首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cannibalism is usually more intense when other food sources are scarce, be it prey or plant-based foods. We hypothesized that feeding on plants would reduce cannibalism to a lesser extent than feeding on prey, because plants are considered nutritionally inferior compared to prey. We used the omnivorous bug Orius laevigatus Say (Heteroptera: Anthocoridae) to test this prediction. Starved female bugs were individually held with five second-instar conspecific nymphs and offered (i) Helicoverpa armigera eggs (prey); (ii) pollen (plant); (iii) H. armigera eggs and pollen (prey+plant); or (iv) no eggs or pollen. Fewer cannibalistic events and shorter feedings on conspecifics were recorded in the presence of pollen, prey or both than in their absence. Data therefore do not support our hypothesis that cannibalism is differentially affected by foods of different nutritional values. It seems that omnivorous feeding habits enable predators to sustain themselves on plant sources in the absence of prey, without the need to resort to cannibalism.  相似文献   

2.
Simon D. Pollard 《Oecologia》1990,82(4):569-571
Summary In a number of studies which provide food extraction curves for sucking predators, data were obtained by separating the predator from the prey (i.e. by artificially interrupting feeding) at predetermined intervals within the total feeding time. The amount of food the predator had extracted at these time intervals was then determined by measuring either the mass gain in the predator or the mass loss in the prey. An implicit assumption of this method is that at the time feeding is interrupted, the food extracted by the predator is contained within its own digestive system and no part of the food has been released back into the prey. I found this was not the case with the crab spider Diaea sp. indet. feeding on the fruit fly Drosophila immigrans. The food Diaea extracts from prey is retained in its own digestive system only at times when the spider changes feeding sites on the prey and when it discards the prey when finished feeding. At other times it cycles the extracted food between itself and the prey (i.e. a sucking phase is alternated with a relaxing phase during which the extracted food is released back into the prey). Unless feeding is interrupted as close as possible to the end of the sucking phase, the mass change measured in the spider will be an underestimate of the actual amount of food extracted at this time. My results suggest that understanding how a sucking predator's feeding mechanism affects the transfer of food is necessary, not only in identifying constraints affecting feeding efficiency, but also in identifying how these constraints relate to the design of empirical tests. The precision of these tests will, in part, reflect the degree to which these mechanisms are incorporated into the test design.  相似文献   

3.
Larvae of the common green lacewing Chrysoperla carnea are predacious and feed on a wide range of small, soft‐bodied arthropods. In addition to their feeding on prey arthropods to cover their nutritional requirements for growth and development, the consumption of non‐prey foods such as honeydew has been reported. It is commonly believed that these food supplements are primarily exploited by the larvae when prey is scarce or of low nutritional quality. Here, we assess whether C. carnea larvae also use honeydew when high‐quality aphid prey are readily available. In a choice experiment, the feeding behaviour of C. carnea larvae was observed in the presence of both aphids and honeydew. The larvae were starved, aphid‐fed, or honeydew‐fed prior to the experiment. The time spent feeding on honeydew compared with feeding on aphids was highest for starved larvae and lowest for honeydew‐fed larvae. Among the three treatments, the aphid‐fed larvae spent the most time resting and the least time searching. In an additional experiment food intake was assessed in terms of weight change when larvae were provided with an ad libitum supply of either aphids or honeydew. Larvae yielded a significant lower relative weight increase on honeydew compared with aphids. The reduced weight increase on honeydew was compensated when larvae were subsequently provided with aphids, but not when honeydew was provided again. This study showed that (i) prior honeydew feeding reduces overall aphid consumption, and (ii) larvae do consume honeydew even after they have been given ad libitum access to aphids. The fact that larvae of C. carnea still use honeydew as a food source in the presence of suitable prey underlines the importance of carbohydrates as foods.  相似文献   

4.
SYNOPSIS. the cell size of Didinium nasutum was found to be dependent on the size of the Paramecium species available as prey. Didinium feeding on P. tetraurelia averaged 5.6 × 105μm3. the cell volume of Didinium increased with increasing prey size for the 5 prey species tested, to 9.1 × 105μm3 for Didinium feeding on P. caudatum. Didinium nearing a cell division ranged in size from 8.6 × 105μm3 on P. tetraurelia to 12.9 × 105μm3 on P. caudatum. the range in cell volume is such that Didinium feeding on P. caudatum are larger than the size at which Didinium divide when feeding on P. tetraurelia. This morphologic plasticity in cell volume allows Didinium to exploit a wide size range of Paramecium species as prey. It is proposed that the size of a Didinium may have profound effects on its ability to encounter and capture prey of different sizes.  相似文献   

5.
Some odontocetes possess unique features of the hyolingual apparatus that are involved in suction feeding. The hyoid bone and associated musculature generates rapid, piston‐like retraction, and depression of the hyoid and tongue. “Capture” suction feeders (e.g., Globicephala) use suction for capturing and swallowing prey. “Combination” feeders (i.e., Lagenorhynchus) use both raptorial feeding (to capture prey) and suction (to ingest prey). In “capture” suction feeders, features of the hyoid and skull have been attributed to creating suction (i.e., large surface area and mandibular bluntness). In addition to odontocetes, a mysticete, the gray whale (Eschrichtius robustus), is considered a benthic suction feeder. However, anatomical studies of purported suction‐feeding structures of the gray whale are lacking. In addition, few studies have utilized evolutionary approaches to understand the history of suction feeding in cetaceans. This study incorporates quantitative and qualitative hyoid and cranial data from 35 extant and 14 extinct cetacean species into a multivariate principal component analysis and comparative phylogenetic analyses. Conclusions from these analyses are that some commonly attributed features (i.e., ventral throat grooves and mandibular bluntness) and one principal component are significantly correlated with suction feeding. Finally, ancestral state reconstructions indicate that suction feeding likely evolved once, early in cetacean evolutionary history.  相似文献   

6.
We planned to develop predator–prey models using Paramecium and yeast, but they have not been empirically examined since work by Gause in the 1930s. Therefore, we evaluated if Paramecium aurelia ingests and grows on eight yeasts. Recognising that it ingested yeasts but could not grow, we assessed if it might grow on other yeasts, by empirically parameterising a predator–prey model that relies on ingestion, not growth. Simulations were compared to P. aurelia‐yeast time‐series data, from Gause. We hypothesised that if the model simulated predator–prey dynamics that mimicked the original data, then possibly P. aurelia could grow on yeast; simulations did not mimic the original data. Reviewing works by Gause exposed two issues: experiments were undoubtedly contaminated with bacteria, allowing growth on bacteria, not yeast; and the population cycle data cannot be considered a self‐sustaining time series, as they were manipulated by adding yeast and ciliates. We conclude that past and future work should not rely on this system, for either empirical or theoretical evaluations. Finally, although we show that P. aurelia, P. caudatum, Euplotes patella, and Blepharisma sp. cannot grow on yeast, Tetrahymena pyriformis and Colpidium striatum can; these may provide models to explore predator–prey dynamics.  相似文献   

7.
1. A field study was conducted to: (i) assess feeding habit changes of two predatory stoneflies following the loss of larval black fly (Diptera: Simuliidae) prey from two streams; and (ii) determine the relative importance of black fly larvae as prey for these and other selected predatory benthic macroinvertebrates. 2. Acroneuria lycorias and Paragnetina media (Plecoptera: Perlidae) diets were monitored in response to local reductions in larval black fly populations caused by Bacillus thuringiensis var. israelensis (B.t.i.) in two Michigan streams. These predators were collected from B.t.i.-treated and control sections of the streams, and their foreguts inspected for prey. 3. Black flies were the major dietary component of both predators collected from the control sections, but the number of black flies ingested was significantly less for predators collected from B.t.i.-treated habitats. Total number of prey ingested significantly decreased for A. lycorias, but not for P. media, and non-black fly prey consumption significantly increased for P. media, but not for A, lycorias, following B.t.i. applications. 4. In prey choice trials conducted in experimental channels, A. lycorias and P. media showed no preference between prey types (black flies and mayflies). Body mass gain of individual A. lycorias nymphs was measured, and was similar for nymphs in black fly-rich and black fly-poor environments. Conversely, Isoperla signata and I. dicala (Plecoptera: Perlodidae) ingested significantly more Simulium vittatum (Diptera: Simuliidae) than Baetis flavistriga (Ephemeroptera: Baetidae) or Epeorus vitrea (Heptageniidae) prey. Boyeria vinosa (Odonata: Aeshnidae) ingested significantly more B. flavistriga than S. vittatum prey. 5. Reducing black fly densities in these streams, using B.t.i., indirectly and differentially affected predators. In black fly-poor environments, feeding habits of specialist predators were most affected, and generalist predators least affected because the latter consumed alternative prey. Predator—predator and predator-prey interactions, and prey community structure may be affected indirectly by disturbances such as B.t.i. applications by reducing food resources and forcing predation onto less preferred prey.  相似文献   

8.
1 The zoophytophagy of Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae) was characterized in relation to prey availability and environmental factors by: (i) monitoring its population dynamics in tomato greenhouses; (ii) analysis of the influence of N. tenuis and whitefly density, temperature and humidity on the intensity of N. tenuis plant feeding; and (iii) laboratory assays under controlled conditions to determine the intensity of plant feeding in relation to prey availability, temperature and humidity. 2 A negative relationship was found between plant feeding and predated whiteflies in tomato greenhouses. Plant feeding was directly related to N. tenuis density and temperature and inversely related to whitefly density. The significance of prey availability and temperature was corroborated in laboratory assays. The intensification of plant feeding at low prey density indicates switching from zoophagy to phytophagy as prey become scarce. 3 Nesidiocoris tenuis showed a typical predator dynamic in relation to variance in prey density. Populations increased after whitefly outbreaks and decreased after whitefly had been depleted. The rapid decrease of N. tenuis populations after whitefly decreased, however, suggests that plants are a poorer nutrient source than whitefly for this species.  相似文献   

9.
Costantini  M. Letizia  Rossi  Loreto 《Hydrobiologia》2001,443(1-3):129-136
Grass shrimps are very common in various aquatic habitats, and are generally considered omnivorous. But, despite the numerous studies on interspecific trophic interactions, few studies have evaluated their feeding strategy, especially by experimental approaches.In this study, we determined, in the absence of both intra and interspecific competitive interactions, the feeding preferences of the freshwater grass shrimp Palaemonetes antennarius for the most common potential resources in its habitat. Plant and animal items were offered as food to each adult shrimp in multiple-choice laboratory experiments. Resource selection was determined under conditions of low and high food availability and related to the shrimp body size. The role of microbial colonisation in favouring detritivory was also investigated.Results of these experiments showed that P. antennarius consumed only animal items, mostly preferring the isopod Proasellus coxalis. In addition, palatability of the unselected plant remains and non-living prey was not improved by the microbial enrichment. Shrimps also resorted to cannibalism at low ration. By contrast, at high ration they specialised on a narrower range of resources, directing more their feeding efforts towards isopods. The preference ranking of the selected food types was inversely related to the average mass of the prey and varied with the shrimp body size. In particular, the number of live isopods in the diet increased exponentially with the shrimp mass at food high ration, which resulted not to be limiting. In conclusion, food availability influences the food niche of P. antennarius whose feeding strategy in the laboratory is facultative specialisation on dead and live animals rather than omnivory. Ease of handling and/or capture seems to play a role in the food preference ranking.  相似文献   

10.
Aabir Banerji  Peter J. Morin 《Oikos》2014,123(5):567-574
Apparent competition is of broad interest due to its effects on community structure and potential applications in agriculture, restoration, and medicine. It is well‐established that apparent competition can result from changes in predator abundance or behavior caused by interactions with alternate prey, but no previous empirical study has demonstrated that apparent competition can also result from prey‐induced changes in predator morphology. This trait‐mediated alternative mechanism of apparent competition would expand the range of conditions under which apparent competition might occur in nature and identify new ways to generate or modify apparent competition in applied contexts. Here, as a proof of concept, we show that trait‐mediated apparent competition can arise from inducible offenses and show how it operates using experiments involving three ciliates. When it feeds on Colpidium kleini, the intraguild predator Tetrahymena vorax increases in size to the extent that it can then consume Paramecium aurelia, an even larger prey. When feeding only on bacteria, however, Tetrahymena remains smaller and is unable to consume Paramecium. This trait‐mediated indirect effect leads to the predatory exclusion of Paramecium, while Tetrahymena and Colpidium coexist. Developmental expansions such as those underlying the interactions observed in our study are not limited to ciliates, such as Tetrahymena, but occur among many diverse taxa and may have a surprising degree of influence over the structure and dynamics of food webs.  相似文献   

11.
The prey capture behaviour of the orb-web spider Argiope keyserlingi Karsch was examined experimentally by subjecting spiders to two different feeding regimes (food deprived and food satiated) and three types of prey: Drosophila, blowflies (Lucilia cuprina) and bees (Apis mellifera). The attack behaviour of the spiders was influenced by both their foraging history and the type of prey. Food deprived spiders attacked Drosophila and bees more frequently than food satiated spiders, and food satiated spiders travelled more slowly to any of the prey types than food deprived spiders. Furthermore, Drosophila were never wrapped in silk but only grasped with the chelicerae, whereas both blowflies and bees were always wrapped. This provides experimental confirmation that feeding history affects the decision of orb-web spiders to accept or reject any given prey.  相似文献   

12.
Pinnipeds generally target relatively small prey that can be swallowed whole, yet often include larger prey in their diet. To eat large prey, they must first process it into pieces small enough to swallow. In this study we explored the range of prey‐processing behaviors used by Australian sea lions (Neophoca cinerea) when presented with large prey during captive feeding trials. The most common methods were chewing using the teeth, shaking prey at the surface, and tearing prey held between the teeth and forelimbs. Although pinnipeds do not masticate their food, we found that sea lions used chewing to create weak points in large prey to aid further processing and to prepare secured pieces of prey for swallowing. Shake feeding matches the processing behaviors observed in fur seals, but use of forelimbs for “hold and tear” feeding has not been previously reported for other otariids. When performing this processing method, prey was torn by being stretched between the teeth and forelimbs, where it was secured by being squeezed between the palms of their flippers. These results show that Australian sea lions use a broad repertoire of behaviors for prey processing, which matches the wide range of prey species in their diet.  相似文献   

13.
ABSTRACT. A heat-stable chemoattractant has been isolated from bacterial cultures. This component has a molecular weight in the range of 500–1000 daltons, is produced by both Gram-positive and Gram-negative bacteria, and serves equally well as an attractant for both the bacterial feeding Paramecium and for its natural predator, Didinium. Aspects of the ecological relationship between bacterial feeding ciliates and their ciliate predators are briefly discussed with respect to responses of both predator and prey to such a common chemotactic bacterial factor.  相似文献   

14.
As a part of a risk assessment procedure, the impact of Bt maize expressing Cry1Ab toxin on the thrips Frankliniella tenuicornis (Uzel) (Thysanoptera: Thripidae) was investigated, and the potential risks for predators feeding on thrips on Bt maize were evaluated. The effects of Bt maize on F. tenuicornis were assessed by measuring life‐table parameters when reared on Bt and non‐Bt maize. The content of Cry1Ab toxin in different stages of F. tenuicornis reared on Bt maize and the persistence of the toxin in adults where determined in order to evaluate the possible exposure of predators when feeding on thrips. In addition, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) was used as a model predator to assess how the behaviour of prey and predator may influence the exposure of a natural enemy to the Bt toxin. Life‐table parameter results showed that F. tenuicornis was not affected when it was reared on Bt maize. This indicates that the potential for prey quality‐mediated effects on predators is low. Bt content was highest in thrips larvae and adults, and negligible in the non‐feeding prepupal and pupal stages. The persistence of the Cry1Ab toxin in adult F. tenuicornis was short, resulting in a decrease of 97% within the first 24 h. Predation success by young C. carnea larvae varied among the thrips stages, indicating that exposure of predators to Bt toxin can additionally depend on the prey stage. When combining the current knowledge of the susceptibility of major thrips predators with our findings showing no potential for prey quality‐mediated effects, relatively low toxin content in thrips as well as short persistence, it can be concluded that the risks for predators when feeding on thrips in or next to Bt maize fields are negligible.  相似文献   

15.
Many marine planktonic organisms create water currents to entrainand capture food items. Rheotactic prey entrained within thesefeeding currents often exibit escape reactions. If the directionof escape is away from the feeding current, the prey may successfullydeter predation. If the escape is towards the center of thefeeding current, the prey will be re-entrained towards its predatorand remain at risk of predation. The direction of escape isdependent on (i) the ability of the prey to escape in a directiondifferent than its pre-escape orientation and (ii) the orientationcaused by the interaction of the prey's body with the movingfluid. In this study, the change in orientation of Acartia hudsonicanauplii as a result of entrainment within the feeding currentof Euchaeta rimana, a planktonic predatory copepod, was examined,When escaping in still water, A.hudsonica nauplii were ableto vary their pre-escape direction by only 10. This allowsonly a limited ability to escape in a direction different thantheir pre-escape orientation. Analyses of the feeding currentof E.rimana show the flow speed to be most rapid in the centralregion with an exponential decrease in speed distally. In contrast,flow vorticity is minimal in the center of the feeding currentand maximal at 1.75 mm along the antennae. As a result, thedegree of rotation of the prey towards the center of the feedingcurrent shows a strong dependency on the prey's location withinthe feeding current. The feeding current of E.rimana rotatedthe prey 14 when near the center of the flow field and up to160 when located more distal in the feeding current Since theprey's escape abilities cannot compensate for the rotation dueto the flow, this mechanism will maintain the escaping preywithin the feeding current of their predator. Therefore, thefeeding current facilitates predatory copepods in capturingprey by (i) increasing the amount of water which passes overtheir sensors and through their feeding appendages and (ii)controlling the spatial orientation of their prey prior to escape.  相似文献   

16.
  • 1 The feeding behaviour of nymphs of the perlid stonefly Dinocras cephalotes when presented with two different mayfly prey types on different substrates was examined in the laboratory.
  • 2 Most of the evidence suggested that Dinocras cephalotes did not choose between Baetis rhodani and Rhithrogena semicolomta as, under identical circumstances: (i) the survival of both prey types was the same; (ii) the predator's overall searching behaviour was similar in the presence of either mayfly, although B. rhodani was pursued more, especially on complex substrates; (iii) the number of attacks on both prey types was the same; and (iv) the intake of dry weight prey biomass over 24 h remained the same, irrespective of prey species.
  • 3 The predation efficiency (no. of prey captured/no, of encounters) of D. cephalotes decreased with increasing substrate complexity—but only with R. semicolorata as prey, and also when more than one stonefly was present—but only when B. rhodani was the prey. Predator efficiency was greater at low densities of R. semicolorata but highest at a medium density of B. rhodani.
  • 4 Increase in the body weight of D. cephalotes was greater when nymphs were fed a monospecific diet of R. semicolorata compared with one of B. rhodani. This was despite the findings that: (i) nymphs of B. rhodani contained 31.3% more protein (per mg dry body weight) than nymphs of R. semicolorata, whereas the latter contained 81.0% more chitin; and (ii) nymphs of R. semicolorata took 2.7 times as long to consume and almost twice as long to pass through the predator's gut. The longer gut passage time may have allowed a greater assimilation efficiency which may have led to the observed better growth.
  • 5 Dinocras cephalotes is thought to feed opportunistically, with a certain daily food biomass intake as its primary need rather than any specific prey preference. Foraging decisions, or opportunities, affect the fitness of individual nymphs and this may be reflected in the wide size range of contemporary nymphs found in field populations. Variation in foraging efficiency by predators and evasion success by prey, across substrate types, is thought to contribute to the well-known microdistribution patterns of species observed in lotic communities.
  相似文献   

17.
Predation and food consumption of five deep‐sea fish species living below 1000 m depth in the western Mediterranean Sea were analysed to identify the feeding patterns and food requirements of a deep‐sea fish assemblage. A feeding rhythm was observed for Risso's smooth‐head Alepocephalus rostratus, Mediterranean grenadier Coryphaenoides mediterraeus and Mediterranean codling Lepidion lepidion. Differences in the patterns of the prey consumed suggest that feeding rhythms at such depths are linked with prey availability. The diets of those predators with feeding rhythms are based principally on active‐swimmer prey, including pelagic prey known to perform vertical migrations. The diets of Günther's grenadier Coryphaenoides guentheri and smallmouth spiny eel Polyacanthonotus rissoanus, which did not show any rhythm in their feeding patterns, are based mainly on benthic prey. Food consumption estimates were low (<1% of body wet mass day?1). Pelagic feeding species showing diel feeding rhythms consumed more food than benthic feeding species with no feeding rhythms.  相似文献   

18.
Simon D. Pollard 《Oecologia》1989,81(3):392-396
Summary The influence of feeding constraints on the feeding behaviour of Diaea sp. indet., was investigated. Diaea is a crab spider which ambushes its prey and practises extraintestinal digestion. A laboratory study was carried out using fruit flies, Drosophila immigrans, as prey. Diaea feeds from two sites on the prey — initially the head, followed by the posterior abdomen, with most of the prey's contents being extracted from the head. If additional prey are available, Diaea will, instead of switching to the posterior abdomen, catch a new prey item. The efficiency with which Diaea can extract food is influenced by changes which occur in the prey as a consequence of it being killed and fed on. Evaporative fluid loss from prey is an important constraint on food uptake because in influences the viscosity of the prey's contents. Regardless of whether a new prey item arrives, Diaea discards the prey item on which it is feeding before all of the available food has been extracted from it. The fluid content of the prey is not only part of the food the spider extracts, it is also a resource enabling efficient transfer of food from prey to predator. The value of the prey's fluid content as a resource decreases as a function of feeding time and as a consequence of the spider feeding on the prey.  相似文献   

19.
F. Samu 《Oecologia》1993,94(1):139-145
Feeding behaviour of the wolf spider Pardosa hortensis Thorell (Araneae, Lycosidae) was studied in the laboratory. Characteristics of feeding were measured while prey availability was increased and the results were compared with the predictions of three models: the marginal value theorem (MVT), gut limitation theory (GLT) and the digestion rate limitation model (DRL). As a result of more frequent encounters with prey, the wolf spiders were able to modify their feeding behaviour so that their net energy intake rate increased substantially. Handling time decreased by 30%, and consumption rate increased by 40%. Partial consumption of prey did not occur until the spiders became nearly satiated. This indicated that spiders did not reach the optimum predicted by MVT. The most plausible mechanism for the increased efficiency was prey-stimulated digestive enzyme production as suggested in DRL. The predictions of GLT were not applicable for most of the feeding session, though gut satiation had an influence on the final stages of feeding. P. hortensis seemed to apply a responsive but cautious strategy: (i) spiders improved feeding efficiency on entering the higher quality habitat, but (ii) feeding times appeared to be sub-optimal and (iii) spiders were also willing to continue feeding when, as they approached satiation, the previously high efficiency could not be maintained. Such feeding behaviour optimizes long-term energy intake when food is scarce and unpredictable, which corresponds well with the known degree of natural food limitation of these animals.  相似文献   

20.
We have previously hypothesized that density‐dependent natural selection is responsible for a genetic polymorphism in crowded cultures of Drosophila. This genetic polymorphism entails two alternative phenotypes for dealing with crowded Drosophila larval cultures. The first phenotype is associated with rapid development, fast larval feeding rates but reduced absolute viability, especially in the presence of nitrogenous wastes like ammonia. The second phenotype has associated with it the opposite set of traits, slow development, slow feeding rates and higher viability. We suggested that these traits are associated due to genetic correlations and that an important selective agent in crowded larval cultures was high levels of ammonia. To test this hypothesis we have examined viability and larval feeding rates in populations kept at low larval densities but selected directly for (i) rapid egg‐to‐adult development, (ii) tolerance of ammonia in the larval environment and (iii) tolerance of urea in the larval environment. Consistent with our hypothesis we found that (i) larvae selected for rapid development exhibited increased feeding rates, and decreased viability in food laced with ammonia or urea relative to controls, and (ii) larvae selected to tolerate either ammonia or urea in their larval environment show reduced feeding rates but elevated survival in toxin‐laced food relative to controls. It would appear that development time and larval feeding rate are important characters for larvae adapting to crowded cultures. The correlated fitness effects of these characters provide important insights into the nature of density‐dependent natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号