首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Nitric oxide (NO) induces apoptotic cell death in murine RAW 264.7 macrophages. To elucidate the inhibitory effects of protein kinase C (PKC) on NO-induced apoptosis, we generated clones of RAW 264.7 cells that overexpress one of the PKC isoforms and explored the possible interactions between PKC and three structurally related mitogen-activated protein (MAP) kinases in NO actions. Treatment of RAW 264.7 cells with sodium nitroprusside (SNP), a NO-generating agent, activated both c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38 kinase, but did not activate extracellular signal-regulated kinase (ERK)-1 and ERK-2. In addition, SNP-induced apoptosis was slightly blocked by the selective p38 kinase inhibitor (SB203580) but not by the MAP/ERK1 kinase inhibitor (PD098059). PKC transfectants (PKC-beta II, -delta, and -eta) showed substantial protection from cell death induced by the exposure to NO donors such as SNP and S-nitrosoglutathione (GSNO). In contrast, in RAW 264.7 parent or in empty vector-transformed cells, these NO donors induced internucleosomal DNA cleavage. Moreover, overexpression of PKC isoforms significantly suppressed SNP-induced JNK/SAPK and p38 kinase activation, but did not affect ERK-1 and -2. We also explored the involvement of CPP32-like protease in the NO-induced apoptosis. Inhibition of CPP32-like protease prevented apoptosis in RAW 264.7 parent cells. In addition, SNP dramatically activated CPP32 in the parent or in empty vector-transformed cells, while slightly activated CPP32 in PKC transfectants. Therefore, we conclude that PKC protects NO-induced apoptotic cell death, presumably nullifying the NO-mediated activation of JNK/SAPK, p38 kinase, and CPP32-like protease in RAW 264.7 macrophages.  相似文献   

4.
Vitamin D-binding protein-macrophage-activating factor (DBP-maf) is derived from serum vitamin D binding protein (DBP) by selective deglycosylation during inflammation. In the present study, we investigated the effect of DBP-maf on RAW 264.7 macrophages and the underlying intracellular signal transduction pathways. DBP-maf increased proapoptotic caspase-3, -8, and -9 activities and induced apoptosis in RAW 264.7 cells. However, DBP, the precursor to DBP-maf did not induce apoptosis in these cells. Cell cycle analysis of DBP-maf-treated RAW 264.7 cells revealed growth arrest with accumulation of cells in sub-G(0)/G(1) phase. We also investigated the role of mitogen-activated protein kinase (MAPK) pathways in the DBP-maf-induced apoptosis of RAW264.7 cells. DBP-maf increased the phosphorylation of p38 and JNK1/2, while it decreased the ERK1/2 phosphorylation. Treatment with the p38 MAPK inhibitor, SB202190, attenuated DBP-maf-induced apoptosis. PD98059, a MEK specific inhibitor, did not show a significant inhibition of apoptosis induced by DBP-maf. Taken together, these results suggest that the p38 MAPK pathway plays a crucial role in DBP-maf-mediated apoptosis of macrophages. Our studies indicate that, during inflammation DBP-maf may function positively by causing death of the macrophages when activated macrophages are no longer needed at the site of inflammation. In summary, we report for the first time that DBP-maf induces apoptosis in macrophages via p38 and JNK1/2 pathway.  相似文献   

5.
Although apoptosis has been observed in macrophages during the course of infections, the mechanism of apoptosis in activated macrophages is not fully understood. This study shows that pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (ZVAD) or t-butyloxycarbonyl-Asp-fluoromethylketone (Boc-D) caused the death of lipopolysaccharide (LPS)-activated macrophages and RAW 264.7 cells with apoptotic features. The apoptosis was also observed in lipoprotein-treated bacteria but not in CpG oligonucleotide- or flagellin-treated macrophages, indicating a difference of cellular responses downstream of different Toll-like receptors. Consistent with the induction of cell death by pan-caspase inhibitors, no activation of known caspases was detected in LPS-ZVAD-treated cells, suggesting an involvement of unknown proapoptotic caspases in the cell death. ZVAD inhibited the activation of extracellular signal-regulated kinase (ERK) and p38 but not of nuclear factor (NF)-kappa B induced by LPS, suggesting that the ZVAD-sensitive molecule lies upstream of the ERK and p38 pathways but downstream of the divergent site of NF-kappa B and mitogen-activated protein kinases. Our results demonstrate that apoptosis of macrophages induced by LPS+ZVAD is independent from the known proapoptotic caspases and suggest that activity of an unidentified ZVAD-sensitive molecule(s) is involved in the survival of LPS-activated macrophages.  相似文献   

6.
Interaction of P2X7 receptor with P2X4 receptor has recently been suggested, but it remains unclear whether P2X4 receptor is involved in P2X7 receptor-mediated events, such as cell death of macrophages induced by high concentrations of extracellular ATP. Here, we present evidence that P2X4 receptor does play a role in P2X7 receptor-dependent cell death. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced Ca(2+) influx, non-selective large pore formation, activation of extracellular signal-regulated protein kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK), and cell death via activation of P2X7 receptor. P2X4-knockdown cells, established by transfecting RAW264.7 cells with two short hairpin RNAs (shRNAs) targeting P2X4 receptor, showed a decrease of the initial peak of intracellular Ca(2+) after treatment with ATP, though pore formation and the P2X7-mediated activation of ERK1/2 and p38 MAPK were not affected. Intriguingly, P2X4 knockdown resulted in significant suppression of cell death induced by ATP or P2X7 agonist BzATP. In conclusion, our results suggest that P2X4 receptor is involved in P2X7 receptor-mediated cell death, but not pore formation or MAPK signaling.  相似文献   

7.
8.
Microparticles are membrane-derived vesicles that are released from cells during activation or cell death. These particles can serve as mediators of intercellular cross-talk and induce a variety of cellular responses. Previous studies have shown that macrophages undergo apoptosis after phagocytosing microparticles. Here, we have addressed the hypothesis that microparticles trigger this process via lipid pathways. In these experiments, microparticles induced apoptosis in primary macrophage cells or cell lines (RAW 264.7 or U937) with up to a 5-fold increase. Preincubation of macrophages with phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)BP) reduced the microparticle-induced apoptosis in a dose-dependent manner. PtdIns(3,5)BP is a specific inhibitor of the acid sphingomyelinase and thus can block the generation of pro-apoptotic ceramides. Similarly, the pre-incubation of macrophages with PtdIns(3,5)BP prevented microparticle-induced upregulation of caspase 8, which is a major target molecule of ceramide action in the apoptosis pathway. PtdIns(3,5)BP, however, had no effect on the spontaneous rate of apoptosis. To evaluate further signaling pathways induced by microparticles, the extracellular signal regulated kinase (ERK-) 1 was investigated. This kinase plays a role in activating phospholipases A2 which cleaves membrane phospholipids into arachidonic acid; microparticles have been suggested to be a preferred substrate for phospholipases A2. As shown in our experiments, microparticles strongly increased the amount of phosphorylated ERK1/2 in RAW 264.7 macrophages in a time-dependent manner, peaking 15 min after co-incubation. Addition of PD98059, a specific inhibitor of ERK1, prevented the increase in apoptosis of RAW 264.7 macrophages. Together, these data suggest that microparticles perturb lipid homeostasis of macrophages and thereby induce apoptosis. These results emphasize the importance of biolipids in the cellular cross-talk of immune cells. Based on the fact that in clinical situations with excessive cell death such as malignancies, autoimmune diseases and following chemotherapies high levels of circulating microparticles might modulate phagocytosing cells, a suppression of the immune response might occur due to loss of macrophages.  相似文献   

9.
The effect of inhibition of mitogen and stress-activated protein kinases 1/2 (MSK1/2) on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells was investigated. Pretreatment with Ro 31-8220, an inhibitor of MSK1/2, induced cell death in LPS-stimulated RAW 264.7 cells. In contrast, calphostin C, another inhibitor of protein kinase C, did not cause cell death. Cell death was not mediated by the release of pro-inflammatory mediators from LPS-stimulated RAW 264.7 cells. Cell death was accompanied by DNA fragmentation and annexin V binding, suggesting apoptotic cell death. Further, several caspase inhibitors did not prevent LPS-induced cell death of Ro 31-8220-pretreated RAW 264.7 cells. Nuclear translocation of apoptosis-inducing factor (AIF) was detected in Ro 31-8220-pretreated cells after LPS stimulation. Cell death was due to mitochondrial damage. Ro 31-8220 exclusively inhibited the phosphorylation of cAMP-responsive element binding protein (CREB), a substrate of MSK1/2. RAW 264.7 cells transfected with the dominant-negative MSK1 clones underwent cell death in response to LPS. Hence, it was suggested that MSK1/2 might play a critical role in the survival of LPS-stimulated RAW 264.7 cells.  相似文献   

10.
Lipopolysaccharide (LPS) signaling is critical for the innate immune response to gram-negative bacteria. Here, evidence is presented for LPS stimulation of sphingosine kinase (SPK) in the RAW 264.7 murine macrophage cell line and rat primary hepatic macrophages (HMs). LPS treatment of RAW 264.7 cells resulted in a time- and dose-dependent activation of SPK and membrane translocation of SPK1. Further, LPS-induced SPK activation was blocked by SPK1-specific small interfering RNA (siRNA). Overexpression of Toll-like receptor 4 and MD2, the receptor and coreceptor of LPS, in HEK 293 cells activated SPK activity in the absence of LPS treatment. Inhibition of SPK by the pharmacological inhibitor N,N-dimethylsphingosine (DMS) or SPK1-specific siRNA blocked LPS stimulation of extracellular signal-regulated kinase 1/2 and p38 but enhanced LPS-induced c-Jun N-terminal kinase activation. The SPK inhibitor DMS and dominant-negative SPK1 also blocked LPS activation of Elk-1 and NF-kappaB reporters in RAW 264.7 cells. Inhibition of SPK sensitized RAW 264.7 cells and HMs to LPS-induced apoptosis. These data demonstrate the critical role of SPK1 in LPS signaling in macrophages and suggest that SPK1 is a potential therapeutic target to block hyperimmune responses induced by gram-negative bacteria.  相似文献   

11.
Prostaglandin E2 (PGE2) synergistically enhances the receptor activator for NF-kappa B ligand (RANKL)-induced osteoclastic differentiation of the precursor cells. Here we investigated the mechanisms of the stimulatory effect of PGE2 on osteoclast differentiation. PGE2 enhanced osteoclastic differentiation of RAW264.7 cells in the presence of RANKL through EP2 and EP4 prostanoid receptors. RANKL-induced degradation of I kappa B alpha and phosphorylation of p38 MAPK and c-Jun N-terminal kinase in RAW264.7 cells were up-regulated by PGE2 in a cAMP-dependent protein kinase A (PKA)-dependent manner, suggesting that EP2 and EP4 signals cross-talk with RANK signals. Transforming growth factor beta-activated kinase 1 (TAK1), an important MAPK kinase kinase in several cytokine signals, possesses a PKA recognition site at amino acids 409-412. PKA directly phosphorylated TAK1 in RAW264.7 cells transfected with wild-type TAK1 but not with the Ser412 --> Ala mutant TAK1. Ser412 --> Ala TAK1 served as a dominant-negative mutant in PKA-enhanced degradation of I kappa B alpha, phosphorylation of p38 MAPK, and PGE2-enhanced osteoclastic differentiation in RAW264.7 cells. Furthermore, forskolin enhanced tumor necrosis factor alpha-induced I kappa B alpha degradation, p38 MAPK phosphorylation, and osteoclastic differentiation in RAW264.7 cells. Ser412 --> Ala TAK1 abolished the stimulatory effects of forskolin on those cellular events induced by tumor necrosis factor alpha. Ser412 --> Ala TAK1 also inhibited the forskolin-induced up-regulation of interleukin 6 production in RAW264.7 cells treated with lipopolysaccharide. These results suggest that the phosphorylation of the Ser412 residue in TAK1 by PKA is essential for cAMP/PKA-induced up-regulation of osteoclastic differentiation and cytokine production in the precursor cells.  相似文献   

12.
13.
The responses of macrophages to Bacillus anthracis infection are important for the survival of the host, since macrophages are required for the germination of B. anthracis spores in lymph nodes, and macrophage death exacerbates anthrax lethal toxin (LeTx)-induced organ collapse. To elucidate the mechanism of macrophage cell death induced by LeTx, we performed a genetic screen to search for genes associated with LeTx-induced macrophage cell death. RAW 264.7 cells, a macrophage-like cell line sensitive to LeTx-induced death, were randomly mutated and LeTx-resistant mutant clones were selected. AMP deaminase 3 (AMPD3), an enzyme that converts AMP to IMP, was identified to be mutated in one of the resistant clones. The requirement of AMPD3 in LeTx-induced cell death of RAW 264.7 cells was confirmed by the restoration of LeTx sensitivity with ectopic reconstitution of AMPD3 expression. AMPD3 deficiency does not affect LeTx entering cells and the cleavage of mitogen-activated protein kinase kinase (MKK) by lethal factor inside cells, but does impair an unknown downstream event that is linked to cell death. Our data provides new information regarding LeTx-induced macrophage death and suggests that there is a key regulatory site downstream of or parallel to MKK cleavage that controls the cell death in LeTx-treated macrophages.  相似文献   

14.
Le Page C  Wietzerbin J 《Biological chemistry》2003,384(10-11):1509-1513
ADP-ribosylation is involved in nuclear factor kappaB (NF-kappaB)-dependent gene expression induced by lipopolysaccharide in murine macrophages. Here we have investigated the mechanism by which ADP-ribosylation inhibitors block signaling pathways induced in macrophages. In RAW264.7 macrophages the inducers of NF-kappaB activate the production of reactive oxygen species and three mitogen-activated protein kinases (MAPK), the extracellular signal regulated kinase (ERK), the c-jun N-terminal kinase/stress-activated protein kinase (JNK), and p38. We demonstrate that ADP-ribosylation inhibitors specifically inhibit ERK MAPK activation and reduce the release of inflammatory mediators such as tumor necrosis factor alpha (TNF-alpha), IL-6 and nitrite.  相似文献   

15.
Trichomonas vaginalis, a flagellated protozoan parasite, is the causative organism of trichomoniasis. We have recently demonstrated that T. vaginalis induces apoptotic cell death via a Bcl-x(L)-dependent pathway in RAW264.7 macrophages. In this study, we attempted to characterize in detail the signaling cascades resulting in T. vaginalis-induced macrophage apoptosis, focusing particularly on mitochondrial changes and the role of p38 mitogen-activated protein kinase (p38 MAPK) activation. We found that T. vaginalis induced mitochondrial changes including the release of cytochrome c and the serial activation of caspases, leading to the activation of p38 MAPK in macrophages. These biochemical changes culminated in the apoptosis of the host cells. Caspase inhibitors induced a significant inhibition of T. vaginalis-induced nuclear damage, as well as the activation of p38 MAPK. Treatment with the p38 MAPK inhibitor, SB203580, or the overexpression of kinase-inactive p38 MAPK, induced an attenuation of T. vaginalis-induced apoptosis but not cytochrome c release, the activation of caspase-9 and caspase-3, or PARP cleavage. Furthermore, SB203580 treatment to human macrophages consistently blocked T. vaginalis-induced apoptosis. Collectively, our findings indicate that p38 MAPK signaling cascade is requisite to apoptosis of T. vaginalis-infected macrophage, and this apoptotic process occurs via the phosphorylation of p38 MAPK, which is located downstream of mitochondria-dependent caspase activation, conferring insight into the plausible molecular mechanism of T. vaginalis-immune evasion from macrophage attack.  相似文献   

16.
Macrophages play a fundamental role in silicosis in part by removing silica particles and producing inflammatory mediators in response to silica. Tumor necrosis factor alpha (TNFalpha) is a prominent mediator in silicosis. Silica induction of apoptosis in macrophages might be mediated by TNFalpha. However, TNFalpha also activates signal transduction pathways (NF-kappaB and AP-1) that rescue cells from apoptosis. Therefore, we studied the TNFalpha-mediated mechanisms that confer macrophage protection against the pro-apoptotic effects of silica. We will show that exposure to silica induced TNFalpha production by RAW 264.7 cells, but not by IC-21. Silica-induced activation of NF-kappaB and AP-1 was only observed in RAW 264.7 macrophages. ERK activation in response to silica exposure was only observed in RAW 264.7 macrophages, whereas activation of p38 phosphorylation was predominantly observed in IC-21 macrophages. No changes in JNK activity were observed in either cell line in response to silica exposure. Silica induced apoptosis in both macrophage cell lines, but the induction of apoptosis was significantly larger in IC-21 cells. Protection against apoptosis in RAW 264.7 cells in response to silica was mediated by enhanced NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNFalpha receptor. Inhibition of these two protective mechanisms by specific pharmacological inhibitors or transfection of dominant negative mutants that inhibit IkappaBalpha or ERK phosphorylation significantly increased silica-induced apoptosis in RAW 264.7 macrophages. These data suggest that NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNF receptor are important cell survival mechanisms in the macrophage response to silica exposure.  相似文献   

17.
18.
Callsen D  Brüne B 《Biochemistry》1999,38(8):2279-2286
The inflammatory mediator nitric oxide (NO*) promotes apoptotic cell death based on morphological evidence, accumulation of the tumor suppressor p53, caspase-3 activation, and DNA fragmentation in RAW 264.7 macrophages. Since nitrosothiols may actually be the predominant form of biologically active NO* in vivo, we used S-nitrosoglutathione (GSNO) to study activation of extracellular signal-regulated protein kinases1/2 (ERK1/2), c-Jun N-terminal kinases/stress-activated protein kinases (JNK1/2), and p38 kinases. Moreover, we determined the role of mitogen-activated protein kinase signaling in the apoptotic transducing ability of GSNO. ERK1/2 became activated in response to GSNO after 4 h and remained active for the next 20 h. Blocking the ERK1/2 pathway by the mitogen-activated protein kinase kinase inhibitor PD 98059 enhanced GSNO-elicited apoptosis. p38 was activated as well, but inhibition of p38 with SB 203580 left apoptosis unaltered. Activation of JNK1/2 by GSNO showed maximal kinase activities between 2 and 8 h. Attenuating JNK1/2 by antisense-depletion eliminated the pro-apoptotic action of low GSNO concentrations (250 microM), whereas apoptosis proceeded independently of JNK1/2 at higher doses of the NO donor (500 microM). Decreased apoptosis by JNK1/2 depletion prevented p53 accumulation after the addition of GSNO, which positions JNK1/2 upstream of the p53 response at low agonist concentrations. In line, JNK1/2 activation proceeded unaltered in p53-antisense transfected macrophages. However, with higher GSNO concentrations apoptotic transducing pathways, including p53 accumulation, were JNK1/2 unrelated. The regulation of mitogen-activated protein kinases by GSNO may help to define cell protective and destructive actions of reactive nitrogen species.  相似文献   

19.
Nitric oxide (NO.) produced by inducible nitric oxide synthase (iNOS) mediates a number of important physiological and pathophysiological processes. The objective of this investigation was to examine the role of mitogen-activated protein kinases (MAPKs) in the regulation of iNOS and NO. by interferon-gamma (IFN-gamma) + lipopolysaccharide (LPS) in macrophages using specific inhibitors and dominant inhibitory mutant proteins of the MAPK pathways. The signaling pathway utilized by IFN-gamma in iNOS induction is well elucidated. To study signaling pathways that are restricted to the LPS-signaling arm, we used a subclone of the parental RAW 264.7 cell line that is unresponsive to IFN-gamma alone with respect to iNOS induction. In this RAW 264.7gammaNO(-) subclone, IFN-gamma and LPS are nevertheless required for synergistic activation of the iNOS promoter. We found that extracellular signal-regulated kinase (ERK) augmented and p38(mapk) inhibited IFN-gamma + LPS induction of iNOS. Dominant-negative MAPK kinase-4 inhibited iNOS promoter activation by IFN-gamma + LPS, also implicating the c-Jun NH(2)-terminal kinase (JNK) pathway in mediating iNOS induction. Inhibition of the ERK pathway markedly reduced IFN-gamma + LPS-induced tumor necrosis factor-alpha protein expression, providing a possible mechanism by which ERK augments iNOS expression. The inhibitory effect of p38(mapk) appears more complex and may be due to the ability of p38(mapk) to inhibit LPS-induced JNK activation. These results indicate that the MAPKs are important regulators of iNOS-NO. expression by IFN-gamma + LPS.  相似文献   

20.
Yue W  Yao ST  Zhou X  Si YH  Sang H  Wang JF  Shang ZP 《生理学报》2012,64(2):149-154
Endoplasmic reticulum (ER) stress occurs in macrophage-rich areas of advanced atherosclerotic lesions and contributes to macrophage apoptosis and subsequent plaque necrosis. The purpose of the present study was to investigate the effects of caveolin-1 (Cav-1) on ER stress-induced apoptosis in cultured macrophages and the underlying mechanisms. RAW264.7 cells were incubated with thapsigargin (TG) to establish ER stress model. And Cav-1 expression was detected by Western blot. After being pretreated with filipin(III), a caveolae inhibitor, RAW264.7 cells were assayed with flow cytometry and confocal laser scanning microscopy to detect cell apoptosis. Moreover, p38 mitogen-activated protein kinase (MAPK) phosphorylation and C/EBP homologous protein (CHOP) expression were detected with Western blot. The results showed that Cav-1 expression was markedly increased at early stage of TG treatment (P < 0.05) and then decreased with prolonged or high dose TG treatments. The increasing of Cav-1 expression induced by TG in RAW264.7 cells was abolished under inhibition of caveolae by filipin(III) (P < 0.05). The effect of TG on apoptosis of RAW264.7 cells was further augmented after pretreatment with filipin(III) (P < 0.05). Western blotting showed that MAPK phosphorylation induced by TG was inhibited by filipin(III) in RAW264.7 cells (P < 0.05), whereas CHOP remained unchanged (P > 0.05). These results suggest that Cav-1 may play a critical role in suppressing ER stress-induced macrophages apoptosis in vitro, and one of the mechanisms may be correlated with the activation of p38 MAPK prosurvival pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号