at negative and positive membrane potentials, respectively, at 13–15°C. In Na+-rich solution with 2.5 mm extracellular K+γ was 7 pS and the reversal potential was negative to −80 mV, indicating a high selectivity for K+ over Na+. γ depended on extracellular K+ concentration (K D = 19.6 mm) and temperature (Q 10= 1.45). External tetraethylammonium (TEA) reduced the apparent single-channel current amplitude at all potentials tested with a half-maximal inhibiting concentration (IC50) of 0.6 mm. Open probability of the channel, but not single-channel current amplitude was decreased by extracellular dendrotoxin (DTX, IC50= 6.8 nm) and mast cell degranulating peptide (MCDP, IC50= 41.9 nm). In Ringer solution the membrane potential of macroscopic I-channel patches was about −65 mV and depolarized under TEA and DTX. It is concluded that besides their activation during action potentials, I-channels may also stabilize the resting membrane potential. Received: 2 June 1995/Revised: 13 October 1995  相似文献   

17.
Articaine is widely used as a local anesthetic (LA) in dentistry, but little is known regarding its blocking actions on Na+ channels. We therefore examined the state-dependent block of articaine first in rat skeletal muscle rNav1.4 Na+ channels expressed in Hek293t cells. Articaine exhibited a weak block of resting rNav1.4 Na+ channels at −140 mV with a 50% inhibitory concentration (IC50) of 378 ± 26 μM (n = 5). The affinity was higher for inactivated Na+ channels measured at −70 mV with an IC50 value of 40.6 ± 2.7 μM (n = 5). The open-channel block by articaine was measured using inactivation-deficient rNav1.4 Na+ channels with an IC50 value of 15.8 ± 1.5 μM (n = 5). Receptor mapping demonstrated that articaine interacted strongly with a D4S6 phenylalanine residue, which is known to form a part of the LA receptor. Thus the block of rNav1.4 Na+ channels by articaine is via the conserved LA receptor in a highly state-dependent manner, with a ranking order of open (23.9×) > inactivated (9.3×) > resting (1×) state. Finally, the open-channel block by articaine was likewise measured in inactivation-deficient hNav1.7 and rNav1.8 Na+ channels, with IC50 values of 8.8 ± 0.1 and 22.0 ± 0.5 μM, respectively (n = 5), indicating that the high-affinity open-channel block by articaine is indeed preserved in neuronal Na+ channel isoforms.  相似文献   

18.
Outer sulcus epithelial cells were recently found to actively reabsorb cations from the cochlear luminal fluid, endolymph, via nonselective cation channels in the apical membrane. Here we determined the transport properties of the basolateral membrane with the whole-cell patch clamp technique; the apical membrane contributed insignificantly to the recordings. Outer sulcus epithelial cells exhibited both outward and inward currents and had a resting membrane potential of −90.4 ± 0.7 mV (n= 78), close to the Nernst potential for K+ (−95 mV). The reversal potential depolarized by 54 mV for a tenfold increase in extracellular K+ concentration with a K+/Na+ permeability ratio of 36. The most frequently observed K+ current was voltage independent over a broad range of membrane potentials. The current was reduced by extracellular barium (10−5 to 10−3 m), amiloride (0.5 mm), quinine (1 mm), lidocaine (5 mm) and ouabain (1 mm). On the other hand, TEA (20 mm), charybdotoxin (100 nm), apamin (100 nm), glibenclamide (10 μm), 4-aminopyridine (1 mm) and gadolinium (1 mm) had no significant effect. These data suggest that the large K+ conductance, in concert with the Na+,K+-ATPase, of the basolateral membrane of outer sulcus cells provides the driving force for cation entry across the apical membrane, thereby energizing vectorial cation absorption by this epithelium and contributing to the homeostasis of endolymph.  相似文献   

19.
A detailed temperature dependence study of a well-defined plant ion channel, the Ca2+-activated K+ channel of Chara corallina, was performed over the temperature range of their habitats, 5–36°C, at 1°C resolution. The temperature dependence of the channel unitary conductance at 50 mV shows discontinuities at 15 and 30°C. These temperatures limit the range within which ion diffusion is characterized by the lowest activation energy (E a = 8.0 ± 1.6 kJ/mol) as compared to the regions below 15°C and above 30°C. Upon reversing membrane voltage polarity from 50 to −50 mV the pattern of temperature dependence switched from discontinuous to linear with E a = 13.6 ± 0.5 kJ/mol. The temperature dependence of the effective number of open channels at 50 mV showed a decrease with increasing temperature, with a local minimum at 28°C. The mean open time exhibited a similar behavior. Changing the sign of membrane potential from 50 to −50 mV abolished the minima in both temperature dependencies. These data are discussed in the light of higher order phase transitions of the Characean membrane lipids and corresponding change in the lipid-protein interaction, and their modulation by transmembrane voltage. Received: 14 June 2000/Revised: 20 September 2000  相似文献   

20.
Open-flow oxygen and carbon dioxide respirometry was used in Neumünster Zoo (Germany) to examine the energy requirements of six Asian small-clawed otters (Amblonyx cinerea) at rest and swimming voluntarily under water. Our aim was to compare their energy requirements with those of other warm-blooded species to elucidate scale effects and to test whether the least aquatic of the three otter species differs markedly from these and its larger relatives. While at rest on land (16 °C, n = 26), otters (n = 6, mean body mass 3.1 ± 0.4 kg) had a respiratory quotient of 0.77 and a resting metabolic rate of 5.0 ± 0.8 Wkg−1(SD). This increased to 9.1 ± 0.8 Wkg−1 during rest in water (11–15 °C, n = 4) and to 17.6 ± 1.4 Wkg−1 during foraging and feeding activities in a channel (12 °C, n = 5). While swimming under water (n = 620 measurements) in an 11-m long channel, otters preferred a speed range between 0.7 ms−1 and 1.2 ms−1. Transport costs were minimal at 1 ms−1 and amounted to 1.47 ± 0.24 JN−1 m−1 (n = 213). Metabolic rates of small-clawed otters in air were similar to those of larger otter species, and about double those of terrestrial mammals of comparable size. In water, metabolic rates during rest and swimming were larger than those extrapolated from larger otter species and submerged swimming homeotherms. This is attributed to high thermoregulatory costs, and high body drag at low Reynolds numbers. Accepted: 21 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号