首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Processive RNases are unable to degrade efficiently very short oligonucleotides, and they are complemented by specific enzymes, nanoRNases, that assist in this process. We previously identified NrnA (YtqI) from Bacillus subtilis as a bifunctional protein with the ability to degrade nanoRNA (RNA oligos ≤5 nucleotides) and to dephosphorylate 3'-phosphoadenosine 5'-phosphate (pAp) to AMP. While the former activity is analogous to that of oligoribonuclease (Orn) from Escherichia coli, the latter corresponds to CysQ. NrnA homologs are widely present in bacterial and archaeal genomes. They are found preferably in genomes that lack Orn or CysQ homologs. Here, we characterize NrnA homologs from important human pathogens, Mpn140 from Mycoplasma pneumoniae, and Rv2837c from Mycobacterium tuberculosis. Like NrnA, these enzymes degrade nanoRNA and dephosphorylate pAp in vitro. However, they show dissimilar preferences for specific nanoRNA substrate lengths. Whereas NrnA prefers RNA 3-mers with a 10-fold higher specific activity compared to 5-mers, Rv2837c shows a preference for nanoRNA of a different length, namely, 2-mers. Mpn140 degrades Cy5-labeled nanoRNA substrates in vitro with activities varying within one order of magnitude as follows: 5-mer>4-mer>3-mer>2-mer. In agreement with these in vitro activities, both Rv2837c and Mpn140 can complement the lack of their functional counterparts in E. coli: CysQ and Orn. The NrnA homolog from Streptococcus mutans, SMU.1297, was previously shown to hydrolyze pAp and to complement an E. coli cysQ mutant. Here, we show that SMU.1297 can complement an E. coli orn(-) mutant, suggesting that having both pAp-phosphatase and nanoRNase activity is a common feature of NrnA homologs.  相似文献   

2.
Escherichia coli ribosomal protein S1 is required for the translation initiation of messenger RNAs, in particular when their Shine–Dalgarno sequence is degenerated. Closely related forms of the protein, composed of the same number of domains (six), are found in all Gram-negative bacteria. More distant proteins, generally formed of fewer domains, have been identified, by sequence similarities, in Gram-positive bacteria and are also termed ‘S1 proteins’. However in the absence of functional information, it is generally difficult to ascertain their relationship with Gram-negative S1. In this article, we report the solution structure of the fourth and sixth domains of the E. coli protein S1 and show that it is possible to characterize their β-barrel by a consensus sequence that allows a precise identification of all domains in Gram-negative and Gram-positive S1 proteins. In addition, we show that it is possible to discriminate between five domain types corresponding to the domains 1, 2, 3, 4–5 and 6 of E. coli S1 on the basis of their sequence. This enabled us to identify the nature of the domains present in Gram-positive proteins and, subsequently, to probe the filiations between all forms of S1.  相似文献   

3.
Peptidyl-prolyl cis-trans isomerases (EC 5.2.1.8) catalyse the interconversion of cis and trans peptide bonds and are therefore considered to be important for protein folding. They are also thought to participate in processes such as signalling, cell surface recognition, chaperoning and heat-shock response. Here we report the soluble expression of recombinant Mycobacterium tuberculosis peptidyl-prolyl cis-trans isomerase PpiA in Escherichia coli, together with an investigation of its structure and biochemical properties. The protein was shown to be active in a spectrophotometric assay, with an estimated kcat/Km of 2.0 x 10(6) m(-1).s(-1). The X-ray structure of PpiA was solved by molecular replacement, and refined to a resolution of 2.6 A with R and Rfree values of 21.3% and 22.9%, respectively. Comparisons to known structures show that the PpiA represents a slight variation on the peptidyl-prolyl cis-trans isomerase fold, previously not represented in the Protein Data Bank. Inspection of the active site suggests that specificity for substrates and cyclosporin A will be similar to that found for most other enzymes of this structural family. Comparison to the sequence of the second M. tuberculosis enzyme, PpiB, suggests that binding of peptide substrates as well as cyclosporin A may differ in that case.  相似文献   

4.
5.
Målen H  Berven FS  Fladmark KE  Wiker HG 《Proteomics》2007,7(10):1702-1718
Proteins secreted by Mycobacterium tuberculosis play an essential role in the pathogenesis of tuberculosis. The culture filtrates of M. tuberculosis H37Rv made by Sadamu Nagai (Japan), are considerably enriched for secreted proteins compared to other culture filtrates. Complementary approaches were used to identify the secreted proteins in these culture filtrates: (i) 2-DE combined with MALDI-TOF MS and (ii) LC coupled MS/MS. Peptides derived from a total of 257 proteins were identified of which 144 were identified by more than one peptide. Several members of the immunologically important early secretory antigenic target-6 (ESAT-6) family of proteins were found to be major components. The majority of the identified proteins, 159 (62%), were predicted to be exported through the general secretory pathway. We experimentally verified that the signal peptides, which mediate translocation through the cell membrane, had been removed in 41 of the identified proteins, and in 35 of those, there was an AXA motif N-terminally to the cleavage site, showing that this motif is important for the recognition and cleavage of signal peptides in mycobacteria. A large fraction of the secreted proteins were unknown, suggesting that we have mapped an unexplored part of the exported proteome of M. tuberculosis. complement.  相似文献   

6.
7.
We report the 2.4 A crystal structure for lipoamide dehydrogenase encoded by lpdC from Mycobacterium tuberculosis. Based on the Lpd structure and sequence alignment between bacterial and eukaryotic Lpd sequences, we generated single point mutations in Lpd and assayed the resulting proteins for their ability to catalyze lipoamide reduction/oxidation alone and in complex with other proteins that participate in pyruvate dehydrogenase and peroxidase activities. The results suggest that amino acid residues conserved in mycobacterial species but not conserved in eukaryotic Lpd family members modulate either or both activities and include Arg-93, His-98, Lys-103, and His-386. In addition, Arg-93 and His-386 are involved in forming both "open" and "closed" active site conformations, suggesting that these residues play a role in dynamically regulating Lpd function. Taken together, these data suggest protein surfaces that should be considered while developing strategies for inhibiting this enzyme.  相似文献   

8.
Members of the ferric/zinc uptake regulator (Fur/Zur) family are the central metal-dependent regulator proteins in many Gram-negative and -positive bacteria. They are responsible for the control of a wide variety of basic physiological processes and the expression of important virulence factors in human pathogens. Therefore, Fur has gathered significant interest as a potential target for novel antibiotics. Here we report the crystal structure of FurB from Mycobacterium tuberculosis at a resolution of 2.7A, and we present biochemical and spectroscopic data that allow us to propose the functional role of this protein. Although the overall fold of FurB with an N-terminal DNA binding domain and a C-terminal dimerization domain is conserved among the Zur/Fur family, large differences in the spatial arrangement of the two domains with respect to each other can be observed. The biochemical and spectroscopic analysis presented here reveals that M. tuberculosis FurB is Zn(II)-dependent and is likely to control genes involved in the bacterial zinc uptake. The combination of the structural, spectroscopic, and biochemical results enables us to determine the structural basis for functional differences in this important family of bacterial regulators.  相似文献   

9.
核糖体结构存在动态调控,其变化与细菌发育、环境适应等过程密切相关。使用NCBI BLAST比对结核分枝杆菌(Mycobacterium tuberculosis)核糖体蛋白RpsI、RpmI和RpmJ与耻垢分枝杆菌(Mycobacterium smegmatis)相应蛋白的氨基酸序列,发现RpsI N端氨基酸序列存在较大差异。为了探究该N端序列差异对核糖体结构与功能的影响,将表达有结核分枝杆菌rpsI基因(rpsI_Rv)的质粒整合至耻垢分枝杆菌基因组中,并利用同源重组的方法敲除耻垢分枝杆菌rpsI基因,以此构建重组菌株。聚合酶链反应(polymerase chain reaction,PCR)结果表明该重组菌株构建成功。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)显示0.5 mmol/L异丙基-β-D-硫代半乳糖苷(IPTG)于16 ℃可诱导表达RpsI_Rv。用纯化的RpsI_Rv制备特异性多克隆抗体,其效价为 1 600 000。反转录PCR 和蛋白质印迹法(Western blot)显示rpsI_Rv在重组菌株中成功表达。测定重组菌株与空载对照菌株在不同温度下的生长曲线,该重组菌株在不同温度下的生长速率未发生改变。采用通用液体倍比稀释法测定作用于核糖体不同位点的5种抗生素最小抑菌浓度(MIC90),重组菌株对阿米卡星(作用于核糖体小亚基A位点的抗生素)的敏感性升高,提示分枝杆菌RpsI序列差异导致核糖体小亚基A位点附近的结构发生改变,这为分枝杆菌核糖体结构与功能的机制研究提供了数据。  相似文献   

10.
Even being a bacterial purine nucleoside phosphorylase (PNP), which normally shows hexameric folding, the Mycobacterium tuberculosis PNP (MtPNP) resembles the mammalian trimeric structure. The crystal structure of the MtPNP apoenzyme was solved at 1.9 A resolution. The present work describes the first structure of MtPNP in complex with phosphate. In order to develop new insights into the rational drug design, conformational changes were profoundly analyzed and discussed. Comparisons over the binding sites were specially studied to improve the discussion about the selectivity of potential new drugs.  相似文献   

11.
12.
L-aspartate-alpha-decarboxylase (ADC) is a critical regulatory enzyme in the pantothenate biosynthetic pathway and belongs to a small class of self-cleaving and pyruvoyl-dependent amino acid decarboxylases. The expression level of ADC in Mycobacterium tuberculosis (Mtb) was confirmed by cDNA analysis, immunoblotting with an anti-ADC polyclonal antibody using whole cell lysate and immunoelectron microscopy. The recombinant ADC proenzyme from Mycobacterium tuberculosis (MtbADC) was overexpressed in E. coli and the protein structure was determined at 2.99 A resolution. The proteins fold into the double-psi beta-barrel structure. The subunits of the two tetramers (there are eight ADC molecules in the asymmetric unit) form pseudo fourfold rotational symmetry, similar to the E. coli ADC proenzyme structure. As pantothenate is synthesized in microorganisms, plants, and fungi but not in animals, structure elucidation of Mtb ADC is of substantial interest for structure-based drug development.  相似文献   

13.
The N-1-(5'-phosphoribosyl)-ATP transferase catalyzes the first step of the histidine biosynthetic pathway and is regulated by a feedback mechanism by the product histidine. The crystal structures of the N-1-(5'-phosphoribosyl)-ATP transferase from Mycobacterium tuberculosis in complex with inhibitor histidine and AMP has been determined to 1.8 A resolution and without ligands to 2.7 A resolution. The active enzyme exists primarily as a dimer, and the histidine-inhibited form is a hexamer. The structure represents a new fold for a phosphoribosyltransferase, consisting of three continuous domains. The inhibitor AMP binds in the active site cavity formed between the two catalytic domains. A model for the mechanism of allosteric inhibition has been derived from conformational differences between the AMP:His-bound and apo structures.  相似文献   

14.
Selvaraj S  Sambandam V  Sardar D  Anishetty S 《Gene》2012,506(1):233-241
One of the challenges faced by Mycobacterium tuberculosis (M. tuberculosis) in dormancy is hypoxia. DosR/DevR of M. tuberculosis is a two component dormancy survival response regulator which induces the expression of 48 genes. In this study, we have used DosR regulon proteins of M. tuberculosis H37Rv as the query set and performed a comprehensive homology search against the non-redundant database. Homologs were found in environmental mycobacteria, environmental bacteria and archaebacteria. Analysis of genomic context of DosR regulon revealed that they are distributed as nine blocks in the genome of M. tuberculosis with many transposases and integrases in their vicinity. Further, we classified DosR regulon proteins into eight functional categories. One of the hypothetical proteins Rv1998c could probably be a methylisocitrate lyase or a phosphonomutase. Another hypothetical protein, Rv0572 was found only in mycobacteria. Insights gained in this study can potentially aid in the development of novel therapeutic interventions.  相似文献   

15.
The first structure for a member of the DUF3349 (PF11829) family of proteins, Rv0543c from Mycobacterium tuberculosis, has been determined using NMR-based methods and some of its biophysical properties characterized. Rv0543c is a 100 residue, 11.3 kDa protein that both size exclusion chromatography and NMR spectroscopy show to be a monomer in solution. The structure of the protein consists of a bundle of five α-helices, α1 (M1 – Y16), α2 (P21 – C33), α3 (S37 – G52), α4 (G58 – H65) and α5 (S72 – G87), held together by a largely conserved group of hydrophobic amino acid side chains. Heteronuclear steady-state {1H}–15N NOE, T1, and T2 values are similar through-out the sequence indicating that the backbones of the five helices are in a single motional regime. The thermal stability of Rv0543c, characterized by circular dichroism spectroscopy, indicates that Rv0543c irreversibly unfolds upon heating with an estimated melting temperature of 62.5 °C. While the biological function of Rv0543c is still unknown, the presence of DUF3349 proteins predominately in Mycobacterium and Rhodococcus bacterial species suggests that Rv0543 may have a biological function unique to these bacteria, and consequently, may prove to be an attractive drug target to combat tuberculosis.  相似文献   

16.
Fatty acid biosynthesis is essential for the survival of Mycobacterium tuberculosis and acetyl-coenzyme A (acetyl-CoA) is an essential precursor in this pathway. We have determined the 3-D crystal structure of M. tuberculosis citrate lyase beta-subunit (CitE), which as annotated should cleave protein bound citryl-CoA to oxaloacetate and a protein-bound CoA derivative. The CitE structure has the (beta/alpha)(8) TIM barrel fold with an additional alpha-helix, and is trimeric. We have determined the ternary complex bound with oxaloacetate and magnesium, revealing some of the conserved residues involved in catalysis. While the bacterial citrate lyase is a complex with three subunits, the M. tuberculosis genome does not contain the alpha and gamma subunits of this complex, implying that M. tuberculosis CitE acts differently from other bacterial CitE proteins. The analysis of gene clusters containing the CitE protein from 168 fully sequenced organisms has led us to identify a grouping of functionally related genes preserved in M. tuberculosis, Rattus norvegicus, Homo sapiens, and Mus musculus. We propose a novel enzymatic function for M. tuberculosis CitE in fatty acid biosynthesis that is analogous to bacterial citrate lyase but producing acetyl-CoA rather than a protein-bound CoA derivative.  相似文献   

17.
In post-genomic era, a plethora of protein structures have been solved but the functions of some of them are unknown. In this context, the role of hydropathy index of amino acids in predicting the function of a structurally known and functionally unknown protein was explored. Initially serine protease class was taken for analysis. Various methodologies like calculation of average hydropathy index for a five-residue window of a given sequence, hydropathy cluster analyses, etc., were done. Among these, the distribution of hydropathy clusters seems to suggest that the location of these clusters is conserved for a given class of proteins. Hence, this methodology was extended to different classes of proteins and to a protein with unknown function.  相似文献   

18.
De novo protein design provides an attractive approach for the construction of models to probe the features required for the function of complex metalloproteins. These minimal models contain the essential elements believed necessary for activity of the protein. In this article, we summarize the design, structure determination, and functional properties of a family of artificial diiron proteins.  相似文献   

19.
Carbonic anhydrases catalyze the reversible hydration of carbon dioxide to form bicarbonate. This activity is universally required for fatty acid biosynthesis as well as for the production of a number of small molecules, pH homeostasis, and other functions. At least three different carbonic anhydrase families are known to exist, of which the alpha-class found in humans has been studied in most detail. In the present work, we describe the structures of two of the three beta-class carbonic anhydrases that have been identified in Mycobacterium tuberculosis, i.e. Rv1284 and Rv3588c. Both structures were solved by molecular replacement and then refined to resolutions of 2.0 and 1.75 A, respectively. The active site of Rv1284 is small and almost completely shielded from solvent, whereas that of Rv3588c is larger and quite open to solution. Differences in coordination of the active site metal are also observed. In Rv3588c, an aspartic acid side chain displaces a water molecule and coordinates directly to the zinc ion, thereby closing the zinc coordination sphere and breaking the salt link to a nearby arginine that is a feature of Rv1284. The two carbonic anhydrases thus exhibit both of the metal coordination geometries that have previously been observed for structures in this family. Activity studies demonstrate that Rv3588c is a completely functional carbonic anhydrase. The apparent lack of activity of Rv1284 in the present assay system is likely exacerbated by the observed depletion of zinc in the preparation.  相似文献   

20.
Inhibitors of the enzymes of the lysine biosynthetic pathway are considered promising lead compounds for the design of new antibacterial drugs, because the pathway appears to be indispensable for bacteria and because it is absent in humans. As part of our efforts to structurally characterize all enzymes of this pathway in Mycobacterium tuberculosis (Mtb), we have determined the three-dimensional structure of N-succinyldiaminopimelate aminotransferase (DapC, DAP-AT, Rv0858c) to a resolution of 2.0 A. This structure is the first DAP-AT structure reported to date. The orthorhombic crystals of Mtb-DAP-AT contain one functional dimer exhibiting C(2) symmetry in the asymmetric unit. The homodimer displays the typical S-shape of class I pyridoxal-5'-phosphate (PLP)-binding proteins. The two active sites of the dimer both feature an internal aldimine with the co-factor PLP covalently bound to the Lys232, although neither substrate nor co-factor had been added during protein production, purification and crystallization. Nine water molecules are conserved in the active site and form an intricate hydrogen-bonding network with the co-factor and the surrounding amino acid residues. Together with some residual difference electron density in the active site, this architecture permitted the building of external aldimine models of the enzyme with the substrates glutamate, the amine donor, and N-succinyl-2-amino-6-keto-pimelate, the amine acceptor. Based on these models, the amino acids relevant for substrate binding and specificity can be postulated. Furthermore, in the external aldimine model of N-succinyl-2-amino-6-keto-pimelate, the succinyl group overlaps with a glycerol binding site that has also been identified in both active sites of the Mtb-DAP-AT dimer. A comparison of the structure of Mtb-DAP-AT with other class I PLP-binding proteins, revealed that some inhibitors utilize the same binding site. Thus, the proposed models also provide an explanation for the mode of inhibition of Mtb-DAP-AT and they may be of help in the design of compounds, which are capable of inhibiting the enzyme. Last, but not least, a chloride binding helix exhibiting a peculiar amino acid sequence with a number of exposed hydrophobic side-chains was identified, which may be hypothesized as a putative docking site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号