首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Caspases are responsible for the proteolysis of many cytoskeletal proteins in apoptotic cells. It has been demonstrated here that during cisplatin-induced apoptosis of human embryo retinoblasts both E- and P-cadherin were degraded by caspases, giving initially major polypeptide products of apparent molecular weights 48 K and 104 K respectively. This proteolysis occurred over a similar time-scale to the observed degradation of PARP and to the onset of DNA fragmentation but appreciably later than p53 induction and cleavage of Mdm2 and p21. Addition of caspase inhibitors such as Z-VAD-FMK inhibited apoptosis and cadherin degradation. Co-immunoprecipitation studies carried out on viable cells confirmed previously observed complexes between cadherins and alpha and beta catenin and between the catenins themselves. These interactions were sustained in apoptotic cells as long as the protein components remained intact. Using confocal microscopy it has been shown that cytoskeletal changes associated with apoptosis precede degradation of catenins and cadherins by several hours. In particular, after addition of cisplatin relatively rapid (within 3 h) re-localization of adherens junction proteins from the cell periphery to the cytoplasm was observed whereas little cadherin or catenin degradation occurred until 10 h. We conclude that neither caspase-mediated degradation of cytoskeletal components nor disruption of adherens junction protein-protein interactions is required for morphological change.  相似文献   

3.
4.
The serine/threonine kinase HIPK2 phosphorylates the p53 protein at Ser 46, thus promoting p53-dependent gene expression and subsequent apoptosis. Here, we show that DNA damaging chemotherapeutic drugs cause degradation of endogenous HIPK2 dependent on the presence of a functional p53 protein. Early induced p53 allows caspase-mediated cleavage of HIPK2 following aspartic acids 916 and 977. The resulting C-terminally truncated HIPK2 forms show an enhanced induction of the p53 response and cell death, thus allowing the rapid amplification of the p53-dependent apoptotic program during the initiation phase of apoptosis by a regulatory feed-forward loop. The active HIPK2 fragments are further degraded during the execution and termination phase of apoptosis, thus ensuring the occurrence of HIPK2 signaling only during the early phases of apoptosis induction.  相似文献   

5.
Apoptosis protease-activating factor-1 (Apaf-1), the central element in the mitochondrial pathway of apoptosis, is frequently absent or poorly expressed in metastatic melanomas, a tumor type showing a low degree of spontaneous apoptosis and a poor response to conventional therapies. In the present study, we used the Apaf-1-positive Me665/2/21 melanoma cell line to investigate the fate of Apaf-1 during cisplatin-induced apoptosis. As novel findings described for the first time in melanoma cells, we observed that Apaf-1 was markedly decreased during apoptosis, already at early stages of cell damage; concurrently, an immunoreactive N-terminal fragment of congruent with 26 kDa was evident. In spite of the remarkable decrease of Apaf-1 in apoptotic cells, caspase-9 was found to be processed and enzymatically active. Both Apaf-1 depletion and its proteolytic cleavage were markedly prevented in presence of the caspase-3/-7 inhibitor ac-DEVD-CHO. In presence of ac-DEVD-CHO, caspase-9 activity was also inhibited, along with a partially different pattern of caspase-9 processing forms. Unexpectedly, the inhibition afforded by ac-DEVD-CHO on several components, that is, caspase-3/-7 and caspase-9 activities, and Apaf-1 proteolytic degradation, did not abrogate the apoptotic morphology and cell detachment, nor the proteolytic degradation of crucial targets, such as poly(ADP-ribose) polymerase (PARP) and lamin B. Together, our results suggest that caspase-3 and -7, proved to be dispensable for the above apoptosis-associated events, play a role on Apaf-1 handling and possibly on apoptosome function.  相似文献   

6.
A Dictyostelium discoideum protein with an Mr of 23,000 (p23dd-ras) is structurally related to the mammalian proto-oncogene ras-gene product, p21ras, and is specifically precipitated from cell-free extracts of D. discoideum by the Y13-259 monoclonal antibody against p21ras. p23dd-ras was degraded at rates that were very similar to those observed for total protein during both growth and differentiation, suggesting that the previously reported decline in p23dd-ras levels during differentiation is due to a change in the rate of synthesis rather than a change in the rate of degradation. p23dd-ras synthesis did not decrease immediately after the initiation of differentiation, but rather its rate of synthesis increased for the first 1-2 h, suggesting that p23dd-ras is not rapidly down-regulated in response to nutrient deprivation. There were differences in the extent of p23dd-ras turnover during the differentiation of the three tested strains, A-3, NC4, and V12-M2. The relative level of p23dd-ras dropped most rapidly in V12-M2, which may reflect the slightly faster differentiation process exhibited by this strain. In all three strains, very little p23dd-ras was present by the end of the differentiation process. A second protein with an Mr of 24,000 (p24dd-ras) was also immunoprecipitated using the Y13-259 antibody. The amount of p24dd-ras was small or undetectable in vegetative cells, but relatively larger amounts of p24dd-ras were synthesized in pseudoplasmodial cells. We found no evidence to suggest that p24dd-ras is a precursor of p23dd-ras.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The photosystem II reaction center D1 protein is known to turn over frequently. This protein is prone to irreversible damage caused by reactive oxygen species that are formed in the light; the damaged, nonfunctional D1 protein is degraded and replaced by a new copy. However, the proteases responsible for D1 protein degradation remain unknown. In this study, we investigate the possible role of the FtsH protease, an ATP-dependent zinc metalloprotease, during this process. The primary light-induced cleavage product of the D1 protein, a 23-kD fragment, was found to be degraded in isolated thylakoids in the dark during a process dependent on ATP hydrolysis and divalent metal ions, suggesting the involvement of FtsH. Purified FtsH degraded the 23-kD D1 fragment present in isolated photosystem II core complexes, as well as that in thylakoid membranes depleted of endogenous FtsH. In this study, we definitively identify the chloroplast protease acting on the D1 protein during its light-induced turnover. Unlike previously identified membrane-bound substrates for FtsH in bacteria and mitochondria, the 23-kD D1 fragment represents a novel class of FtsH substrate-functionally assembled proteins that have undergone irreversible photooxidative damage and cleavage.  相似文献   

8.
p62, also known as sequestosome1 (SQSTM1), A170, or ZIP, is a multifunctional protein implicated in several signal transduction pathways. p62 is induced by various forms of cellular stress, is degraded by autophagy, and acts as a cargo receptor for autophagic degradation of ubiquitinated targets. It is also suggested to shuttle ubiquitinated proteins for proteasomal degradation. p62 is commonly found in cytosolic protein inclusions in patients with protein aggregopathies, it is up-regulated in several forms of human tumors, and mutations in the gene are linked to classical adult onset Paget disease of the bone. To this end, p62 has generally been considered to be a cytosolic protein, and little attention has been paid to possible nuclear roles of this protein. Here, we present evidence that p62 shuttles continuously between nuclear and cytosolic compartments at a high rate. The protein is also found in nuclear promyelocytic leukemia bodies. We show that p62 contains two nuclear localization signals and a nuclear export signal. Our data suggest that the nucleocytoplasmic shuttling of p62 is modulated by phosphorylations at or near the most important nuclear localization signal, NLS2. The aggregation of p62 in cytosolic bodies also regulates the transport of p62 between the compartments. We found p62 to be essential for accumulation of polyubiquitinated proteins in promyelocytic leukemia bodies upon inhibition of nuclear protein export. Furthermore, p62 contributed to the assembly of proteasome-containing degradative compartments in the vicinity of nuclear aggregates containing polyglutamine-expanded Ataxin1Q84 and to the degradation of Ataxin1Q84.  相似文献   

9.
10.
The role of p38 mitogen-activated protein kinase (MAPK) in apoptosis is a matter of debate. Here, we investigated the involvement of p38 MAPK in endothelial apoptosis induced by tumor necrosis factor alpha (TNF). We found that activation of p38 MAPK preceded activation of caspase-3, and the early phase of p38 MAPK stimulation did not depend on caspase activity, as shown by pretreatment with the caspase inhibitors z-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD-fmk) and Boc-Asp(OMe)-fluoromethylketone (BAF). The p38 MAPK inhibitor SB203580 significantly attenuated TNF-induced apoptosis in endothelial cells, suggesting that p38 MAPK is essential for apoptotic signaling. Furthermore, we observed a time-dependent increase in active p38 MAPK in the mitochondrial subfraction of cells exposed to TNF. Notably, the level of Bcl-x(L) protein was reduced in cells undergoing TNF-induced apoptosis, and this reduction was prevented by treatment with SB203580. Immunoprecipitation experiments revealed p38 MAPK-dependent serine-threonine phosphorylation of Bcl-x(L) in TNF-treated cells. Exposure to lactacystin prevented both the downregulation of Bcl-x(L) and activation of caspase-3. Taken together, our results suggest that TNF-induced p38 MAPK-mediated phosphorylation of Bcl-x(L) in endothelial cells leads to degradation of Bcl-x(L) in proteasomes and subsequent induction of apoptosis.  相似文献   

11.
The cyclin-dependent kinase (CDK) inhibitor p27(Kip1) (p27) is an important regulator of cell cycle progression controlling the transition from G to S-phase. Low p27 levels or accelerated p27 degradation correlate with excessive cell proliferation and poor prognosis in several forms of cancer. Phosphorylation of p27 at Thr187 by cyclin E-CDK2 is required to initiate the ubiquitination-proteasomal degradation of p27. Protecting p27 from ubiquitin-mediated proteasomal degradation may increase its potential in cancer gene therapy. Here we constructed a non-phosphorylatable, proteolysis-resistant p27 mutant containing a Thr187-to-Ala substitution (T187A) which is not degraded by ubiquitin-mediated proteasome pathway, and compared its effects on cell growth, cell-cycle control, and apoptosis with those of wild-type p27. In muristerone A-inducible cell lines overexpressing wild-type or mutant p27, the p27 mutant was more resistant to proteolysis in vivo and more potent in inducing cell-cycle arrest and other growth-inhibitory effects such as apoptosis. Transduction of p27(T187A) in breast cancer cells with a doxycycline-regulated adenovirus led to greater inhibition of proliferation, more extensive apoptosis, with a markedly reduced protein levels of cyclin E and increased accumulation of cyclin D1, compared with wild-type p27. These findings support the potential effectiveness of a degradation-resistant form of p27 in breast cancer gene therapy.  相似文献   

12.
The cytoskeleton undergoes dramatic changes during apoptosis and many cytoskeletal proteins are known to be degraded during this process. The number of proteases found to be involved in apoptosis is growing but the role of the proteolysis they cause remains poorly understood. This report describes for the first time that myosin heavy chain is cleaved in aortic endothelial cell apoptosis induced either by tumour necrosis factor-alpha or okadaic acid. The cleavage was specific since a well-defined major 97 kDa fragment of myosin heavy chain was produced. The intermediate filament component vimentin was also cleaved into well-defined fragments (31, 28 and 23 kDa). Kinetic studies showed that proteolysis occurred concomitantly with the morphological changes associated with apoptosis, i.e. cellular condensation and fragmentation in apoptotic bodies. These data suggest that the degradation of myosin and vimentin could be involved in the execution of the morphological alterations observed during apoptotic cell death.  相似文献   

13.
Viscum album agglutinin-I (VAA-I) is a plant lectin that possesses interesting potential therapeutic properties and immunomodulatory activities. We have recently found that VAA-I is a potent inducer of human neutrophil apoptosis, but the mechanism(s) involved require further elucidation. In this study, we found that VAA-I alters mitochondrial transmembrane potential and increases intracellular levels of reactive oxygen species (ROS). Despite these observations, treatment with the mitochondrial stabilizer, bongkrekic acid, or with catalase, known to degrade H(2)O(2), fails to reverse VAA-I-induced apoptosis. Moreover, VAA-I was found to induce apoptosis in PLB-985 cells deficient in gp91(phox), indicating that the lectin acts via an ROS-independent mechanism. Pretreatment of neutrophils with brefeldin A, an inhibitor of vesicular transport, was found to reverse VAA-I-induced apoptosis. Protein expression of Mcl-1 was decreased by VAA-I. The role of caspases in the degradation of cytoskeletal proteins during both spontaneous and VAA-I-induced neutrophil apoptosis was also investigated. Paxillin and vimentin were markedly degraded by VAA-I when compared with neutrophils that undergo spontaneous apoptosis, but not vinculin or alpha- and beta-tubulin. Caspases were involved in cytoskeletal protein degradation because preincubation with the pan-caspase inhibitor N-benzyloxycarbonyl-V-A-D-O-methylfluoromethyl ketone was found to reverse protein cleavage. We conclude that VAA-I needs to be internalized to mediate apoptosis and that its activity is not dependent on a cell surface receptor-mediated pathway. Also, we conclude that VAA-I induces apoptosis by ROS-independent and Mcl-1-dependent mechanisms and that caspases are involved in cytoskeletal protein degradation in both spontaneous and VAA-I-induced neutrophil apoptosis.  相似文献   

14.
Oxidants such as H(2)O(2) play a role in the toxicity of certain DNA-damaging agents, a process that often involves the tumor suppressor p53. H(2)O(2) is rapidly degraded by catalase, which protects cells against oxidant injury. To study the effect of catalase on apoptosis induced by DNA-damaging agents, HepG2 cells were infected with adenovirus containing the cDNA of catalase (Ad-Cat). Forty-eight hours after infection, catalase protein and activity was increased 7-10-fold compared with control cells infected with Ad-LacZ. After treatment with Vp16 or mitomycin C, control cells underwent apoptosis in a p53-dependent manner; however, overexpression of catalase inhibited this apoptosis. Basal levels as well as Vp16- or mitomycin C-stimulated levels of p53 and p21 protein were decreased in the catalase-overexpressing cells as compared with control cells; however, p53 mRNA levels were not decreased by catalase. There was no difference in p53 protein synthesis between catalase-overexpressing cells and control cells. However, pulse-chase experiments indicated that p53 protein degradation was enhanced in the catalase-overexpressing cells. Proteasome inhibitors but not calpeptin prevented the catalase-mediated decrease of p53 content. Whereas Vp16 increased, catalase overexpression decreased the phosphorylation of p53. The protein phosphatase inhibitor okadaic acid did not prevent the catalase-mediated down-regulation of p53 or phosphorylated p53. These results demonstrate that catalase protects HepG2 cells from apoptosis induced by DNA-damaging agents in association with decreasing p53 phosphorylation; the latter may lead to an acceleration in the degradation of p53 protein by the proteasome complex. This suggests that the level of catalase may play a critical role in cell-induced resistance to the effects of anti-cancer drugs which up-regulate p53.  相似文献   

15.
We have investigated the fate of the RNA components of small ribonucleoprotein particles in apoptotic cells. We show that the cytoplasmic Ro ribonucleoprotein-associated Y RNAs are specifically and rapidly degraded during apoptosis via a caspase-dependent mechanism. This is the first study describing the selective degradation of a specific class of small structural RNA molecules in apoptotic cells. Cleavage and subsequent truncation of Y RNAs was observed upon exposure of cells to a variety of apoptotic stimuli and were found to be inhibited by Bcl-2, zinc, and several caspase inhibitors. These results indicate that apoptotic degradation of Y RNAs is dependent on caspase activation, which suggests that the nucleolytic activity responsible for hY RNA degradation is activated downstream of the caspase cascade. The Y RNA degradation products remain bound by the Ro60 protein and in part also by the La protein, the only two proteins known to be stably associated with intact Ro ribonucleoprotein particles. The size of the Y RNA degradation products is consistent with the protection from degradation of the most highly conserved region of the Y RNAs by the bound Ro60 and La proteins. Our results indicate that the rapid abrogation of the yet unknown function of Y RNAs might be an early step in the systemic deactivation of the dying cell.  相似文献   

16.
We previously isolated a monoclonal antibody named PH2 that inhibits phosphatidylserine-mediated phagocytosis of apoptotic cells by macrophages. We report here the identification of the cognate antigen. A protein bound by PH2 in Western blotting was identified as the 170-kDa subunit of eukaryotic translation initiation factor 3 (eIF3 p170/eIF3a). When eIF3a was expressed in a culture cell line as a protein fused to green fluorescence protein, the fusion protein was detected at the cell surface only after the induction of apoptosis. The same phenomenon was seen when the localization of endogenous eIF3a was determined using anti-eIF3a antibody, and eIF3a seemed to be partially degraded during apoptosis. Furthermore, bacterially expressed N-terminal half of eIF3a fused to glutathione S-transferase bound to the surface of macrophages and inhibited phagocytosis of apoptotic cells by macrophages when it was added to phagocytosis reactions. These results collectively suggest that eIF3a translocates to the cell surface upon apoptosis, probably after partial degradation, and bridges apoptotic cells and macrophages to enhance phagocytosis.  相似文献   

17.
Energy requirement for degradation of tumor-associated protein p53.   总被引:20,自引:15,他引:5  
A 53,000-dalton protein (p53) present in large amounts in several types of tumorigenic cells was rapidly degraded in nontumorigenic BALB/c 3T3 fibroblasts (t 1/2, approximately 0.5 h) but not in tumorigenic methylcholanthrene-induced mouse sarcoma cells (t 1/2, greater than 2 h). In 3T3 cells, dinitrophenol and 2-deoxyglucose, agents which reduce ATP production, inhibited the rapid degradation of p53 and the slower breakdown of total cell protein. After removal of these agents, the degradation of both p53 and total cell proteins resumed at their normal rates. Inhibitors of intralysosomal proteolysis (Ep475 and chloroquine) did not reduce the rate of degradation of p53. Thus, in 3T3 cells, p53 appears to be degraded by a nonlysosomal, ATP-dependent proteolytic system similar to that previously shown to degrade short- and long-lived proteins in growing fibroblasts. The immunoreactive p53 which remained in ATP-depleted cells had the same molecular weight as the p53 in the control cells. No intermediate products of p53 degradation were detected by immunoprecipitation in either ATP-depleted or control cells. Hence, ATP seems to be required for an initial step in the degradation of p53. Although the amount of labeled p53 was increased in simian virus 40-transformed and methylcholanthrene-induced mouse sarcoma cells, the amount of p53 labeled during a 3-h pulse in Moloney virus- and Rous sarcoma virus-transformed cells and untransformed 3T3 cells was similar. Thus, an increased net rate of p53 accumulation is not a common feature of transformed tumorigenic cells.  相似文献   

18.
The cyclin-dependent kinase inhibitor p21Waf1/Cip1 is a major regulator of the cell cycle and plays an important role in many cellular processes, including differentiation, stress response, apoptosis, and tumorigenesis. We previously cloned the gene encoding dog p21 and found that unlike its human ortholog, dog p21 is expressed as two isoforms, one high molecular mass band of 23 kDa and one low molecular mass band of 19 kDa. In the current study, we found that the high molecular mass band is phosphorylated, whereas the low molecular mass band is hypophosphorylated. Moreover, by generating multiple mutants of dog p21, we found that serine 123 and proline 124, which form a consensus site for proline-directed phosphorylation, are required for expression of the high molecular mass p21 isoform through phosphorylation at serine 123. Most importantly, we showed that serine 123 phosphorylation inhibits ubiquitin-independent proteasomal degradation of p21 protein and subsequently, prolongs p21 protein half-life and enhances the ability of p21 to suppress cell proliferation. Taken together, these data reveal that serine 123 phosphorylation modulates p21 protein stability and activity by suppressing ubiquitin-independent proteasomal degradation.  相似文献   

19.
The cochaperone p23 is required for the chaperoning cycle of hsp90 and to enhance the maturation of several client proteins. Tosylcyclonovobiocic acids (4TCNA and 7TCNA) are potent analogs of novobiocin and induce cell cycle arrest, apoptosis and degradation of hsp90 client proteins in a panel of cancer cells. In this study, Western blotting shows that 4TCNA and 7TCNA triggered processing of the hsp90 cochaperone p23 in a dose-dependent manner. Small interfering RNA (siRNA)-mediated reduction of p23 expression in MCF-7 breast cancer cells did not block 4TCNA-induced caspase activation as assessed by the cleavage of PARP. This result indicates that 4TCNA-mediated cell death is a p23-independent process. In HT29 colon cancer cells, 4TCNA and 7TCNA up-regulated GRP78 and GRP94 supporting involvement of ER stress in apoptosis.  相似文献   

20.
The nuclear pore membrane protein POM121 is specifically degraded during apoptosis by a caspase-3-dependent process enabling early detection of apoptosis in living cells expressing POM121-GFP. Here we further investigated temporal aspects of apoptotic degradation of POM121-GFP. We demonstrate that decreased POM121-GFP fluorescence precedes annexin V-labelling of apoptotic cells. This indicates that degradation of the nuclear pore complex starts prior to redistribution of plasma membrane phosphatidylserine, which serves as a signal for phagocytotic elimination of apoptotic cells. Furthermore, a caspase-resistant GFP-labelled mutant of POM121 resisted degradation even in late apoptosis and was detected in clustered nuclear pores. Thus, it can be concluded that loss of POM121-GFP is a specific sensor of the activation of caspase-3-dependent proteolysis at the nuclear pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号