首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two experiments were conducted to determine whether cannulation of the jugular vein in gilts alters serum concentrations of LH, FSH, prolactin (PRL) or cortisol (C). In Experiment 1, 12 crossbred prepubertal gilts weighing 95 +/- 1.3 kg were immobilized by snaring, and tygon tubing was threaded into the anterior vena cava through a 12-gauge needle inserted into the jugular vein. Five hours later, blood samples were drawn at 20-min intervals for 4 h (Day 0). Samples were also drawn at 20-min intervals for 4-h periods 24 h (Day 1) and 48 h (Day 2) after cannulation. Serum concentrations of LH were similar (P=0.26) among Day 0 (0.40 ng/ml), Day 1 (0.39 ng/ml) and Day 2 (0.34 ng/ml). Serum PRL was similar (P=0.07) among Day 0 (4.10 ng/ml), Day 1 (3.87 ng/ml) and Day 2 (3.43 ng/ml). Serum concentrations of C were greater (P < 0.001) on Day 0 (8.32 ng/ml) than Day 1 (4.48 ng/ml) or Day 2 (3.54 ng/ml). In Experiment 2, cannulas were placed in 29 prepubertal gilts. Two days after initial cannulation, six blood samples were drawn at 20-min intervals. Gilts were then immobilized by snaring, and a second cannulae was inserted into the contralateral vein. Five blood samples were taken at 2-min intervals during the second cannulation and then six samples were drawn at 20-min intervals. Serum LH and FSH were not altered by cannulation or elevated during the subsequent 2-h sampling period (P>0.05). In contrast, serum concentrations of PRL rose slowly (P<0.05) during cannulation and remained elevated for 60 min before returning to baseline. Serum concentrations of C rose within 6 min of cannulation, remained elevated for 30 min, and then declined over the next 90 min. From these two experiments, it appears that secretory patterns of LH and FSH can be accurately assessed immediately after cannulation in prepubertal gilts. Measurements of serum PRL and C that reflect nonstressed conditions, however, cannot be obtained until at least 2 h or 1 d after cannulation, respectively.  相似文献   

2.
Angus and Angus crossbred heifers were ovariectomized, treated with oestradiol implants and randomly assigned to the natural photoperiod of fall to spring for 43 degrees N latitude or extra light simulating the photoperiod of spring to fall. Weekly blood samples were taken for 6 months (fall to spring equinox). All heifers were cannulated every 4 weeks and blood samples were taken for 4 h at 15-min intervals. Sera were assayed for LH, FSH, prolactin and oestradiol. In samples taken weekly, serum LH and FSH concentrations were higher while serum prolactin was lower in heifers exposed to natural photoperiod. There was a photoperiod X time interaction for both FSH and prolactin with concentrations diverging as photoperiod diverged. Circulating concentrations of oestradiol were not different between groups. In samples taken every 4 weeks at 15-min intervals, baseline concentrations of LH and FSH and LH pulse amplitude were higher while prolactin pulse frequency was lower in heifers exposed to natural photoperiod. There was a photoperiod X time interaction for each of these pulsatile characteristics. The correlation between LH and prolactin concentrations estimated from the 15-min samples differed between the two photoperiod treatment groups. The pooled correlation coefficient (r) was -0.12 under natural photoperiod and +0.50 under extra light. There was also a photoperiod X time interaction with negative correlations occurring when photoperiod was decreasing and positive correlations occurring when photoperiod was increasing. These results support the hypothesis that photoperiod alters serum concentrations of LH, FSH and prolactin in cattle.  相似文献   

3.
This study was conducted to test the hypothesis that the rate (dose/time) at which oestradiol-17 beta (oestradiol) is presented to the hypothalamo-pituitary axis influences secretion of LH, FSH and prolactin. A computer-controlled infusion system was used to produce linearly increasing serum concentrations of oestradiol in ovariectomized ewes over a period of 60 h. Serum samples were collected from ewes every 2 h from 8 h before to 92 h after start of infusion, and assayed for oestradiol, LH, FSH and prolactin. Rates of oestradiol increase were categorized into high (0.61-1.78 pg/h), medium (0.13-0.60 pg/h) and low (0.01-0.12 pg/h). Ewes receiving high rates of oestradiol (N = 11) responded with a surge of LH 12.7 +/- 2.0 h after oestradiol began to increase, whereas ewes receiving medium (N = 15) and low (N = 11) rates of oestradiol responded with a surge of LH at 19.4 +/- 1.7 and 30.9 +/- 2.0 h, respectively. None of the surges of LH was accompanied by a surge of FSH. Serum concentrations of FSH decreased and prolactin increased in ewes receiving high and medium rates of oestradiol, when compared to saline-infused ewes (N = 8; P less than 0.05). We conclude that rate of increase in serum concentrations of oestradiol controls the time of the surge of LH and secretion of prolactin and FSH in ovariectomized ewes. We also suggest that the mechanism by which oestradiol induces a surge of LH may be different from the mechanism by which oestradiol induces a surge of FSH.  相似文献   

4.
Angus and Angus crossbred prepubertal heifers were ovariectomized and randomly assigned to either increasing light simulating the photoperiod of the vernal equinox to the summer solstice (I) or decreasing light simulating the photoperiod of the autumnal equinox to the winter solstice (D) for 43 degrees N latitude. Three blood samples were taken each week for 14 weeks, the first at 11:00 h and two others 2 days later, 1 h before lights on (dark), 1 h before lights off (light). At the end of 14 weeks 4 heifers from each treatment group were cannulated and samples were taken for 12 h at 15-min intervals, 6 h in the light and 6 h in the dark. All sera were assayed for LH, FSH and prolactin. In addition, the samples taken at 15-min intervals were assayed for melatonin. In samples taken weekly at 11:00 h circulating concentrations of LH and prolactin were higher among animals in Group I, while FSH concentrations were not different between Groups D and I. In samples collected weekly in the light or the dark, LH and prolactin concentrations were higher in Group I animals. However, prolactin concentrations were higher and LH concentrations tended to be higher in samples taken in the dark. FSH concentrations were not different between either D or I or dark and light. In samples taken at 15-min intervals the prolactin baseline was higher and pulse amplitude tended to be higher for Group I animals. Neither LH nor FSH pulse characteristics differed between I and D; however, LH baseline and LH pulse amplitude were higher in the dark. Melatonin pulse amplitude was higher among animals in Group D and higher in serum collected in the dark. These results suggest that photoperiod alters circulating concentrations of LH and prolactin and alters pulsatile release of LH, prolactin and melatonin in the prepubertal heifer.  相似文献   

5.
Caffeine, a trimethylxanthine alkaloid, is a psycho-active drug that effects a wide range of physiological systems, including the reproductive system. Reports of infants with intra-uterine growth retardation and lowered birth weight as a result of in utero exposure to caffeine, are increasing. The drug is also known to alter steroidogenesis but it is not certain whether this is a direct and/or indirect effect with the involvement of the central nervous system. Thus, an experiment was designed to determine the effect of acute caffeine administration on the circulating concentrations of gonadotrophins and prolactin in the ovariectomized oestradiol-implanted ewe. A single intravenous dose of caffeine (20 mg kg−1 bodyweight) did not affect circulating gonadotrophin concentrations with the parameters for the pulsatile secretion of luteinizing hormone (LH) and the mean concentration of follicle stimulating hormone (FSH) being similar in both experimental and control groups. Circulating prolactin levels, on the other hand, were significantly (P < 0.01) elevated following intravenous treatment with caffeine. The effect was immediate following caffeine administration with elevated concentrations being maintained over the next 3 h before their return to pre-treatment concentrations. The response was bi-phasic with peaks of prolactin concentrations at 1 and 3 h. The results of this experiment show that acute caffeine exposure does not affect the secretion of gonadotrophins from the anterior pituitary gland. Furthermore, they show that acute administration of caffeine stimulates prolactin secretion via an action that is independent of oestradiol feedback and which we suggest, may involve the ACTH/adrenal axis.  相似文献   

6.
7.
The effects of 30 min of exercise (74.1 +/- 3.0% (VO2), on the responses of progesterone (P), estradiol (E2), follicle stimulating hormone (FSH), and luteinizing hormone (LH) were investigated in 10 women. With such exercise significant increments occurred in P (37.6 +/- 9.5%) and E2 (13.5 +/- 7.5%) (P less than 0.05), whereas no changes were observed in FSH and LH (p greater than 0.05). Exercise in the luteal phase and during menses provoked similar changes in P, but E2 concentrations remained unchanged when exercise occurred during menses (p greater than 0.05). With 8-11 weeks of training the menstrual cycles were quite irregular and retesting of subjects in the same phase of the cycle was not possible. Yet, when subjects were retested after training, no changes occurred in P, E2 or LH (p greater than 0.05) but a decrement did occur in FSH (p less than 0.10). Thus, heavy exercise in untrained subjects provokes significant increments in ovarian hormones, whereas no such increments are observed in trained subjects exercising at the same absolute workload.  相似文献   

8.
Development of a controlled release formulation of gonadotropin releasing hormone that would stimulate a LH surge capable of reducing the time span of ovulations would greatly benefit reproductive management because a single timed insemination could be used. A dose-response study was conducted to determine if Deslorelin, a potent gonadotropin releasing hormone analogue, delivered via the SABER system, a biodegradable controlled release system, would stimulate an ovulatory-like LH surge in the pig. Twenty ovariectomized gilts, approximately 200 d old and 100 kg body weight (BW), received estradiol benzoate (15 microg/kg BW im) and 48 h later, the gilts were given deslorelin at 0, 12.5, 25.0, 50.0 or 100.0 microg im (n = 4 each treatment group). Compared to controls, mean blood deslorelin concentrations were still elevated at 30 h after deslorelin. Mean deslorelin magnitude, area under the curve and duration were sequentially greater (P<0.05) in a dose-dependent sequence. Compared to controls, serum LH concentrations were elevated (P<0.05) for 6 to 12 h after deslorelin. A dose-response relationship was absent for all parameters of LH secretion. Magnitude of the serum LH response was greatest (P<0.05) in the 12.5 microg and 50.0 microg groups, whereas area under the curve was lower (P<0.05) after 25.0 microg of deslorelin than after 12.5, 50.0 and 100.0 microg, which were not different from each other. Thus, no more than 12.5 microg of deslorelin is necessary to obtain maximum LH release in the model studied and doses less than 12.5 microg may also be effective.  相似文献   

9.
Intravaginal rings containing progesterone were inserted on Day 5 of the cycle to 8 healthy, normally menstruating women. Blood samples were taken during Days 4--22 of the cycle at 2--3-day intervals. The plasma progesterone levels obtained after the insertion were between 7.5 and 21 nmol/l. Four subjects showed no increase in plasma oestradiol concentrations. The subjects showing increased plasma oestradiol levels also showed a positive feedback on LH, resulting in ovulation or an LH peak. The results suggest that progesterone may have a local inhibitory effect on the follicular oestradiol production.  相似文献   

10.
Three experiments were conducted to determine the effect of sampling interval on serum concentrations of LH, FSH, and prolactin (PRL) in prepubertal, ovariectomized, and cycling gilts. In all experiments, blood samples were drawn at 2-min intervals for 4 h from indwelling jugular catheters. Mean serum hormone concentrations, mean number of peaks, and mean and maximum peak heights of LH, FSH, and PRL were calculated using values reflecting 2-, 6-, 10-, 20-, 30-, and 60-min sampling intervals. For LH, FSH, and PRL, mean serum concentrations can be obtained through blood samples drawn at hourly intervals. Since LH peaks are very distinct in pigs, the number of secretory peaks and mean peak height can be obtained via samples drawn at 20-min intervals. Since FSH and PRL peaks are less well defined, a more frequent sampling interval (10 min) is needed to determine number of peaks and mean peak height. To obtain the maximum peak height or the number of minutes for LH, FSH, or PRL to rise from its nadir to zenith, blood samples need to be drawn at 2-min intervals. Regardless of reproductive state, these data indicate that the sampling interval needed to characterize serum concentrations of LH, FSH, and PRL in the gilt is dependent upon the parameter in question.  相似文献   

11.
In order to elucidate the relationship between prolactin (PRL) levels and corpus luteum function in humans, assessment of temporal relationship between levels of PRL, LH, FSH, estradiol and progesterone was made in eleven normal cycling women and six short luteal women. All hormones were determined by specific radioimmunoassay. The mean PRL level in the luteal phase was higher than that in the follicular phase in normal women. On the other hand, no difference mean was seen between the PRL levels of follicular and luteal phases in short luteal women. In addition, follicular and luteal phase secretion of PRL in the short luteal phase (SLP) was lower than that in the normal control. LH and FSH in the follicular and luteal phases, estradiol secretion in the late follicular and early to mid-luteal phases in SLP were also lower than those in the control. These observations were consistent with the hypothesis that SLP is a sequel to aberrant folliculogenesis. In addition, it is inferred that low PRL levels in the SLP might be due to inadequate augmentation by estrogen, rather than giving PRL any positive controlling role in the maintenance of corpus luteum function.  相似文献   

12.
W Krause 《Endokrinologie》1978,72(2):129-135
In 188 males FSH, LH, and prolactin serum levels determined from a single blood sample were found to be closely correlated. No correlation appeared to testosterone levels. The same correlation is observed, if serum levels of FSH, LH, and prolactin are measured after stimulation with LH-RH and TRH. In order to explain the close correlation, in five young men hormone levels were measured at 2-min-intervals over a period of 2 hours. Peaks of prolactin often correspond to those of FSH and LH, and a statistical correlation was found in two cases between FSH and prolactin. Results suggest a common releasing mechanism, which is superposed to the main mediating mechanism.  相似文献   

13.
The effects of estradiol benzoate (EB) on tyrosine hydroxylase (TH) activity in the medial basal hypothalamus (MBH) and on plasma levels of luteinizing hormone (LH) and prolactin were studied in long-term ovariectomized rats. Administration of 10 μg EB produced significant elevation of TH activity on Days 1 and 3 following injection. LH levels were significantly lower than controls throughout the three day treatment period, although there was a significant increase from Day 1 to Day 2. TH activity and LH levels were inversely related throughout the experimental period. Clomiphene (15 μg/rat/day), a purported estrogen antagonist, was administered over a period of three days to control and EB-treated rats to determine whether the effect of EB on plasma LH levels was causally related to changes in TH activity. In rats receiving both EB and clomiphene, TH activity was lower and plasma LH was higher than after EB alone. The results support the hypothesis that the feedback effects of estradiol on LH release involve an action on the tuberoinfundibular dopaminergic (TIDA) neurons of the MBH and that clomiphene can oppose the inhibitory effect of estradiol on LH release by directly inhibiting TIDA neuron activity. Furthermore, EB-induced release of prolactin does not appear to involve detectable changes in the activity of TIDA neurons.  相似文献   

14.
The effect of p-chlorophenylalanine (PCPA: 300 mg/kg) on the rate of ovulation and plasma LH, FSH and prolactin secretion has been studied in rats at preovulatory periods (18th hour of diestrus) and post-ovulatory periods (9th hour of metaestrus). In both experimental groups, results showed that administration of PCPA caused an increase in both prolactin concentration and number of mature ovarian follicles (p less than 0.001). No changes were observed in FSH levels. LH concentration, however, decreased (p less than 0.001) and ovulation became totally inhibited. Rats treated at the 9th hour of metaestrus exhibited a marked luteinization as well as an increased number of corpus luteum in the ovaric tissue (p less than 0.001), whereas those treated at the 18th hour of diestrus underwent no luteinization and merely showed a greater number of mature ovarian follicles (p less than 0.001). PCPA, therefore, seems not to have a double effect on ovulation, LH, FSH, and prolactin secretion regardless of the pre or post-ovulatory periods. Changes observed in the ovaric tissue might be due to an increase in plasma prolactin concentration which appears earlier in the preovulatory than in the post-ovulatory treated animals. This difference may explain the double effect that has been attributed to the ovaric cycle and reproductive behavior.  相似文献   

15.
The role of hypothalamic catecholamines and luteinizing hormone releasing hormone (LHRH) in the negative feedback effect of estradiol benzoate (EB) on luteinizing hormone (LH) release was studied in chronic ovariectomized rats. Administration of 10 micrograms EB decreased plasma LH levels and increased LHRH content in the medial basal hypothalamus (MBH) 1 day after injection. Inhibition of dopamine and norepinephrine synthesis with alpha-methyl-p-tyrosine (alpha-MT) reduced the LHRH content in the MBH in both oil- and EB-treated animals and partially reversed the decrease in plasma LH levels. Inhibition of norepinephrine synthesis with fusaric acid decreased LHRH content in both oil- and EB-treated rats but had no effect on plasma LH levels. The results suggest that at least a portion of the inhibitory effect of EB on LH release is due to the stimulation of an inhibitory dopaminergic mechanism which reduces LHRH release from the MBH. This feedback mechanism is apparently not susceptible to dopaminergic receptor blockade since administration of pimozide had no effect on LH levels. The stimulatory feedback effect of EB on prolactin release was studied in the same animals. alpha-MT and EB produced additive effects on plasma prolactin levels whereas fusaric acid blocked the EB-induced increase in plasma prolactin levels. Pimozide appeared to potentiate the effect of EB on prolactin release. The results reconfirm the possible role of noradrenergic neurons in the release of prolactin induced by EB and also suggest that EB stimulates a dopaminergic mechanism which is inhibitory to prolactin release but is normally masked by increased noradrenergic activity.  相似文献   

16.
P M Wise 《Life sciences》1982,31(2):165-173
The purpose of the following study was to assess the changes in the proestrous hormone profile in middle-aged cycling rats to better understand the inter-relationship and possible interaction of these hormones during the transition to estrous acyclicity. Median eminence LHRH concentrations and serum LH, FSH, estradiol and progesterone concentrations were measured in young (3-4 months old) and middle-aged (8-10 months old) proestrous rats at 0900, 1200, 1500 and 1800h. The data demonstrate that (1) baseline hormone concentrations prior to the surge at 0900h are the same in middle-aged and young rats; (2) the proestrous gonadotropin surge is temporally delayed in middle-aged rats; (3) this delay is preceded by lower median eminence LHRH concentrations and serum estradiol concentrations at 1200h; (4) serum progesterone concentrations are lower in middle-aged rats during the preovulatory gonadotropin surge (at 1500 and 1800h) probably as a consequence of the delayed LH surge.  相似文献   

17.
18.
The temporal relationships of serum prolactin, oestrogen and LH concentrations during the perioestrous period were compared in prepubertal gilts induced to ovulate by PMSG and hCG and in mature gilts. In Exp. 1, 2 sustained prolactin surges, beginning 4 days and 1 day before the preovulatory LH surge, occurred in all mature gilts. A single preovulatory prolactin surge occurred in 3 prepubertal gilts, starting just before the preovulatory LH surge, but 4 prepubertal gilts had neither a prolactin nor an LH surge. A status (prepubertal or mature) versus time interaction (P less than 0.01) was detected for serum prolactin concentrations. A preovulatory oestrogen surge occurred in all gilts but was of lesser magnitude (P less than 0.01) and duration (P less than 0.05) in the prepubertal gilts without prolactin and LH surges compared to mature gilts and of lesser magnitude (P less than 0.01) compared to prepubertal gilts with prolactin and LH surges. The relative timing of the oestrogen surge in prepubertal gilts corresponded with that of mature gilts when adjusted to the LH surge (if present) but was delayed (P less than 0.01) in all prepubertal gilts if standardized to the hCG injection. In Exp. 2, mature gilts were examined to determine whether 2 perioestrous prolactin surges were characteristic of all cycling gilts. Of 9 gilts, 8 exhibited an initial prolactin surge 4-5 days before oestrus and 5/9 gilts exhibited a periovulatory prolactin surge. The presence of 2 perioestrous serum prolactin surges was not a requirement for subsequent pregnancy maintenance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
The effect of ethanol (4 g/kg) as well as the role of serotoninergic neurons on the rate of ovulation and plasma LH, FSH and prolactin secretion have been studied in rats at preovulatory periods (18th hour of diestrus). It has been found that administration of ethanol in preovulatory periods decreased the number of ovules per rat (p less than 0.001), the number of ovulating rats and LH levels (p less than 0.001). These effects were accompanied by an increase in prolactin concentration (0.05 greater than p greater than 0.02), which was followed by a diffuse luteinization in the ovarian tissue. These results showed that ethanol had an effect of central depression in preovulatory periods. These effects could be mediated through the hypothalamic releasing factors. Under previous serotonin depletion with p-chlorophenylalanine (PCPA: 300 mg/kg), ethanol caused similar effects on LH and FSH levels as compared with the control group with PCPA. However, prolactin concentration was not increased. These results showed that serotoninergic neurons could be mediated in changes caused by ethanol on prolactin secretion, but do not affect directly in changes caused on LH and FSH secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号