首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biotic recoveries following mass extinctions are characterized by a process in which whole ecologies are reconstructed from low-diversity systems, often characterized by opportunistic groups. The recovery process provides an unexpected window to ecosystem dynamics. In many aspects, recovery is very similar to ecological succession, but important differences are also apparently linked to the innovative patterns of niche construction observed in the fossil record. In this paper, we analyse the similarities and differences between ecological succession and evolutionary recovery to provide a preliminary ecological theory of recoveries. A simple evolutionary model with three trophic levels is presented, and its properties (closely resembling those observed in the fossil record) are compared with characteristic patterns of ecological response to disturbances in continuous models of three-level ecosystems.  相似文献   

2.
Marine ecosystems are diverse and complex, providing significant challenges to the development of generalizable metrics of ecosystem health. Of particular concern is the varied form of change caused by multiple human activities, which limits the capacity to generate a single measure to encapsulate the overall condition of the ecosystem. Here we consider how successional theory can help to simplify our understanding of marine community structure, especially when viewed in context of human disturbance. During succession, the emergent properties of communities change in predictable ways. As communities mature, there is an increase in total production and biomass, the mean size of organisms, the level of internal recycling of food and nutrients, and the mean trophic level. Using a set of multi-species trophic models, we explore the changes in community structure that are likely to occur during succession. These changes include increases in biomass within trophic levels due to decreased rates of energy and food loss through trophic and production inefficiencies, and potential shifts from top-down control early in succession to bottom-up later. Because human activities disproportionately favor early-successional species, we can gain insights by considering community degradation in the context of succession being played in reverse. Indicators of health based on ecological succession thus provide a mechanistic view to measure the impact of human activities (both positive and negative) on marine ecosystems.  相似文献   

3.
Spatial patterns are a subfield of spatial ecology, and these patterns modify the temporal dynamics and stability properties of population densities at a range of spatial scales. Localized ecological interactions can generate striking large-scale spatial patterns in ecosystems through spatial self-organization. Possible mechanisms include oscillating consumer–resource interactions, localized disturbance–recovery processes, and scale-dependent feedback. However, in this paper, our main aim is to study the effect of tide on the pattern formation of a spatial plant-wrack model. We discuss the changes of the wavelength, wave speed, and the conditions of the spatial pattern formation, according to the dispersion relation formula. Both the mathematical analysis and numerical simulations reveal that the tide has great influence on the spatial pattern. More specifically, typical traveling spatial patterns can be obtained. Our obtained results are consistent with the previous observation that wracks exhibit traveling patterns, which is useful to help us better understand the dynamics of the real ecosystems.  相似文献   

4.
Restoration of the Kissimmee River should have multiple ecological benefits including improved dissolved oxygen (DO) within the river channel. Channelization of the Kissimmee River virtually eliminated flow through the natural river channel. After channelization, chronically low DO concentrations were observed in the stagnant remnant channel. Although no DO data from before channelization exist, reference estimates of pre‐channelization conditions were derived from seven relatively unimpacted streams. Stations along the Kissimmee River were sampled for 3 years before construction of the first phase of the restoration project began and for up to 8 years after the completion of construction. After Phase I construction, DO concentrations in the area of the river channel to which flow had been restored increased significantly from 2.2 to 4.9 mg/L, which is similar to DO concentrations observed in the reference streams. Mean DO concentrations for the reference streams ranged from 4.6 to 6.7 mg/L. Comparison of reference data to data from the pre‐Phase I and post‐Phase I system suggests that channelization had a negative impact on DO and that DO concentrations in the post‐Phase I Kissimmee River channel have made a significant recovery. Long‐term data trends demonstrate that DO concentrations can be negatively impacted by high flow events and that recovery from these events is generally quick, suggesting some degree of resilience in the system.  相似文献   

5.
Two pyrogenic cycles (two succession series) of ecosystems in the boreal forest belt are characterized. One cycle is associated with the subbelt of subgolets (subalpine) spruce and larch forests, and the other, with the subbelt of taiga spruce and larch forests. The bird population at different stages of succession are compared. Quantitative analysis utilizes measures of inclusion and similarity. The avian faunistic and ecological complexes, as well as forest layer aggregations, are considered. As is shown, the ecosystems at the early stage of succession play a significant role in the spread of the Chinese ornithofaunistic complex against the background of prevalence of the Siberian complex. The species involved in both cycles belong to the forest ecological complex. The bird population in the succession systems at later stages and native ecosystems of two subbelts are more similar to one another as compared with the succession systems of the same subbelts at early stages.  相似文献   

6.
Increasingly, modern ecologists are realizing that the history of ecological systems is crucially important for understanding the landscape and that human land use has a great impact on the trajectory of ecosystems. The Yazoo Basin of Mississippi (USA) is one area in which palaeoecological and archaeological research has been done, but at a time when interpretations of the results relied on paradigms that gave credence only to climate change as a causal factor in explaining vegetation histories of plant communities. This paper uses knowledge of ecological processes and patterns of plant colonization and succession to make testable expectations for vegetation composition and change related to human action. An existing pollen record from the area is then examined in light of these expectations and reveals evidence that humans were an integral part of the ecosystem in this area, influencing the trajectory of vegetation history over thousands of years.  相似文献   

7.
Biological soil crusts (BSCs) are ubiquitous lichen–bryophyte microbial communities, which are critical structural and functional components of many ecosystems. However, BSCs are rarely addressed in the restoration literature. The purposes of this review were to examine the ecological roles BSCs play in succession models, the backbone of restoration theory, and to discuss the practical aspects of rehabilitating BSCs to disturbed ecosystems. Most evidence indicates that BSCs facilitate succession to later seres, suggesting that assisted recovery of BSCs could speed up succession. Because BSCs are ecosystem engineers in high abiotic stress systems, loss of BSCs may be synonymous with crossing degradation thresholds. However, assisted recovery of BSCs may allow a transition from a degraded steady state to a more desired alternative steady state. In practice, BSC rehabilitation has three major components: (1) establishment of goals; (2) selection and implementation of rehabilitation techniques; and (3) monitoring. Statistical predictive modeling is a useful method for estimating the potential BSC condition of a rehabilitation site. Various rehabilitation techniques attempt to correct, in decreasing order of difficulty, active soil erosion (e.g., stabilization techniques), resource deficiencies (e.g., moisture and nutrient augmentation), or BSC propagule scarcity (e.g., inoculation). Success will probably be contingent on prior evaluation of site conditions and accurate identification of constraints to BSC reestablishment. Rehabilitation of BSCs is attainable and may be required in the recovery of some ecosystems. The strong influence that BSCs exert on ecosystems is an underexploited opportunity for restorationists to return disturbed ecosystems to a desirable trajectory.  相似文献   

8.
The study of the global mass extinction event at the Cretaceous–Palaeogene (K/Pg) boundary can aid in understanding patterns of selective extinction, and survival and dynamics of ecosystem recovery. Outcrops in the Maastrichtian type area (south-east Netherlands, north-east Belgium) comprise a stratigraphically expanded K/Pg boundary succession that offers a unique opportunity to study marine ecosystem recovery within the first few thousand years following the mass extinction event. A quantitative analysis was performed on systematically sampled macrofossils of the topmost Maastrichtian and lowermost Danian strata at the former Ankerpoort-Curfs quarry (Geulhem), which represent ‘snapshots’ of the latest Cretaceous and earliest Palaeogene marine ecosystems, respectively. Molluscs in particular are diverse and abundant in the studied succession. Regional ecosystem changes across the K/Pg boundary are relatively minor, showing a decline in suspension feeders, accompanied by an ecological shift to endobenthic molluscs. The earliest Paleocene gastropod assemblage retains many ‘Maastrichtian’ features and documents a fauna that temporarily survived into the Danian. The shallow, oligotrophic carbonate platform in this area was inhabited by taxa that were adapted to low nutrient levels and resistant to starvation. As a result, the local taxa were less affected by the short-lived detrimental conditions related to K/Pg boundary perturbations, such as darkness, cooling, starvation and ocean acidification. This resulted in relatively high survival rates, which enabled rapid recolonization and recovery of marine faunas in the Maastrichtian type area.  相似文献   

9.
Coastal marine systems are affected by seasonal variations in biogeochemical and physical processes, sometimes leading to alternating periods of reproductive growth limitation within an annual cycle. Transitions between these periods can be sudden or gradual. Human activities, such as reservoir construction and interbasin water transfers, influence these processes and can affect the type of transition between resource loading conditions. How such human activities might influence phytoplankton succession is largely unknown. Here, we employ a multispecies, multi-nutrient model to explore how nutrient loading switching mode might affect phytoplankton succession. The model is based on the Monod-relationship, predicting an instantaneous reproductive growth rate from ambient inorganic nutrient concentrations whereas the limiting nutrient at any given time was determined by Liebig’s Law of the Minimum. When these relationships are combined with population loss factors, such as hydraulic displacement of cells associated with inflows, a characterization of a species’ niche can be achieved through application of the R* conceptual model, thus enabling an ecological interpretation of modeling results. We found that the mode of reversal in resource supply concentrations had a profound effect. When resource supply reversals were sudden, as expected in systems influenced by pulsed inflows or wind-driven mixing events, phytoplankton were characterized by alternating succession dynamics, a phenomenon documented in inland water bodies of temperate latitudes. When resource supply reversals were gradual, as expected in systems influenced by seasonally developing wet and dry seasons, or annually occurring periods of upwelling, phytoplankton dynamics were characterized by mirror-image succession patterns. This phenomenon has not been reported previously in plankton systems but has been observed in some terrestrial plant systems. These findings suggest that a transition from alternating to “mirror-image” succession patterns might arise with continued coastal zone development, with crucial implications for ecosystems dependent on time-sensitive processes, e.g., spawning events and migration patterns.  相似文献   

10.
庐山森林景观格局变化的长期动态模拟   总被引:1,自引:0,他引:1  
梁艳艳  周年兴  谢慧玮  蒋铭萍 《生态学报》2013,33(24):7807-7818
在以植被格局为基础的森林景观动态分析中,可通过森林演替推断景观格局的动态变化以及相应的景观生态过程。运用空间直观景观模型LANDIS,以庐山风景区为案例地,模拟森林植被在未来300 a的自然演替动态,在此基础上选取斑块面积比、聚集度、分维数、多样性指数和均匀度指数等景观格局指数,分析森林景观格局随森林演替的动态变化。结果表明:(1)阔叶林树种的绝对优势地位保证其斑块面积比呈现持续增长的稳定趋势,森林植被将朝着地带性常绿阔叶林方向演替;(2)景观聚集度特征方面,阔叶林树种在前150 a缓慢增长,而后150 a保持相对稳定,杉木林一直保持平稳,毛竹林在整个模拟阶段一直在不断下降直至演替结束;(3)各优势树种植被斑块的分维数都保持在1-1.1之间,说明各景观斑块的边缘相对较规则且变化较小;(4)景观多样性指数呈现出先上升后缓慢下降的趋势,而均匀度指数则呈现出先下降后上升再缓慢下降的变化态势。景观格局指数的变化特征与植被向顶极群落演替的趋势相吻合,该模拟结果可运用到庐山森林景观的管理实践中。从长远来看,应该继续实行严格的封山育林政策。  相似文献   

11.
By creating transient patch mosaics, disturbance can influence the dynamics of interacting populations in many ecosystems. In European heathland, traditional land use created such dynamic systems favourable for both early and later successional species. Little empirical evidence is, however, available on the impact of current management on metapopulations occurring in such landscapes. This paper looks at the metapopulation viability of the endangered holoparasite Cuscuta epithymum, a species that typically occurs in early successional stages of recently managed heathlands. We used both observational and experimental data from a 4‐yr study to parameterise a spatially explicit metapopulation model. This model explores the impact of demographic characteristics and spatiotemporal landscape patterns created by management events on metapopulation viability. Both occasional long‐distance dispersal and dormant seeds are shown to be critical for the long‐term survival of C. epithymum in a dynamic heathland landscape subjected to a fixed rotational mowing of 15 yr. A relatively high management frequency (<15 yr between two consecutive mowing events) appeared to be necessary to sustain a viable C. epithymum metapopulation. When there is a longer interval between management events, grazing can counterbalance the negative effects of vegetation succession. Our results indicate that small‐scale cyclical management events combined with extensive grazing are the most appropriate management strategy to maintain viable populations of C. epithymum instead of the current large‐scale management events. Our results further emphasise the importance of incorporating both spatiotemporal patch availability and key demographic characteristics, especially seed banks, for a realistic view of metapopulation dynamics in disturbed landscapes. This study clearly demonstrates the usefulness of metapopulation models to understand the impact of management events and to provide new ecological insights into processes acting at a landscape scale.  相似文献   

12.
Valladares and Gianoli (2007) tried to answer a key question, “how much ecology do we need to know to restore Mediterranean ecosystems?” by focusing on (1) plant–plant interactions; (2) environmental heterogeneity and the potential adaptation of transplanted plants; and (3) phenotypic plasticity of the planted species. We consider their choice of topics incomplete and potentially misleading because (1) it is clearly biased toward a narrow set of research topics (phenotypic plasticity, facilitation, and climate change); (2) it assumes that active restoration, and specifically revegetation, is needed; and (3) it conveys a false perception that other basic ecological aspects of Mediterranean ecosystems are sufficiently known. Instead, we review the current knowledge on seed dispersal, succession, and ecosystem functioning for Mediterranean ecosystems. We argue that decades of research on these topics have yielded few practical guidelines for restoration, something that needs to be urgently corrected. First, the current “establishment limitation paradigm” for plant recruitment does not acknowledge the role of dispersal limitation at large spatial scales. More attention should be paid to nucleation processes and directed seed dispersal mediated by animals. Second, studies of vegetation dynamics and succession in the Mediterranean have led to an overly simplistic view of successional dynamics. How fast and deterministic succession is remains mostly unexplored; long‐term monitoring of successional dynamics at different spatial scales is urgently needed. Third, information on the functional status of Mediterranean ecosystems is required to identify processes hindering natural recovery after disturbances and to set priorities on the areas and ecosystem components to be restored.  相似文献   

13.
Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physico-chemical status of the river.  相似文献   

14.
Kelp forest ecosystems dominate 150,000 km of global temperate coastline, rivalling the coastal occurrence of coral reefs. Despite the astounding biological diversity and productive ecological communities associated with kelp forests, patterns of species richness and composition are difficult to monitor and compare. Crustose coralline algae are a critically important substrate for propagule settlement for a range of kelp forest species. Coralline‐covered cobbles are home to hundreds of species of benthic animals and algae and form a replicable unit for ecological assays. Here, we use DNA metabarcoding of bulk DNA extracts sampled from cobbles to explore patterns of species diversity in kelp forests of the central California coast. The data from 97 cobbles within kelp forest ecosystems at three sites in Central California show the presence of 752 molecular operational taxonomic units (MOTUs) and 53 MOTUs assigned up to the species level with >95% similarity to current databases. We are able to detect spatial patterns of important management targets such as abalone recruits, and localized abundance of sea stars in 2012. Comparison of classic ecological surveys of these sites reveals large differences in species targets for these two approaches. In order to make such comparisons more quantitative, we use Presence/Absence Metabarcoding, using the fraction of replicate cobbles showing a species as a measure of its local abundance. This approach provides a fast and repeatable survey method that can be applied for biodiversity assessments across systems to shed light on the impact of different ecological disturbances and the role played by marine protected areas.  相似文献   

15.
生态系统的空间分布   总被引:4,自引:0,他引:4  
牛文元 《生态学报》1984,4(4):299-309
作为生态学研究的一个重要方面,在过去二十多年中,生态系统的空间分布曾被一些学者所研究。这类研究的一个特殊应用是旨在监测生态系统的动态演替。此外,它亦可以作为一种重要方法,对特定地理区域内的生态系统进行数量分类。同时,它已被用来评价生态系统的稳定性,或被用来估算生态系统的初始生产力。 考虑到一个平面上点的分布规律之后,作者应用“近邻分析”、“引力理论”以及概率论的基本概念,设计出一个称之为“执行指标”的E-index。本文列出了E-index谱的计算。其特点在于,不是如通常采用的方法那样只是考虑两点间的距离,而是采用(包含有点的)两个最近“样方”间的距离作为计算的依据,去制定执行指标。 E-index似乎是在统一的基础上,在定量地比较不同的生态系统空间模型方面迈出了较大的一步。通过这个门槛,研究者们将能够以更准确和更有效的方式,去实现对生态系统的某种空间调节和空间管理。 本文还举出一些例子去应用和验证E-index  相似文献   

16.
马华  钟炳林  岳辉  曹世雄 《生态学报》2015,35(18):6148-6156
自然修复主要通过封山育林、禁止农作、禁牧禁伐措施,减少人类对环境的扰动,利用自然生态环境的自我演替能力,恢复生态环境,实现生态平衡。自然修复作为一种成本低、无污染的生态修复手段很早就受到人们重视,但关于自然修复适用范围的研究较少。为了正确认识自然修复的适用性,选择了我国南方红壤地区长期遭受严重土壤侵蚀危害的福建省长汀县为研究对象,通过对长期自然修复样地的监测资料分析,发现在坡度条件为20%—30%下,当植被覆盖度低于20%的退化阈值时,严重的土壤侵蚀引发的土壤肥力损失将导致生态系统自我退化,自然修复不仅无法改善当地的生态系统,反而会引起生态系统的进一步恶化。由此可见,自然修复并不适合所有的生态系统,当生态系统退化到一定程度时,退化生态系统必须通过人工干预来修复。因此,必须探索适合当地的生态修复模式,在生态系统退化突破阈值时,红壤丘陵区应通过恢复土壤肥力、促进自然植被覆盖度增加、综合提高生态系统健康水平。  相似文献   

17.
气温上升对森林生态系统结构和功能有重要的影响。该文简要介绍了鼎湖山森林生态系统定位研究站开展的大型实验——气温上升对模拟森林生态系统的影响。介绍了实验设计及其创新性, 实验研究内容等, 为相关实验的设计提供指导与依据。  相似文献   

18.
Understanding the interplay between processes operating at large and small spatiotemporal scales in shaping biotic interactions remains challenging. Recent studies illustrate how phenotypic specialization, species life-history traits and/or resource partitioning recurrently underlie the structure of mutualistic interactions in terrestrial ecosystems along large latitudinal gradients of biodiversity. However, we know considerably less about how local processes interact with large-scale patterns of biodiversity in modulating biotic interactions in the marine realm. Considering agonistic behaviour as a proxy for contest competition, we empirically investigate whether the structure of reef fish agonistic interactions is conserved across a 34 000-km longitudinal gradient of biodiversity. By sampling coral reefs using standardized remote underwater video, we found recurrent patterns of fish agonistic behaviour in disparate communities distributed across five biogeographic provinces of the Pacific and Atlantic oceans. While the sheer number of species increases with regional richness, the number of aggressive disputes at the habitat scale is similar across communities. We then combined generalized linear models and network theory to reveal that, the emergent structure of local agonistic networks is not modular but instead recurrently display a nested structure, with a core of highly interactive site-attached herbivores of the Pomacentridae family. Therefore, despite the increase in the number of species involved in agonistic interactions toward speciose communities, the network structure is conserved along the longitudinal richness gradient because local disputes are mostly driven by closely-related, functionally-similar species. These findings suggest that evolutionary and local processes interact in modulating reef fish agonistic behaviour and that fine-scale niche-partitioning can structure the ecological networks in marine ecosystems.  相似文献   

19.
Studying recovering plant biodiversity on Mount Pinatubo may provide valuable insights that improve our understanding of recovery of other ecosystems following disturbances of all types. Ongoing sheet and rill erosion coupled with mass waste events in the unstable pyroclastic flow deposits persist, effectively re-setting primary succession at micro-landscape scale without affecting habitat level diversity. Spatial factors and micro-habitat diversity may exert more control over continued succession as the riparian systems become more deeply dissected and complex. The number of taxa within functional groups and conservation concerns are botanical issues that deserve further research.Key words: ecosystem services, natural disturbances, primary succession  相似文献   

20.
张博中  郭小龙  杨颖惠 《生态学报》2024,44(8):3492-3501
物种共存机制是群落生态学研究的核心问题之一,但以成对物种间直接相互作用为主的传统共存理论,并未在实际群落中得到普遍证实。近年来,有研究表明,高阶相互作用,即一个物种对另一个物种的直接作用强度受到其他物种的间接影响,在群落竞争过程中的重要性不断得到发展。目前,对高阶相互作用的理论研究还主要集中在非空间理论模型。事实上,群落中个体的空间分布和扩散模式等对种群动态的影响均至关重要。故考虑空间因素,以三物种为例构建空间显式的群落动态模拟,通过引入不同的物种扩散模式,研究高阶相互作用对群落物种共存结果的影响。研究表明:(1)高阶相互作用可以促进也可能抑制物种共存,具体共存结果取决于高阶相互作用的方向、强度和分类;(2)当全部高阶相互作用都存在,且取值为正时,物种共存位置会发生偏移,原本生态位分化下共存的区域不再共存,而在生态位重叠度较高的区域,物种可以在更大范围的适合度差异下共存;(3)扩散模式对高阶相互作用的上述调节机制有一定的影响,且无论正高阶还是负高阶,当种群趋于局部扩散时,高阶相互作用的正向及负向调节效果均有所减弱。以上结论强调了在理论模型和实际保护工作中考虑相互作用网络的重要性,有助于进一步理解物种共存机制,能够为保护生物多样性提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号