首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neisseria meningitidis (MC) is an important cause of meningitis and septic shock. Primary loose attachment of MC to host epithelial cells is mediated by type IV pili. Lipooligosaccharide (LOS), opacity (Opa) proteins and glycolipid adhesins facilitate subsequent tight attachment. MC infection causes numerous changes in host epithelial cell homeostasis. These include cortical plaque formation, increased expression of proinflammatory cytokines and alterations in host iron homeostasis. Using both biochemical and genetic approaches, we examined the role of LOS in mediating these events. We first examined specific cellular iron homeostasis changes that occur following addition of purified MC LOS to epithelial cells. Using an MC mutant that completely lacks LOS (MC lps tbp), we examined pili-mediated attachment and cortical plaque formation in human endocervical epithelial cells (A431). We also tested whether the lack of LOS alters cellular homeostasis, including changes in the levels of host stress response factors and proinflammatory cytokines. MC lps tbp elicited the formation of cortical plaques in A431 cells. However, the plaques were less pronounced than those formed by the MC parent. Surprisingly, the proinflammatory cytokine TNF(alpha) was upregulated during infection in MC lps tbp-infected cells. Furthermore, alterations in iron homeostasis, including lower transferrin receptor 1 (TfR-1) levels, altered TfR-1 trafficking, an 'iron-starvation' gene expression profile and low iron regulatory protein (IRP) binding activity are independent of LOS. Our results demonstrate that LOS is partially involved in both the attachment to host cells and formation of cortical plaques. However, TNFalpha induction and changes in iron homeostasis observed in MC-infected epithelial cells are independent of LOS.  相似文献   

2.
Synthesis of proteins for iron homeostasis is regulated by specific, combinatorial mRNA/protein interactions between RNA stem-loop structures (iron-responsive elements, IREs) and iron-regulatory proteins (IRP1 and IRP2), controlling either mRNA translation or stability. The transferrin receptor 3'-untranslated region (TfR-3'-UTR) mRNA is unique in having five IREs, linked by AU-rich elements. A C-bulge in the stem of each TfR-IRE folds into an IRE that has low IRP2 binding, whereas a loop/bulge in the stem of the ferritin-IRE allows equivalent IRP1 and IRP2 binding. Effects of multiple IRE interactions with IRP1 and IRP2 were compared between the native TfR-3'-UTR sequence (5xIRE) and RNA with only 3 or 2 IREs. We show 1) equivalent IRP1 and IRP2 binding to multiple TfR-IRE RNAs; 2) increased IRP-dependent nuclease resistance of 5xIRE compared with lower IRE copy-number RNAs; 3) distorted TfR-IRE helix structure within the context of 5xIRE, detected by Cu-(phen)(2) binding/cleavage, that coincides with ferritin-IRE conformation and enhanced IRP2 binding; and 4) variable IRP1 and IRP2 expression in human cells and during development (IRP2-mRNA predominated). Changes in TfR-IRE structure conferred by the full length TfR-3'-UTR mRNA explain in part evolutionary conservation of multiple IRE-RNA, which allows TfR mRNA stabilization and receptor synthesis when IRP activity varies, and ensures iron uptake for cell growth.  相似文献   

3.
Cellular iron metabolism is essentially controlled by the binding of cytosolic iron regulatory proteins (IRP1 or IRP2) to iron-responsive elements (IREs) located on mRNAs coding for proteins involved in iron acquisition, utilization and storage. The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is one of the most potent toxins of current interest that occurs as poisonous chemical in the environment. TCDD exposure has been reported to induce a broad spectrum of toxic and biological responses, including significant changes in gene expression for heme and iron metabolism associated with liver injury. Here, we have investigated the molecular effects of TCDD on the iron metabolism providing the first evidence that administration of the toxin TCDD to mammalian cells affects the maintenance of iron homeostasis. We found that exposure of Madin-Darby Bovine Kidney cell to TCDD caused a divergent modulation of IRP1 and IRP2 RNA-binding capacity. Interestingly, we observed a concomitant IRP1 down-regulation and IRP2 up-regulation thus determining a marked enhancement of transferrin receptor 1 (TfR-1) expression and a biphasic response in ferritin content. The changed ferritin content coupled to TfR-1 induction after TCDD exposure impairs the cellular iron homeostasis, ultimately leading to significant changes in the labile iron pool (LIP) extent. Since important iron requirement changes occur during the regulation of cell growth, it is not surprising that the dioxin-dependent iron metabolism dysregulation herein described may be linked to cell-fate decision, supporting the hypothesis of a central connection among exposure to dioxins and the regulation of critical cellular processes.  相似文献   

4.
Cellular iron metabolism is essentially controlled by the binding of cytosolic iron regulatory proteins (IRP1 or IRP2) to iron-responsive elements (IREs) located on mRNAs coding for proteins involved in iron acquisition, utilization and storage. The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is one of the most potent toxins of current interest that occurs as poisonous chemical in the environment. TCDD exposure has been reported to induce a broad spectrum of toxic and biological responses, including significant changes in gene expression for heme and iron metabolism associated with liver injury. Here, we have investigated the molecular effects of TCDD on the iron metabolism providing the first evidence that administration of the toxin TCDD to mammalian cells affects the maintenance of iron homeostasis. We found that exposure of Madin-Darby Bovine Kidney cell to TCDD caused a divergent modulation of IRP1 and IRP2 RNA-binding capacity. Interestingly, we observed a concomitant IRP1 down-regulation and IRP2 up-regulation thus determining a marked enhancement of transferrin receptor 1 (TfR-1) expression and a biphasic response in ferritin content. The changed ferritin content coupled to TfR-1 induction after TCDD exposure impairs the cellular iron homeostasis, ultimately leading to significant changes in the labile iron pool (LIP) extent. Since important iron requirement changes occur during the regulation of cell growth, it is not surprising that the dioxin-dependent iron metabolism dysregulation herein described may be linked to cell-fate decision, supporting the hypothesis of a central connection among exposure to dioxins and the regulation of critical cellular processes. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

5.
Iron is an essential element for nearly all organisms. In mammals, iron is transported to body tissues by the serum glycoprotein transferrin. Transferrin-iron is internalized by binding to specific receptors followed by endocytosis. In vitro , Neisseria meningitidis and Neisseria gonorrhoeae can use iron from a variety of iron-containing compounds, including human transferrin. In vivo , transferrin is an important source of iron for N. gonorrhoeae : a mutant that is unable to bind and use transferrin-iron is unable to colonize the urethra of men or initiate disease at this site. As pathogenic Neisseria and its human host derive much of their iron from transferrin, we reasoned that a competition may exist between microbe and host epithelial cells for transferrin-iron at certain stages of infection. We therefore tested the hypothesis that N. meningitidis and N. gonorrhoeae may actively interfere with host transferrin-iron metabolism. We report that Neisseria-infected human epithelial cells have reduced levels of transferrin receptor messenger RNA and cycling transferrin receptors. The ability of infected cells to internalize transferrin receptor is also reduced. Finally, the relative distribution of surface and cycling transferrin receptors is altered in an infected cell. We conclude that Neisseria infection alters epithelial cell transferrin-iron homeostasis at multiple levels.  相似文献   

6.
7.
8.
Bovine herpesvirus 1 (BHV-1), a dsDNA animal virus, is an economically important pathogen of cattle and the aetiological agent of many types of disease. The efficient replication of a DNA virus is strictly dependent on iron since this metal plays a crucial role in the catalytic center of viral ribonucleotide reductase. Consequently, iron metabolism is an important area for virus/host interaction and a large body of evidence suggests that viral infection is potentially influenced by the iron status of the host. The aim of the present study was to address the effects of BHV-1 on iron metabolism in Madin-Darby bovine kidney (MDBK) cells at different times of post-infection. For this purpose, cell viability, iron regulatory proteins (IRPs) activity and levels, transferrin receptor 1 (TfR-1), ferritin expression and LIP were evaluated. Our data demonstrate that a productive BHV-1 infection in MDBK cells determines an overall decrease of IRPs RNA-binding activity without affecting their expression. As consequence of this modulation, an increased ferritin mRNA translation and a decreased TfR-1 mRNA translation were also observed. Moreover, the LIP level was decreased following viral infection. These results are consistent with the hypothesis that by reducing the iron up-take and by enhancing the sequestration of free iron, animal cells will limit the iron availability for virus proliferation. Therefore, the results presented herein support the view that iron metabolism could be critical for the interaction between DNA viruses, such as BHV-1, and mammalian cells. Delineation of the interplay among pathogen and host may provide new antimicrobial agents.  相似文献   

9.
Although the recent identification of several genes has extended our knowledge on the maintenance of body iron homeostasis, their tissue specific expression patterns and the underlying regulatory networks are poorly understood. We studied C57black/Sv129 mice and HFE knockout (HFE -/-) variants thereof as a model for hemochromatosis, and investigated the expression of iron metabolism genes in the duodenum, liver, and kidney as a function of dietary iron challenge. In HFE +/+ mice dietary iron supplementation increased hepatic expression of hepcidin which was paralleled by decreased iron regulatory protein (IRP) activity, and reduced expression of divalent metal transporter-1 (DMT-1) and duodenal cytochrome b (Dcytb) in the enterocyte. In HFE -/- mice hepcidin formation was diminished upon iron challenge which was associated with decreased hepatic transferrin receptor (TfR)-2 levels. Accordingly, HFE -/- mice presented with high duodenal Dcytb and DMT-1 levels, and increased IRP and TfR expression, suggesting iron deficiency in the enterocyte and increased iron absorption. In parallel, HFE -/- resulted in reduced renal expression of Dcytb and DMT-1. Our data suggest that the feed back regulation of duodenal iron absorption by hepcidin is impaired in HFE -/- mice, a model for genetic hemochromatosis. This change may be linked to inappropriate iron sensing by the liver based on decreased TfR-2 expression, resulting in reduced circulating hepcidin levels and an inappropriate up-regulation of Dcytb and DMT-1 driven iron absorption. In addition, iron excretion/reabsorption by the kidneys may be altered, which may aggravate progressive iron overload.  相似文献   

10.
Excess capacity of the iron regulatory protein system   总被引:4,自引:0,他引:4  
Iron regulatory proteins (IRP1 and IRP2) are master regulators of cellular iron metabolism. IRPs bind to iron-responsive elements (IREs) present in the untranslated regions of mRNAs encoding proteins of iron storage, uptake, transport, and export. Because simultaneous knockout of IRP1 and IRP2 is embryonically lethal, it has not been possible to use dual knockouts to explore the consequences of loss of both IRP1 and IRP2 in mammalian cells. In this report, we describe the use of small interfering RNA to assess the relative contributions of IRP1 and IRP2 in epithelial cells. Stable cell lines were created in which either IRP1, IRP2, or both were knocked down. Knockdown of IRP1 decreased IRE binding activity but did not affect ferritin H and transferrin receptor 1 (TfR1) expression, whereas knockdown of IRP2 marginally affected IRE binding activity but caused an increase in ferritin H and a decrease in TfR1. Knockdown of both IRPs resulted in a greater reduction of IRE binding activity and more severe perturbation of ferritin H and TfR1 expression compared with single IRP knockdown. Even though the knockdown of IRP-1, IRP-2, or both was efficient, resulting in nondetectable protein and under 5% of wild type levels of mRNA, all stable knockdowns retained an ability to modulate ferritin H and TfR1 appropriately in response to iron challenge. However, further knockdown of IRPs accomplished by transient transfection of small interfering RNA in stable knockdown cells completely abolished the response of ferritin H and TfR1 to iron challenge, demonstrating an extensive excess capacity of the IRP system.  相似文献   

11.
12.
Intracellular reactive iron is a source of free radicals and a possible cause of cell damage. In this study, we analyzed the changes in iron homeostasis generated by iron accumulation in neuroblastoma (N2A) cells and hippocampal neurons. Increasing concentrations of iron in the culture medium elicited increasing amounts of intracellular iron and of the reactive iron pool. The cells had both IRP1 and IRP2 activities, being IRP1 activity quantitatively predominant. When iron in the culture medium increased from 1 to 40 microm, IRP2 activity decreased to nil. In contrast, IRP1 activity decreased when iron increased up to 20 microm, and then, unexpectedly, increased. IRP1 activity at iron concentrations above 20 microm was functional as it correlated with increased (55) Fe uptake. The increase in IRP1 activity was mediated by oxidative-stress as it was largely abolished by N-acetyl-L-cysteine. Culturing cells with iron resulted in proteins and DNA modifications. In summary, iron uptake by N2A cells and hippocampus neurons did not shut off at high iron concentrations in the culture media. As a consequence, iron accumulated and generated oxidative damage. This behavior is probably a consequence of the paradoxical activation of IRP1 at high iron concentrations, a condition that may underlie some processes associated with neuronal degeneration and death.  相似文献   

13.
14.
The love-hate relationship between iron and living matter has generated mechanisms to maintain iron concentration in a narrow range, above and below which deleterious effects occur. At the cellular level, iron homeostasis is accomplished by the activity of the IRP proteins, which, under conditions of iron depletion, up-regulate the expression of the iron acquisition proteins TfR and DMT1. It has been shown that hydrogen peroxide activates IRP1 and that this activation mediates a potentially harmful increase in cell iron uptake. Here we show that IRP1 activity is also induced by iron-mediated oxidative stress. When cells were incubated with up to 20 M of iron, a typical decrease in IRP1 and IRP2 activity was observed. Interestingly, when iron was further increased to 40 or 80 M, IRP1 was reactivated in three of the four different cell lines tested, i.e., Caco-2 cells, N2A cells and HepG2 cells. In the fourth cell line (K562) IRP1 activity did not increase, but neither did it decrease. This response to iron was largely abrogated when the antioxidant N-acetyl cysteine was added along with iron to the culture medium. Thus, the effect of iron was mediated by oxidative stress. Increases in IRP1 activity were accompanied by increases in cell iron uptake, an indication that the activated IRP1 was functional in the activation of iron uptake. Hence, this iron-induced iron uptake feedback loop results in the increase of intracellular iron and increased oxidative stress.  相似文献   

15.
16.
Iron homeostasis is tightly regulated, as cells work to conserve this essential but potentially toxic metal. The translation of many iron proteins is controlled by the binding of two cytoplasmic proteins, iron regulatory protein 1 and 2 (IRP1 and IRP2) to stem loop structures, known as iron-responsive elements (IREs), found in the untranslated regions of their mRNAs. In short, when iron is depleted, IRP1 or IRP2 bind IREs; this decreases the synthesis of proteins involved in iron storage and mitochondrial metabolism (e.g. ferritin and mitochondrial aconitase) and increases the synthesis of those involved in iron uptake (e.g. transferrin receptor). It is likely that more iron-containing proteins have IREs and that other IRPs may exist. One obvious place to search is in Complex I of the mitochondrial respiratory chain, which contains at least 6 iron-sulfur (Fe-S) subunits. Interestingly, in idiopathic Parkinson's disease, iron homeostasis is altered, and Complex I activity is diminished. These findings led us to investigate whether iron status affects the Fe-S subunits of Complex I. We found that the protein levels of the 75-kDa subunit of Complex I were modulated by levels of iron in the cell, whereas mRNA levels were minimally changed. Isolation of a clone of the 75-kDa Fe-S subunit with a more complete 5'-untranslated region sequence revealed a novel IRE-like stem loop sequence. RNA-protein gel shift assays demonstrated that a specific cytoplasmic protein bound the novel IRE and that the binding of the protein was affected by iron status. Western blot analysis and supershift assays showed that this cytosolic protein is neither IRP1 nor IRP2. In addition, ferritin IRE was able to compete for binding with this putative IRP. These results suggest that the 75-kDa Fe-S subunit of mitochondrial Complex I may be regulated by a novel IRE-IRP system.  相似文献   

17.
18.
Iron regulatory proteins 1 and 2 (IRP1, IRP2) are key determinants of uptake and storage of iron by the liver, and are responsive to oxidative stress and hypoxia potentially at the level of both protein concentration and mRNA-binding activity. We examined the effect of hypoxia (1% O2) on IRP1 and IRP2 levels (Western blots) and mRNA-binding activity (gel shift assays) in human hepatoma HepG2 cells, and compared them with HEK 293 cells, a renal cell line known to respond to hypoxia. Total IRP binding to an iron responsive element (IRE) mRNA probe was increased several fold by hypoxia in HEK 293 cells, maximally at 4–8 h. An earlier and more modest increase (1.5- to 2-fold, peaking at 2 h and then declining) was seen in HepG2 cells. In both cell lines, IRP1 made a greater contribution to IRE-binding activity than IRP2. IRP1 protein levels were increased slightly by hypoxia in HEK 293 but not in HepG2 cells. IRP1 was distributed between cytosolic and membrane-bound fractions, and in both cells hypoxia increased both the amount and IRE-binding activity of the membrane-associated IRP1 fraction. Further density gradient fractionation of HepG2 membranes revealed that hypoxia caused an increase in total membrane IRP1, with a shift in the membrane-bound fraction from Golgi to an endoplasmic reticulum (ER)-enriched fraction. Translocation of IRP to the ER has previously been shown to stabilize transferrin receptor mRNA, thus increasing iron availability to the cell. Iron depletion with deferoxamine also caused an increase in ER-associated IRP1. Phorbol ester caused serine phosphorylation of IRP1 and increased its association with the ER. The calcium ionophore ionomycin likewise increased ER-associated IRP1, without affecting total IRE-binding activity. We conclude that IRP1 is translocated to the ER by multiple signals in HepG2 cells, including hypoxia, thereby facilitating its role in regulation of hepatic gene expression. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
Diabetes mellitus is associated with altered iron homeostasis that can potentially effect reactive oxygen species generation and contribute to diabetes-related complications. We investigated, by quantitative polymerase chain reaction, whether the expression of liver hepcidin, ferritin, and TfR-1 is altered in diabetes. Rats in the control (C) group received a standard diet; control iron (CI) group received a standard diet supplemented with iron; diabetic (D) group received an injection of streptozotocin; and diabetic iron (DI) group received streptozotocin and the diet with iron. Animals of the D group showed higher levels of serum iron, increased concentration of carbonyl protein, and a decrease in antioxidant status. Group D rats showed increased hepatic expression of Trf-1 compared to the other groups. Iron supplementation reversed this increase. Hepcidin mRNA was 81% higher in DI than in C and CI rats. The results suggest that diabetes, with or without excess iron, can cause perturbations in iron status, hepcidin and Trf-1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号