首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obesity is associated with a low-grade inflammation including moderately increased serum levels of the acute phase protein serum amyloid A (SAA). In obesity, SAA is mainly produced from adipose tissue and serum levels of SAA are associated with insulin resistance. SAA has been described as a chemoattractant for inflammatory cells and adipose tissue from obese individuals contains increased numbers of macrophages. However, whether adipose tissue-derived SAA can have a direct impact on macrophage infiltration in adipose tissue or the development of insulin resistance is unknown. The aim of this study was to investigate the effects of adipose tissue-derived SAA1 on the development of insulin resistance and obesity-related inflammation. We have previously established a transgenic mouse model expressing human SAA1 in the adipose tissue. For this report, hSAA1+/− transgenic mice and wild type mice were fed with a high fat diet or normal chow. Effects of hSAA1 on glucose metabolism were assessed using an oral glucose tolerance test. Real-time PCR was used to measure the mRNA levels of macrophage markers and genes related to insulin sensitivity in adipose tissue. Cytokines during inflammation were analyzed using a Proinflammatory 7-plex Assay. We found similar insulin and glucose levels in hSAA1 mice and wt controls during an oral glucose tolerance test and no decrease in mRNA levels of genes related to insulin sensitivity in adipose tissue in neither male nor female hSAA1 animals. Furthermore, serum levels of proinflammatory cytokines and mRNA levels of macrophage markers in adipose tissue were not increased in hSAA1 mice. Hence, in this model we find no evidence that adipose tissue-derived hSAA1 influences the development of insulin resistance or obesity-related inflammation.  相似文献   

2.
Subclinical inflammation is frequently associated with obesity. Here, we aim to better define the acute inflammatory response during fasting. To do so, we analyzed representatives of immune-related proteins in circulation and in tissues as potential markers for adipose tissue inflammation and modulation of the immune system. Lipopolysaccharide treatment or high-fat diet led to an increase in circulating serum amyloid (SAA) and α1-acid glycoprotein (AGP), whereas adipsin levels were reduced. Mouse models that are protected against diet-induced challenges, such as adiponectin-overexpressing animals or mice treated with PPARγ agonists, displayed lower SAA levels and higher adip-sin levels. An oral lipid gavage, as well as prolonged fasting, increased circulating SAA concurrent with the elevation of free FA levels. Moreover, prolonged fasting was associated with an increased number of Mac2-positive crown-like structures, an increased capillary permeability, and an increase in several M2-type macrophage markers in adipose tissue. This fasting-induced increase in SAA and M2-type macrophage markers was impaired in metabolically challenged animals. These data suggest that metabolic inflexibility is associated with a lack of "immunological fitness."  相似文献   

3.
Objective: Adipocytes secrete a series of acute phase proteins including serum amyloid A (SAA); the link with metabolic status is unknown. We studied the variations of expression of the SAA gene in adipose and liver tissues and of SAA serum levels, as well as their relationships with metabolic features during weight loss. Research Methods and Procedures: Plasmatic variations of SAA, inflammatory markers (high sensitivity C‐reactive protein, interleukin‐6, fibrinogen, and orosomucoid), and adipokines (adiponectin, leptin) were studied in 60 morbidly obese patients before and after gastric surgery. For 10 subjects, SAA mRNA expression was measured at baseline in subcutaneous white adipose tissue (scWAT) and visceral white adipose tissue (vWAT) and in the liver. The evolution of SAA mRNA expression was also studied after surgery in scWAT. Results: SAA serum concentration displayed a significant reduction 3 months after surgery and remained stable beyond 6 months. mRNA expression of inducible SAA isoforms (SAA 1 and 2) in scWAT was higher than in vWAT (p = 0.01) and the liver (p < 0.01) and correlated significantly with BMI, SAA, and high sensitivity C‐reactive protein serum concentrations but not with metabolic markers (glucose, insulin, lipid parameters, adiponectin). SAA serum level and its variation during weight loss significantly correlated with adiposity markers (BMI and adipocyte volume, p < 0.01) and inflammatory markers but not with variations of metabolic parameters. The variations of SAA expression in scWAT after surgery correlated with changes in BMI and SAA protein serum levels (p < 0.05). Discussion: SAA can be considered as a marker of adiposity‐induced low‐grade inflammation but not of the metabolic status of obese subjects.  相似文献   

4.
5.
Obesity and obesity co-morbidities are associated with a low grade inflammation and elevated serum levels of acute phase proteins, including serum amyloid A (SAA). In the non-acute phase in humans, adipocytes are major producers of SAA but the function of adipocyte-derived SAA is unknown. To clarify the role of adipocyte-derived SAA, a transgenic mouse model expressing human SAA1 (hSAA) in adipocytes was established. hSAA expression was analysed using real-time PCR analysis. Male animals were challenged with a high fat (HF) diet. Plasma samples were subjected to fast protein liquid chromatography (FPLC) separation. hSAA, cholesterol and triglyceride content were measured in plasma and in FPLC fractions. Real-time PCR analysis confirmed an adipose tissue-specific hSAA gene expression. Moreover, the hSAA gene expression was not influenced by HF diet. However, hSAA plasma levels in HF fed animals (37.7±4.0 µg/mL, n = 7) were increased compared to those in normal chow fed animals (4.8±0.5 µg/mL, n = 10; p<0.001), and plasma levels in the two groups were in the same ranges as in obese and lean human subjects, respectively. In FPLC separated plasma samples, the concentration of hSAA peaked in high-density lipoprotein (HDL) containing fractions. In addition, cholesterol distribution over the different lipoprotein subfractions as assessed by FPLC analysis was similar within the two experimental groups. The established transgenic mouse model demonstrates that adipose tissue produced hSAA enters the circulation, resulting in elevated plasma levels of hSAA. This new model will enable further studies of metabolic effects of adipose tissue-derived SAA.  相似文献   

6.
Serum amyloid A (SAA) increases in response to acute inflammatory stimuli and is modestly and chronically elevated in obesity. SAA3, an inducible form of SAA, is highly expressed in adipose tissue in obese mice where it promotes monocyte chemotaxis, providing a mechanism for the macrophage accumulation that occurs with adipose tissue expansion in obesity. Humans do not express functional SAA3 protein, but instead express SAA1 and SAA2 in hepatic as well as extrahepatic tissues, making it difficult to distinguish between liver and adipose tissue-specific SAA effects. SAA3 does not circulate in plasma, but may exert local effects that impact systemic inflammation. We tested the hypothesis that SAA3 contributes to chronic systemic inflammation and adipose tissue macrophage accumulation in obesity using mice deficient for Saa3 (Saa3 −/−). Mice were rendered obese by feeding a pro-inflammatory high fat, high sucrose diet with added cholesterol (HFHSC). Both male and female Saa3 −/− mice gained less weight on the HFHSC diet compared to Saa3+/+ littermate controls, with no differences in body composition or resting metabolism. Female Saa3 −/− mice, but not males, had reduced HFHSC diet-induced adipose tissue inflammation and macrophage content. Both male and female Saa3 −/− mice had reduced liver Saa1 and Saa2 expression in association with reduced plasma SAA. Additionally, female Saa3 −/− mice, but not males, showed improved plasma cholesterol, triglycerides, and lipoprotein profiles, with no changes in glucose metabolism. Taken together, these results suggest that the absence of Saa3 attenuates liver-specific SAA (i.e., SAA1/2) secretion into plasma and blunts weight gain induced by an obesogenic diet. Furthermore, adipose tissue-specific inflammation and macrophage accumulation are attenuated in female Saa3 −/− mice, suggesting a novel sexually dimorphic role for this protein. These results also suggest that Saa3 influences liver-specific SAA1/2 expression, and that SAA3 could play a larger role in the acute phase response than previously thought.  相似文献   

7.
Adipose tissue secretes proteins like serum amyloid A (SAA), which plays important roles in local and systemic inflammation. Circulating SAA levels increase in obese humans, but the roles of adipose-derived SAA and hyperlipidemia in this process are unclear. We took advantage of the difference in the inducible isoforms of SAA secreted by adipose tissue (SAA3) and liver (SAA1 and 2) of mice to evaluate whether adipose tissue contributes to the circulating pool of SAA in obesity and hyperlipidemia. Genetically obese (ob/ob) mice, but not hyperlipidemic mice deficient in apolipoprotein E (Apoe−/−), had significantly higher circulating levels of SAA than their littermate controls. SAA1/2 mRNA expression in the liver and SAA3 mRNA expression in intra-abdominal fat were significantly higher in obese than thin mice, but they were not affected by hyperlipidemia in Apoe−/− mice. However, only SAA1/2 and the constitutive form of SAA (SAA4) could be detected in the circulation by mass spectrometric analysis of HDL, the major carrier of circulating SAA. In contrast, SAA3 could be detected in medium from cultured adipocytes. Our findings indicate that the expression of SAA3 in adipose tissue is upregulated by obesity, but it does not contribute to the circulating pool of SAA in mice.  相似文献   

8.
Chronic low-grade infection has been suggested to be associated with metabolic disorder such as diabetes. However, the molecular mechanism underlying this important association is largely unknown. The only clue established so far is that many subjects exhibit elevated levels of C-reactive protein as measured by highly sensitive assay. Here, we hypothesized that adipocyte-macrophage interaction plays a key role in amplifying such low grade infection to the level of influencing metabolic disorders. The presence of macrophages in abdominal adipose tissues was investigated by immunohistochemistry. To see whether molecules associated with acute phase protein, LPS signaling, and persistent recruitment of monocytes, are produced at higher amounts in adipocytes co-cultured with macrophages stimulated with low concentration of LPS (1 ng/ml), we measured serum amyloid A (SAA), LPS binding protein (LBP), soluble CD14 (sCD14), and RANTES levels in culture supernatant of co-cultures. Lastly, we investigated in vivo effect of low-grade LPS infusion on the production of these molecules using obese model mice. The macrophages were certainly identified in abdominal adipose tissues. Investigated molecules, especially LBP, SAA, and RANTES were produced at higher amounts in co-cultures stimulated with LPS compared with the cells without LPS. The ob/ob, and high-fat diet-induced obesity mice produced higher amounts of LBP, SAA, and RANTES one day after LPS infusion (1 ng/ml/g body weight) compared with ob/- and normal-fat fed control mice. Thus, adipocytes and infiltrated macrophages, and their interaction with low endotoxin stimulation appear to play an important role in amplifying and maintaining LPS-induced low-grade inflammation.  相似文献   

9.
The epidemic of obesity sweeping developed nations is accompanied by an increase in atherosclerotic cardiovascular diseases. Dyslipidemia, diabetes, hypertension, and obesity are risk factors for cardiovascular disease. However, delineating the mechanism of obesity‐accelerated atherosclerosis has been hampered by a paucity of animal models. Similar to humans, apolipoprotein E–deficient (apoE?/?) mice spontaneously develop atherosclerosis over their lifetime. To determine whether apoE?/? mice would develop obesity with accelerated atherosclerosis, we fed mice diets containing 10 (low fat (LF)) or 60 (high fat (HF)) kcal % from fat for 17 weeks. Mice fed the HF diet had a marked increase in body weight and atherosclerotic lesion formation compared to mice fed the LF diet. There were no significant differences between groups in serum total cholesterol, triglycerides, or leptin concentrations. Plasma concentrations of the acute‐phase reactant serum amyloid A (SAA) are elevated in both obesity and cardiovascular disease. Accordingly, plasma SAA concentrations were increased fourfold (P < 0.01) in mice fed the HF diet. SAA was associated with both pro‐ and antiatherogenic lipoproteins in mice fed the HF diet compared to those fed the LF diet, in which SAA was primarily associated with the antiatherogenic lipoprotein high‐density lipoprotein (HDL). Moreover, SAA was localized with apoB‐containing lipoproteins and biglycan in the vascular wall. Taken together, these data suggest male apoE‐deficient mice are a model of metabolic syndrome and that chronic low level inflammation associated with increased SAA concentrations may mediate atherosclerotic lesion formation.  相似文献   

10.
Chronically elevated serum levels of serum amyloid A (SAA) are linked to increased risk of cardiovascular disease. However, whether SAA is directly involved in atherosclerosis development is still not known. The aim of this study was to investigate the effects of adipose tissue-derived human SAA on atherosclerosis in mice. hSAA1+/− transgenic mice (hSAA1 mice) with a specific expression of human SAA1 in adipose tissue were bred with ApoE-deficient mice. The hSAA1 mice and their wild type (wt) littermates were fed normal chow for 35 weeks. At the end of the experiment, the mice were euthanized and blood, gonadal adipose tissue and aortas were collected. Plasma levels of SAA, cholesterol and triglycerides were measured. Atherosclerotic lesion areas were analyzed in the aortic arch, the thoracic aorta and the abdominal aorta in en face preparations of aorta stained with Sudan IV. The human SAA protein was present in plasma from hSAA1 mice but undetectable in wt mice. Similar plasma levels of cholesterol and triglycerides were observed in hSAA1 mice and their wt controls. There were no differences in atherosclerotic lesion areas in any sections of the aorta in hSAA1 mice compared to wt mice. In conclusion, our data suggest that adipose tissue-derived human SAA does not influence atherosclerosis development in mice.  相似文献   

11.
The prevalence of obesity has reached epidemic proportions and is associated with several co-morbid conditions including diabetes, dyslipidemia, cancer, atherosclerosis and gallstones. Obesity is associated with low systemic inflammation and an accumulation of adipose tissue macrophages (ATMs) that are thought to modulate insulin resistance. ATMs may also modulate adipocyte metabolism and take up lipids released during adipocyte lipolysis and cell death. We suggest that high levels of free cholesterol residing in adipocytes are released during these processes and contribute to ATM activation and accumulation during obesity and caloric restriction. Db/db mice were studied for extent of adipose tissue inflammation under feeding conditions of ad libitum (AL) and caloric restriction (CR). The major finding was a marked elevation in epididymal adipose ABCG1 mRNA levels with obesity and CR (6-fold and 16-fold, respectively) over that seen for lean wild-type mice. ABCG1 protein was also elevated for CR as compared to AL adipose tissue. ABCG1 is likely produced by cholesterol loaded ATMs since this gene is not highly expressed in adipocytes and ABCG1 expression is sterol mediated. Our data supports the concept that metabolic changes in adipocytes due to demand lipolysis and cell death lead to cholesterol loading of ATMs. Based on finding cholesterol-loaded peritoneal leukocytes with elevated levels of ABCG1 in CR as compared to AL mice, we suggest that pathways for cholesterol trafficking out of adipose tissue involve ATM egress as well as ABCG1 mediated cholesterol efflux. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

12.
Transcriptomics applied to obesity and caloric restriction   总被引:2,自引:0,他引:2  
Caloric restriction still remains the most efficient way to promote weight loss. Deciphering the molecular basis of adaptation to energy restriction is critical for the tailoring of new therapeutic strategies. This review focuses on the recent input of gene profiling on adipose tissue in obesity pathogenesis and on the new insights on adaptations occurring during very low caloric diet (VLCD) in humans. Hypocaloric diets improve a wide range of metabolic parameters including lipolytic efficiency, insulin sensitivity, and inflammatory profile. In the subcutaneous white adipose tissue (scWAT) the VLCD induced a decrease in the mRNA levels for the antilipolytic alpha2-adrenergic receptor associated with changes in catecholamine-induced adipocyte lipolytic capacity. The improvement in insulin sensitivity was not associated with a change in subcutaneous adipose tissue adiponectin gene expression or in its plasma level, suggesting that adiponectin is not involved in the regulation of VLCD-induced improvement of insulin sensitivity and that there is a small contribution of subcutaneous adipose tissue to plasma adiponectin levels. Pangenomic microarray studies in human scWAT revealed that a panel of inflammatory markers and acute phase reactants were over expressed in obese compared to lean subjects. Caloric restriction improved the inflammatory profile of obese subjects through a decrease of pro-inflammatory factors and an increase of anti-inflammatory molecules. These genes were mostly expressed in the stroma vascular fraction of the adipose tissue. Specific cell-type isolation and immunohistochemistry demonstrated that monocyte/macrophage lineage cells were responsible for the expression of both mRNA and protein inflammatory markers. The acute phase proteins serum amyloid A was highly expressed in mature adipocytes from obese subjects. Caloric restriction decreased both serum amyloid mRNA and circulating levels. Obesity now clearly appears as chronic low-grade inflammation state. Modulation of the inflammatory pathways may represent new therapeutic targets for the treatment of obesity-related complications.  相似文献   

13.
Serum amyloid A (SAA) is an acute phase protein which is expressed primarily in the liver as a part of the systemic response to various injuries and inflammatory stimuli; its expression in ovarian tumors has not been described. Here, we investigated the expression of SAA in human benign and malignant ovarian epithelial tumors. Non-radioactive in situ hybridization applied on ovarian paraffin tissue sections revealed mostly negative SAA mRNA expression in normal surface epithelium. Expression was increased gradually as epithelial cells progressed through benign and borderline adenomas to primary and metastatic adenocarcinomas. Similar expression pattern of the SAA protein was observed by immunohistochemical staining. RT-PCR analysis confirmed the overexpression of the SAA1 and SAA4 genes in ovarian carcinomas compared with normal ovarian tissues. In addition, strong expression of SAA mRNA and protein was found in the ovarian carcinoma cell line OVCAR-3. Finally, patients with ovarian carcinoma had high SAA serum levels, which strongly correlated with high levels of CA-125 and C-reactive protein. Enhanced expression of SAA in ovarian carcinomas may play a role in ovarian tumorigenesis and may have therapeutic application. (J Histochem Cytochem 58:1015–1023, 2010)  相似文献   

14.
Plasma concentrations of high density lipoprotein (HDL) cholesterol and its major apolipoprotein (apo)A-I are significantly decreased in inflammatory states. Plasma levels of the serum amyloid A (SAA) protein increase markedly during the acute phase response and are elevated in many chronic inflammatory states. Because SAA is associated with HDL and has been shown to be capable of displacing apoA-I from HDL in vitro, it is believed that expression of SAA is the primary cause of the reduced HDL cholesterol and apoA-I in inflammatory states. In order to directly test this hypothesis, we constructed recombinant adenoviruses expressing the murine SAA and human SAA1 genes (the major acute phase SAA proteins in both species). These recombinant adenoviruses were injected intravenously into wild-type and human apoA-I transgenic mice and the effects of SAA expression on HDL cholesterol and apoA-I were compared with mice injected with a control adenovirus. Plasma levels of SAA were comparable to those seen in the acute phase response in mice and humans. However, despite high plasma levels of murine or human SAA, no significant changes in HDL cholesterol or apoA-I levels were observed. SAA was found associated with HDL but did not specifically alter the cholesterol or human apoA-I distribution among lipoproteins. In summary, high plasma levels of SAA in the absence of a generalized acute phase response did not result in reduction of HDL cholesterol or apoA-I in mice, suggesting that there are components of the acute phase response other than SAA expression that may directly influence HDL metabolism.  相似文献   

15.
To determine why germfree mice are less susceptible to lipopolysaccharide (LPS) than conventional mice, we studied serum levels of serum amyloid A (SAA), tumor necrosis factor (TNF), interleukin 1 (IL-1), IL-6, and corticosterone in mice after treatment with LPS. A single injection of LPS caused an elevation of SAA, an acute-phase protein in the mouse, in both conventional and germfree IQI mice, and the response was significantly less in germfree mice. LPS-induced elevations of serum TNF, IL-1, and IL-6 levels were also significantly less in germfree mice, while serum corticosterone levels were greater in germfree mice than in conventional mice. These results suggest that the lower susceptibility to LPS and a smaller response of SAA elevation by LPS in germfree mice may result from less elevation in serum of these cytokines in these mice, which are known to mediate the acute phase response of SAA. High levels of serum corticosterone in germfree mice may be partly responsible for the lower responsiveness of these inflammatory cytokines to LPS in these mice.  相似文献   

16.
The prevalence of obesity has reached epidemic proportions and is associated with several co-morbid conditions including diabetes, dyslipidemia, cancer, atherosclerosis and gallstones. Obesity is associated with low systemic inflammation and an accumulation of adipose tissue macrophages (ATMs) that are thought to modulate insulin resistance. ATMs may also modulate adipocyte metabolism and take up lipids released during adipocyte lipolysis and cell death. We suggest that high levels of free cholesterol residing in adipocytes are released during these processes and contribute to ATM activation and accumulation during obesity and caloric restriction. Db/db mice were studied for extent of adipose tissue inflammation under feeding conditions of ad libitum (AL) and caloric restriction (CR). The major finding was a marked elevation in epididymal adipose ABCG1 mRNA levels with obesity and CR (6-fold and 16-fold, respectively) over that seen for lean wild-type mice. ABCG1 protein was also elevated for CR as compared to AL adipose tissue. ABCG1 is likely produced by cholesterol loaded ATMs since this gene is not highly expressed in adipocytes and ABCG1 expression is sterol mediated. Our data supports the concept that metabolic changes in adipocytes due to demand lipolysis and cell death lead to cholesterol loading of ATMs. Based on finding cholesterol-loaded peritoneal leukocytes with elevated levels of ABCG1 in CR as compared to AL mice, we suggest that pathways for cholesterol trafficking out of adipose tissue involve ATM egress as well as ABCG1 mediated cholesterol efflux. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

17.

Background

Particulate air pollution is associated with cardiovascular disease. Acute phase response is causally linked to cardiovascular disease. Here, we propose that particle-induced pulmonary acute phase response provides an underlying mechanism for particle-induced cardiovascular risk.

Methods

We analysed the mRNA expression of Serum Amyloid A (Saa3) in lung tissue from female C57BL/6J mice exposed to different particles including nanomaterials (carbon black and titanium dioxide nanoparticles, multi- and single walled carbon nanotubes), diesel exhaust particles and airborne dust collected at a biofuel plant. Mice were exposed to single or multiple doses of particles by inhalation or intratracheal instillation and pulmonary mRNA expression of Saa3 was determined at different time points of up to 4 weeks after exposure. Also hepatic mRNA expression of Saa3, SAA3 protein levels in broncheoalveolar lavage fluid and in plasma and high density lipoprotein levels in plasma were determined in mice exposed to multiwalled carbon nanotubes.

Results

Pulmonary exposure to particles strongly increased Saa3 mRNA levels in lung tissue and elevated SAA3 protein levels in broncheoalveolar lavage fluid and plasma, whereas hepatic Saa3 levels were much less affected. Pulmonary Saa3 expression correlated with the number of neutrophils in BAL across different dosing regimens, doses and time points.

Conclusions

Pulmonary acute phase response may constitute a direct link between particle inhalation and risk of cardiovascular disease. We propose that the particle-induced pulmonary acute phase response may predict risk for cardiovascular disease.  相似文献   

18.
Acute phase serum amyloid A proteins (A-SAAs) are multifunctional apolipoproteins produced in large amounts during the acute phase of an inflammation and also during the development of chronic inflammatory diseases. In this study we present a Saa1-luc transgenic mouse model in which SAA1 gene expression can be monitored by measuring luciferase activity using a noninvasive imaging system. When challenged with LPS, TNF-alpha, or IL-1beta, in vivo imaging of Saa1-luc mice showed a 1000- to 3000-fold induction of luciferase activity in the hepatic region that peaked 4-7 h after treatment. The induction of liver luciferase expression was consistent with an increase in SAA1 mRNA in the liver and a dramatic elevation of the serum SAA1 concentration. Ex vivo analyses revealed luciferase induction in many tissues, ranging from several-fold (brain) to >5000-fold (liver) after LPS or TNF-alpha treatment. Pretreatment of mice with the proteasome inhibitor bortezomib significantly suppressed LPS-induced SAA1 expression. These results suggested that proteasome inhibition, perhaps through the NF-kappaB signaling pathway, may regulate SAA1 expression. During the development of acute arthritis triggered by intra-articular administration of zymosan, SAA1 expression was induced both locally at the knee joint and systemically in the liver, and the induction was significantly suppressed by bortezomib. Induction of SAA1 expression was also demonstrated during contact hypersensitivity induced by topical application of oxazolone. These results suggest that both local and systemic induction of A-SAA occur during inflammation and may contribute to the pathogenesis of chronic inflammatory diseases associated with amyloid deposition.  相似文献   

19.
20.
PURPOSE OF REVIEW: The aim of this review is to assess the role of adipose tissue-derived hormones and inflammatory cytokines in the pathogenesis of obesity-linked type II diabetes, with a special focus on articles published between December 2002 and December 2003. RECENT FINDINGS: Insulin resistance is widely recognized as a fundamental defect seen in obesity and type II diabetes. Although the molecular mechanisms triggering the development of insulin resistance remain elusive, recent studies have suggested that adipose tissue and adipose tissue-derived hormones and inflammatory cytokines play essential roles in the overall insulin sensitivity in vivo. Dysfunctions of adipose tissue can lead to systemic insulin resistance. SUMMARY: Understanding the regulation of the metabolic and secretory functions of adipose tissue, as well as its subsequent impact on overall insulin sensitivity, is becoming increasingly important given the therapeutic potential of targeting the root causes of insulin resistance in the treatment of type 2 diabetes and its associated complications, such as cardiovascular and cerebrovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号