首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three-dimensional structure of beef liver catalase has been determined to 2.5 å resolution by a combination of isomorphous and molecular replacement techniques. Heavy-atom positions were found using vector search and difference Fourier methods. The tetrameric catalase molecule has 222 symmetry with one of its dyads coincident with a crystallographic 2-fold axis. The known polypeptide sequence has been unambiguously fitted to the electron density map. The heme is well buried in a hydrophobic pocket, 20 Å below the surface of the molecule, and accessible through a hydrophobic channel. Residues that line the heme pocket belong to two different subunits. Tyr357 is the proximal heme ligand and the catalytically important residues on the distal side are residues His74 and Asnl47. The tertiary structure consists of four domains: an extended non-globular amino-terminal arm, which stabilizes the quaternary structure; an anti-parallel, eight-stranded β-barrel providing the residues on the distal side of the heme; a rather random “wrapping domain” around the subunit exterior including the proximal heme ligand; and a final λ-helical structure resembling the E, F, G and H helices of the globins.  相似文献   

2.
Comparison of beef liver and Penicillium vitale catalases   总被引:4,自引:0,他引:4  
The structures of Penicillium vitale and beef liver catalase have been determined to atomic resolution. Both catalases are tetrameric proteins with deeply buried heme groups. The amino acid sequence of beef liver catalase is known and contains (at least) 506 amino acid residues. Although the sequence of P. vitale catalase has not yet been determined chemically, 670 residues have been built into the 2 A resolution electron density map and have been given tentative assignments. A large portion of each catalase molecule (91% of residues in beef liver catalase and 68% of residues in P. vitale catalase) shows structural homology. The root-mean-square deviation between 458 equivalenced C alpha atoms is 1.17 A. The dissimilar parts include a small fragment of the N-terminal arm and an additional "flavodoxin-like" domain at the carboxy end of the polypeptide chain of P. vitale catalase. In contrast, beef liver catalase contains one bound NADP molecule per subunit in a position equivalent to the chain region, leading to the flavodoxin-like domain, of P. vitale catalase. The position and orientation of the buried heme group in the two catalases, relative to the mutually perpendicular molecular dyad axes, are identical within experimental error. A mostly hydrophobic channel leads to the buried heme group. The surface opening to the channel differs due to the different disposition of the amino-terminal arm and the presence of the additional flavodoxin-like domain in P. vitale catalase. Possible functional implications of these comparisons are discussed.  相似文献   

3.
Protein S8 fromThermus thermophilus consists of 138 amino acids ofM, 15,840. Its primary structure was established using peptide sequences from two different digests. Protein S8 fromT. thermophilus shares a high percentage of identity with protein S8 fromThermus aquaticus. There are some consensus sequences between proteins S8 from eubacteria, archebacteria, chloroplasts, and cyanelles.  相似文献   

4.
Catalase CatF of Pseudomonas syringae has been identified phylogenetically as a clade 1 catalase, closely related to plant catalases, a group from which no structure has been determined. The structure of CatF has been refined at 1.8 A resolution by using X-ray synchrotron data collected from a crystal flash-cooled with liquid nitrogen. The crystallographic agreement factors R and R(free) are, respectively, 18.3% and 24.0%. The asymmetric unit of the crystal contains a whole molecule that shows accurate 222-point group symmetry. The crystallized enzyme is a homotetramer of subunits with 484 residues, some 26 residues shorter than predicted from the DNA sequence. Mass spectrometry analysis confirmed the absence of 26 N-terminal residues, possibly removed by a periplasmic transport system. The core structure of the CatF subunit was closely related to seven other catalases with root-mean-square deviations (RMSDs) of 368 core Calpha atoms of 0.99-1.30 A. The heme component of CatF is heme b in the same orientation that is found in Escherichia coli hydroperoxidase II, an orientation that is flipped 180 degrees with respect the orientation of the heme in bovine liver catalase. NADPH is not found in the structure of CatF because key residues required for nucleotide binding are missing; 2129 water molecules were refined into the model. Water occupancy in the main or perpendicular channel of CatF varied among the four subunits from two to five in the region between the heme and the conserved Asp150. A comparison of the water occupancy in this region with the same region in other catalases reveals significant differences among the catalases.  相似文献   

5.
The primary structure of the 23S rRNA binding ribosomal protein L1 from the 50S ribosomal subunit ofThermus thermophilus ribosomes has been elucidated by direct protein sequencing of selected peptides prepared by enzymatic and chemical cleavage of the intact purified protein. The polypeptide chain contains 228 amino acids and has a calculated molecular mass of 24,694 D. A comparison with the primary structures of the corresponding proteins fromEscherichia coli andBacillus stearothermophilus reveals a sequence homology of 49% and 58%, respectively. With respect to both proteins, L1 fromT. thermophilus contains particularly less Ala, Lys, Gln, and Val, whereas its content of Glu, Gly, His, Ile, and Arg is higher. In addition, two fragments obtained by limited proteolysis of the intact, unmodified protein were characterized.  相似文献   

6.
In Group A streptococcus (GAS), the metallorepressor MtsR regulates iron homeostasis. Here we describe a new MtsR-repressed gene, which we named hupZ (heme utilization protein). A recombinant HupZ protein was purified bound to heme from Escherichia coli grown in the presence of 5-aminolevulinic acid and iron. HupZ specifically binds heme with stoichiometry of 1:1. The addition of NADPH to heme-bound HupZ (in the presence of cytochrome P450 reductase, NADPH-regeneration system and catalase) triggered progressive decrease of the HupZ Soret band and the appearance of an absorption peak at 660 nm that was resistance to hydrolytic conditions. No spectral changes were observed when ferredoxin and ferredoxin reductase were used as redox partners. Differential spectroscopy with myoglobin or with the ferrous chelator, ferrozine, confirmed that carbon monoxide and free iron are produced during the reaction. ApoHupZ was crystallized as a homodimer with a split β-barrel conformation in each monomer comprising six β strands and three α helices. This structure resembles the split β-barrel domain shared by the members of a recently described family of heme degrading enzymes. However, HupZ is smaller and lacks key residues found in the proteins of the latter group. Phylogenetic analysis places HupZ on a clade separated from those for previously described heme oxygenases. In summary, we have identified a new GAS enzyme-containing split β-barrel and capable of heme biotransformation in vitro; to the best of our knowledge, this is the first enzyme among Streptococcus species with such activity.  相似文献   

7.
NADP+ dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP+ was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH’s. And, small domain and clasp domain showing significant differences when compared to other IDH’s of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH’s. Also, helices/beta sheets are absent in the small domain, when compared to other IDH’s of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit–subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.  相似文献   

8.
The primary structure of the 23S rRNA binding ribosomal protein L1 from the 50S ribosomal subunit ofThermus thermophilus ribosomes has been elucidated by direct protein sequencing of selected peptides prepared by enzymatic and chemical cleavage of the intact purified protein. The polypeptide chain contains 228 amino acids and has a calculated molecular mass of 24,694 D. A comparison with the primary structures of the corresponding proteins fromEscherichia coli andBacillus stearothermophilus reveals a sequence homology of 49% and 58%, respectively. With respect to both proteins, L1 fromT. thermophilus contains particularly less Ala, Lys, Gln, and Val, whereas its content of Glu, Gly, His, Ile, and Arg is higher. In addition, two fragments obtained by limited proteolysis of the intact, unmodified protein were characterized.  相似文献   

9.
Alcohol oxidase fromPichia pastoris has been crystallized from polyethylene glycol 4000 solutions. The crystals are tetragonal, a=228 Å, c=456 Å space groupP41212. The crystals scatter only to about 6 Å resolution; their poor crystallinity may have some physiological function. Secondary structure predictions suggest that the C-terminal part of the molecule, residues 311–664, has the folding of an eightfold β/α-barrel (TIM barrel). This would indicate common ancestry with four other flavoenzymes: canavalin, glycolate oxidase, flavocytochrome b, and trimethylamine dehydrogenase.  相似文献   

10.
Catalase HPII from Escherichia coli, a homotetramer of subunits with 753 residues, is the largest known catalase. The structure of native HPII has been refined at 1.9 A resolution using X-ray synchrotron data collected from crystals flash-cooled with liquid nitrogen. The crystallographic agreement factors R and R(free) are respectively 16.6% and 21.0%. The asymmetric unit of the crystal contains a whole molecule that shows accurate 222-point group symmetry. The structure of the central part of the HPII subunit gives a root mean square deviation of 1.5 A for 477 equivalencies with beef liver catalase. Most of the additional 276 residues of HPII are located in either an extended N-terminal arm or in a C-terminal domain organized with a flavodoxin-like topology. A small number of mostly hydrophilic interactions stabilize the relative orientation between the C-terminal domain and the core of the enzyme. The heme component of HPII is a cis-hydroxychlorin gamma-spirolactone in an orientation that is flipped 180 degrees with respect to the orientation of the heme found in beef liver catalase. The proximal ligand of the heme is Tyr415 which is joined by a covalent bond between its Cbeta atom and the Ndelta atom of His392. Over 2,700 well-defined solvent molecules have been identified filling a complex network of cavities and channels formed inside the molecule. Two channels lead close to the distal side heme pocket of each subunit suggesting separate inlet and exhaust functions. The longest channel, that begins in an adjacent subunit, is over 50 A in length, and the second channel is about 30 A in length. A third channel reaching the heme proximal side may provide access for the substrate needed to catalyze the heme modification and His-Tyr bond formation. HPII does not bind NADPH and the equivalent region to the NADPH binding pocket of bovine catalase, partially occluded in HPII by residues 585-590, corresponds to the entrance to the second channel. The heme distal pocket contains two solvent molecules, and the one closer to the iron atom appears to exhibit high mobility or low occupancy compatible with weak coordination.  相似文献   

11.
Hia is a trimeric autotransporter found in the outer membrane of Haemphilus influenzae. The X-ray structure of Hia translocator domain revealed each monomer to consist of an α-helix connected via a loop to a 4-stranded β-sheet, thus the topology of the trimeric translocator domain is a 12-stranded β-barrel containing 3 α-helices that protrude from the mouth of the β-barrel into the extracellular medium. Molecular dynamics simulations of the Hia monomer and trimer have been employed to explore the interactions between the helices, β-barrel and connecting loops that may contribute to the stability of the trimer. In simulations of the Hia monomer we show that the central α-helix may stabilise the fold of the 4-stranded β-sheet. In simulations of the Hia trimer, a H-bond network involving residues in the β-barrel, α-helices and loops has been identified as providing stability for the trimeric arrangement of the monomers. Glutamine residues located in the loops connecting the α-helices to the β-barrel are orientated in a triangular arrangement such that each forms 2 hydrogen bonds to each of the corresponding glutamines in the other loops. In the absence of the loops, the β‐barrel becomes distorted. Simulations show that while the trimeric translocator domain β-barrel is inherently flexible, it is unlikely to accommodate the passenger domain in a folded conformation. Simulations of Hia in an asymmetric model of the outer membrane have revealed membrane–protein interactions that anchor the protein within its native membrane environment.  相似文献   

12.
13.
Yeast peroxisomal catalase A, obtained at high yields by over expression of the C-terminally modified gene from a 2 mu-plasmid, has been crystallized in a form suitable for high resolution X-ray diffraction studies. Brownish crystals with bipyrimidal morphology and reaching ca. 0.8 mm in size were produced by the hanging drop method using ammonium sulphate as precipitant. These crystals diffract better than 2.0 A resolution and belong to the hexagonal space group P6(1)22 with unit cell parameters a = b = 184.3 A and c = 305.5 A. An X-ray data set with 76% completeness at 3.2 A resolution was collected in a rotating anode generator using mirrors to improve the collimation of the beam. An initial solution was obtained by molecular replacement only when using a beef liver catalase tetramer model in which fragments with no sequence homology had been omitted, about 150 residues per subunit. In the structure found a single molecule of catalase A (a tetramer with accurate 222 molecular symmetry) is located in the asymmetric unit of the crystal with an estimated solvent content of about 61%. The preliminary analysis of the structure confirms the absence of a carboxy terminal domain as the one found in the catalase from Penicillium vitalae, the only other fungal catalase structure available. The NADPH binding site appears to be involved in crystal contacts, suggesting that heterogeneity in the occupancy of the nucleotide can be a major difficulty during crystallization.  相似文献   

14.
Protein S8 fromThermus thermophilus consists of 138 amino acids ofM, 15,840. Its primary structure was established using peptide sequences from two different digests. Protein S8 fromT. thermophilus shares a high percentage of identity with protein S8 fromThermus aquaticus. There are some consensus sequences between proteins S8 from eubacteria, archebacteria, chloroplasts, and cyanelles.  相似文献   

15.
The thermophilic eubacterium Thermus thermophilus belongs to one of the oldest branches of evolution and has a multilayered cell envelope that differs from that of modern Gram-negative bacteria. Its outer membrane contains integral outer membrane proteins (OMPs), of which only a few are characterized. TtoA, a new β-barrel OMP, was identified by searching the genome sequence of strain HB27 for the presence of a C-terminal signature sequence. The structure of TtoA was determined to a resolution of 2.8 Å, representing the first crystal structure of an OMP from a thermophilic bacterium. TtoA consists of an eight-stranded β-barrel with a large extracellular part to which a divalent cation is bound. A five-stranded extracellular β-sheet protrudes out of the membrane-embedded transmembrane barrel and is stabilized by a disulfide bridge. The edge of this β-sheet forms crystal contacts that could mimic interactions with other proteins. In modern Gram-negative bacteria, the C-terminal signature sequence of OMPs is required for binding to an Omp85 family protein as a prerequisite for its assembly. We present hints that a similar assembly pathway exists in T. thermophilus by an in vitro binding assay, where unfolded TtoA binds to the Thermus Omp85 family protein TtOmp85, while a mutant without the signature sequence does not.  相似文献   

16.
Type IV pili are expressed from a wide variety of Gram‐negative bacteria and play a major role in host cell adhesion and bacterial motility. PilC is one of at least a dozen different proteins that are implicated in Type IV pilus assembly in Thermus thermophilus and a member of a conserved family of integral inner membrane proteins which are components of the Type II secretion system (GspF) and the archeal flagellum. PilC/GspF family members contain repeats of a conserved helix‐rich domain of around 100 residues in length. Here, we describe the crystal structure of one of these domains, derived from the N‐terminal domain of Thermus thermophilus PilC. The N‐domain forms a dimer, adopting a six helix bundle structure with an up‐down‐up‐down‐up‐down topology. The monomers are related by a rotation of 170°, followed by a translation along the axis of the final α‐helix of approximately one helical turn. This means that the regions of contact on helices 5 and 6 in each monomer are overlapping, but different. Contact between the two monomers is mediated by a network of hydrophobic residues which are highly conserved in PilC homologs from other Gram‐negative bacteria. Site‐directed mutagenesis of residues at the dimer interface resulted in a change in oligomeric state of PilC from tetramers to dimers, providing evidence that this interface is also found in the intact membrane protein and suggesting that it is important to its function. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
The three-dimensional structure analysis of crystalline fungal catalase from Penicillium vitale has been extended to 2.0 A resolution. The crystals belong to space group P3(1)21, with the unit cell parameters of a = b = 144.4 A and c = 133.8 A. The asymmetric unit contains half a tetrameric molecule of 222 symmetry. Each subunit is a single polypeptide chain of approximately 670 amino acid residues and binds one heme group. The amino acid sequence has been tentatively determined by computer graphics model building (using the FRODO system) and comparison with the known sequence of beef liver catalase. The atomic model has been refined by the Hendrickson & Konnert (1981) restrained least-squares program against 68,000 reflections between 5 A and 2 A resolution. The final R-factor is 0.31 after 24 refinement cycles. The secondary and tertiary structure of the catalase has been analyzed.  相似文献   

18.
In thermophilic bacteria, specific 2‐thiolation occurs on the conserved ribothymidine at position 54 (T54) in tRNAs, which is necessary for survival at high temperatures. T54 2‐thiolation is achieved by the tRNA thiouridine synthetase TtuA and sulfur‐carrier proteins. TtuA has five conserved CXXC/H motifs and the signature PP motif, and belongs to the TtcA family of tRNA 2‐thiolation enzymes, for which there is currently no structural information. In this study, we determined the crystal structure of a TtuA homolog from the hyperthermophilic archeon Pyrococcus horikoshii at 2.1 Å resolution. The P. horikoshii TtuA forms a homodimer, and each subunit contains a catalytic domain and unique N‐ and C‐terminal zinc fingers. The catalytic domain has much higher structural similarity to that of another tRNA modification enzyme, TilS (tRNAIle2 lysidine synthetase), than to the other type of tRNA 2‐thiolation enzyme, MnmA. Three conserved cysteine residues are clustered in the putative catalytic site, which is not present in TilS. An in vivo mutational analysis in the bacterium Thermus thermophilus demonstrated that the three conserved cysteine residues and the putative ATP‐binding residues in the catalytic domain are important for the TtuA activity. A positively charged surface that includes the catalytic site and the two zinc fingers is likely to provide the tRNA‐binding site. Proteins 2013; 81:1232–1244. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
The TT1485 gene from Thermus thermophilus HB8 encodes a hypothetical protein of unknown function with about 20 sequence homologs of bacterial or archaeal origin. Together they form a family of uncharacterized proteins, the cluster of orthologous group COG3253. Using a combination of amino acid sequence analysis, three-dimensional structural studies and biochemical assays, we identified TT1485 as a novel heme-binding protein. The crystal structure reveals that this protein is a pentamer and each monomer exhibits a β-barrel fold. TT1485 is structurally similar to muconolactone isomerase, but this provided no functional clues. Amino acid sequence analysis revealed remote homology to a heme enzyme, chlorite dismutase. Strikingly, amino acid residues that are highly conserved in the homologous hypothetical proteins and chlorite dismutase cluster around a deep cavity on the surface of each monomer. Molecular modeling shows that the cavity can accommodate a heme group with a strictly conserved His as a heme ligand. TT1485 reconstituted with iron protoporphyrin IX chloride gave a low chlorite dismutase activity, indicating that TT1485 catalyzes a reaction other than chlorite degradation. The presence of a possible Fe–His–Asp triad in the heme proximal site suggests that TT1485 functions as a novel heme peroxidase to detoxify hydrogen peroxide within the cell.  相似文献   

20.
《BBA》2019,1860(11):148080
The crystal structure of the enzyme previously characterized as a type-2 NADH:menaquinone oxidoreductase (NDH-2) from Thermus thermophilus has been solved at a resolution of 2.9 Å and revealed that this protein is, in fact, a coenzyme A-disulfide reductase (CoADR). Coenzyme A (CoASH) replaces glutathione as the major low molecular weight thiol in Thermus thermophilus and is maintained in the reduced state by this enzyme (CoADR). Although the enzyme does exhibit NADH:menadione oxidoreductase activity expected for NDH-2 enzymes, the specific activity with CoAD as an electron acceptor is about 5-fold higher than with menadione. Furthermore, the crystal structure contains coenzyme A covalently linked Cys44, a catalytic intermediate (Cys44-S-S-CoA) reduced by NADH via the FAD cofactor. Soaking the crystals with menadione shows that menadione can bind to a site near the redox active FAD, consistent with the observed NADH:menadione oxidoreductase activity. CoADRs from other species were also examined and shown to have measurable NADH:menadione oxidoreductase activity. Although a common feature of this family of enzymes, no biological relevance is proposed. The CoADR from T. thermophilus is a soluble homodimeric enzyme. Expression of the recombinant TtCoADR at high levels in E. coli results in a small fraction that co-purifies with the membrane fraction, which was used previously to isolate the enzyme wrongly identified as a membrane-bound NDH-2. It is concluded that T. thermophilus does not contain an authentic NDH-2 component in its aerobic respiratory chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号