首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The parasitological data and the results of the virological and serological investigations of materials, collected in nature and in the course of study of the immune structure of the population, are indicative of the circulation of CHF virus in the Crimea and the possibility of human infection. Data on spontaneous infection of four species of Ixodes ticks with CHF virus have been confirmed, including the data, obtained for the first time for this region, on the participation of Dermacentor marginatus in this process. The study has revealed, also for the first time, that, together with European brown hares, the natural foci of this infection may be maintained by scilly shrews, common voles and European wood mice. Low activity of the Crimean focus may be the result of active land reclamation, keeping the cattle stalled in most of the stock-breeding farms of the region, as well as a sharp decline in the number of hares at the territories of hunting preserves.  相似文献   

2.
The theory of insect population dynamics has shown that heterogeneity in natural-enemy attack rates is strongly stabilizing. We tested the usefulness of this theory for outbreaking insects, many of which are attacked by infectious pathogens. We measured heterogeneity among gypsy moth larvae in their risk of infection with a nucleopolyhedrovirus, which is effectively heterogeneity in the pathogen's attack rate. Our data show that heterogeneity in infection risk in this insect is so high that it leads to a stable equilibrium in the models, which is inconsistent with the outbreaks seen in North American gypsy moth populations. Our data further suggest that infection risk declines after epidemics, in turn suggesting that the model assumption of constant infection risk is incorrect. We therefore constructed an alternative model in which natural selection drives fluctuations in infection risk, leading to reductions after epidemics because of selection for resistance and increases after epidemics because of a cost of resistance. This model shows cycles even for high heterogeneity, and experiments confirm that infection risk is indeed heritable. The model is very general, and so we argue that natural selection for disease resistance may play a role in many insect outbreaks.  相似文献   

3.
Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory tract infection in children. In this paper we use models of RSV transmission to interpret the pattern of seasonal epidemics of RSV disease observed in different countries, and to estimate epidemic and eradication thresholds for RSV infection. We compare the standard SIRS model with a more realistic model of RSV transmission in which individuals acquire immunity gradually after repeated exposure to infection. The models are fitted to series of monthly hospital case reports of RSV disease from developed and developing countries. The models can explain many of the observed patterns: regular yearly outbreaks in some countries, and in other countries cycles of alternating larger and smaller annual epidemics, with shifted maxima in alternate years. Previously these patterns have been attributed to the transmission of different strains of RSV. In some countries the timing of epidemics is not consistent with increased social contact among school children during term time being the major driving mechanism. Climatic factors appear to be more important. Qualitatively different models gave equally good fits to the data series, but estimates of the transmission parameter were different by a factor of 4. Estimates of the basic reproduction number (R(0)) ranged from 1.2 to 2.1 with the SIRS model, and from 5.4 to 7.1 with the model with gradual acquisition of partial immunity.  相似文献   

4.
Recently, we showed that infection with dengue virus increases the locomotor activity of Aedes aegypti females. We speculate that the observed increased locomotor activity could potentially increase the chances of finding a suitable host and, as a consequence, the relative biting rate of infected mosquitoes. We used a mathematical model to investigate the impact of the increased locomotor activity by assuming that this activity translated into an increased biting rate for infected mosquitoes. The results show that the increased biting rate resulted in dengue outbreaks with greater numbers of primary and secondary infections and with more severe biennial epidemics.  相似文献   

5.
6.
Phylogenetic studies have largely contributed to better understand the emergence, spread and evolution of highly pathogenic avian influenza during epidemics, but sampling of genetic data has never been detailed enough to allow mapping of the spatiotemporal spread of avian influenza viruses during a single epidemic. Here, we present genetic data of H7N7 viruses produced from 72% of the poultry farms infected during the 2003 epidemic in the Netherlands. We use phylogenetic analyses to unravel the pathways of virus transmission between farms and between infected areas. In addition, we investigated the evolutionary processes shaping viral genetic diversity, and assess how they could have affected our phylogenetic analyses. Our results show that the H7N7 virus was characterized by a high level of genetic diversity driven mainly by a high neutral substitution rate, purifying selection and limited positive selection. We also identified potential reassortment in the three genes that we have tested, but they had only a limited effect on the resolution of the inter-farm transmission network. Clonal sequencing analyses performed on six farm samples showed that at least one farm sample presented very complex virus diversity and was probably at the origin of chronological anomalies in the transmission network. However, most virus sequences could be grouped within clearly defined and chronologically sound clusters of infection and some likely transmission events between farms located 0.8-13 Km apart were identified. In addition, three farms were found as most likely source of virus introduction in distantly located new areas. These long distance transmission events were likely facilitated by human-mediated transport, underlining the need for strict enforcement of biosafety measures during outbreaks. This study shows that in-depth genetic analysis of virus outbreaks at multiple scales can provide critical information on virus transmission dynamics and can be used to increase our capacity to efficiently control epidemics.  相似文献   

7.
HIV-1 sequences in intravenous drug user (IDU) networks are highly homogenous even after several years, while this is not observed in most sexual epidemics. To address this disparity, we examined the human immunodeficiency virus type 1 (HIV-1) evolutionary rate on the population level for IDU and heterosexual transmissions. All available HIV-1 env V3 sequences from IDU outbreaks and heterosexual epidemics with known sampling dates were collected from the Los Alamos HIV sequence database. Evolutionary rates were calculated using phylogenetic trees with a t test root optimization of dated samples. The evolutionary rate of HIV-1 subtype A1 was found to be 8.4 times lower in fast spread among IDUs in the former Soviet Union (FSU) than in slow spread among heterosexual individuals in Africa. Mixed epidemics (IDU and heterosexual) showed intermediate evolutionary rates, indicating a combination of fast- and slow-spread patterns. Hence, if transmissions occur repeatedly during the initial stage of host infection, before selective pressures of the immune system have much impact, the rate of HIV-1 evolution on the population level will decrease. Conversely, in slow spread, where HIV-1 evolves under the pressure of the immune system before a donor infects a recipient, the virus evolution at the population level will increase. Epidemiological modeling confirmed that the evolutionary rate of HIV-1 depends on the rate of spread and predicted that the HIV-1 evolutionary rate in a fast-spreading epidemic, e.g., for IDUs in the FSU, will increase as the population becomes saturated with infections and the virus starts to spread to other risk groups.  相似文献   

8.
Models of outbreaks in forest-defoliating insects are typically built from a priori considerations and tested only with long time series of abundances. We instead present a model built from experimental data on the gypsy moth and its nuclear polyhedrosis virus, which has been extensively tested with epidemic data. These data have identified key details of the gypsy moth-virus interaction that are missing from earlier models, including seasonality in host reproduction, delays between host infection and death, and heterogeneity among hosts in their susceptibility to the virus. Allowing for these details produces models in which annual epidemics are followed by bouts of reproduction among surviving hosts and leads to quite different conclusions than earlier models. First, these models suggest that pathogen-driven outbreaks in forest defoliators occur partly because newly hatched insect larvae have higher average susceptibility than do older larvae. Second, the models show that a combination of seasonality and delays between infection and death can lead to unstable cycles in the absence of a stabilizing mechanism; these cycles, however, are stabilized by the levels of heterogeneity in susceptibility that we have observed in our experimental data. Moreover, our experimental estimates of virus transmission rates and levels of heterogeneity in susceptibility in gypsy moth populations give model dynamics that closely approximate the dynamics of real gypsy moth populations. Although we built our models from data for gypsy moth, our models are, nevertheless, quite general. Our conclusions are therefore likely to be true, not just for other defoliator-pathogen interactions, but for many host-pathogen interactions in which seasonality plays an important role. Our models thus give qualitative insight into the dynamics of host-pathogen interactions, while providing a quantitative interpretation of our gypsy moth-virus data.  相似文献   

9.
We obtained and studied HIV-1 sequences with a known sampling year from three outbreaks of the HIV-1 epidemic: 141 env V3 (270 nt) sampled between 1984 and 1992 and 117 pol prot/RT (804 nt) sequences sampled between 1986 and 1999 from Dutch homosexual men and injecting drug users (IDUs), as well as 77 env V3 sequences sampled between 1983 and 1994 in the United States. Since retrospective serological and/or epidemiological data on these populations are available, providing estimates of the dates of the onset of the HIV-1 epidemics, we had the opportunity to test different phylogenetic models for their accuracy in deriving the recent evolutionary history of HIV-1 subtype B and the onset date of the HIV-1 epidemic. We observed that, in any given year, individual sequences vary widely in their distances to the common ancestor, and sequences close to the ancestors were found decades after the onset of the epidemic. Nevertheless, the mean evolutionary distances of virus strains to ancestors were increasing significantly during the course of the studied epidemics, which indicates that the molecular clock is operational in the recent evolution of HIV-1. When the relationship between the sampling years of sequences and their nucleotide distances to the common ancestor was extrapolated to the past, analysis of pol sequences provided accurate estimates of the onset years of the epidemics, whereas analysis of V3 sequences by the maximum-likelihood or neighbor-joining methods led to an overestimation of the age of the epidemics. Separate analysis of nonsynonymous and synonymous distances revealed that this overestimation results from nonsynonymous substitutions, whose numbers were not increasing significantly in all three virus populations over the observation period. In contrast, analysis of synonymous env V3 distances provided accurate estimates of the onset years for the outbreaks we studied. Received: 26 October 2001 / Accepted: 8 November 2001  相似文献   

10.
Influenza A virus is a major human pathogen responsible for seasonal epidemics as well as pandemic outbreaks. Due to the continuing burden on human health, the need for new tools to study influenza virus pathogenesis as well as to evaluate new therapeutics is paramount. We report the development of a stable, replication-competent luciferase reporter influenza A virus that can be used for in vivo imaging of viral replication. This imaging is noninvasive and allows for the longitudinal monitoring of infection in living animals. We used this tool to characterize novel monoclonal antibodies that bind the conserved stalk domain of the viral hemagglutinin of H1 and H5 subtypes and protect mice from lethal disease. The use of luciferase reporter influenza viruses allows for new mechanistic studies to expand our knowledge of virus-induced disease and provides a new quantitative method to evaluate future antiviral therapies.  相似文献   

11.

Introduction

There have been 3 outbreaks of viral hemorrhagic fever (VHF) in Uganda in the last 2 years. VHF often starts with non-specific symptoms prior to the onset of haemorrhagic signs. HIV clinics in VHF outbreak countries such as Uganda see large numbers of patients with HIV 1/2 infection presenting with non-specific symptoms every day. Whilst there are good screening tools for general health care facilities expecting VHF suspects, we were unable to find tools for use in HIV or other non-acute clinics.

Methods

We designed tools to help with communication to staff, infection control and screening of HIV patients with non-specific symptoms in a large HIV clinic during the outbreaks in Uganda. We describe our experiences in using these tools in 2 Ebola Virus Disease outbreaks in Uganda.

Results

During the Ebola Virus Disease (EVD) outbreaks, enhanced infection control and communication procedures were implemented within 24 hours of the WHO/Ministry of Health announcement of the outbreaks. During course of these outbreaks the clinic saw 12,544 patients with HIV 1/2 infection, of whom 3,713 attended without an appointment, suggesting new symptoms. Of these 4 were considered at risk of EVD and seen with full infection procedures; 3 were sent home after further investigation. One patient was referred to the National Referral Hospital VHF unit, but discharged on the same day. One additional VHF suspect was identified outside of a VHF outbreak; he was transferred to the National Referral Hospital and placed in isolation within 2 hours of arriving at the HIV clinic.

Discussion

Use of simple screening tools can be helpful in managing large numbers of symptomatic patients attending for routine and non-routine medical care (including HIV care) within a country experiencing a VHF outbreak, and can raise medical staff awareness of VHF outside of the epidemics.  相似文献   

12.
Between 1980 and 1985, Czechoslovakia had experienced 4 and the USSR 3 major influenza outbreaks. Of the 3 epidemic outbreaks in the USSR, 2 were associated with influenza B virus (in the 1980/81 and 1983/84 seasons) and 1 with influenza A virus of the H3N2 subtype. In the USSR, influenza A (H1N1) virus never predominated as a cause of epidemic during the 5 years period. In Czechoslovakia, 2 epidemics (in the 1980/81 and 1983/84 seasons) were due to influenza A (H1N1) virus. The epidemic in the 1981/82 season had two waves of unequal heights and a mixed type B and subtype A (H3N2) etiology; a two-wave epidemic associated with isolates of influenza A (H1N1) and influenza B viruses was also recorded in the 1983/84 season. The influenza A (H3N2) epidemic in 1983 was of explosive character. All influenza viruses circulating in the two countries between 1980 and 1985 were of the same antigenic profile, but were isolated from the epidemics that occurred in different influenza seasons. The virological surveillance revealed strains of virus closely related to drift variants detected from outbreaks in 1977-1979 and the new variants A/Chile 1/83, A/Philippines 2/82, A/Caen 1/84 and B/USSR 100/83.  相似文献   

13.
Avian influenza virus reveals persistent and recurrent outbreaks in North American wild waterfowl, and exhibits major outbreaks at 2-8 years intervals in duck populations. The standard susceptible-infected- recovered (SIR) framework, which includes seasonal migration and reproduction, but lacks environmental transmission, is unable to reproduce the multi-periodic patterns of avian influenza epidemics. In this paper, we argue that a fully stochastic theory based on environmental transmission provides a simple, plausible explanation for the phenomenon of multi-year periodic outbreaks of avian flu. Our theory predicts complex fluctuations with a dominant period of 2 to 8 years which essentially depends on the intensity of environmental transmission. A wavelet analysis of the observed data supports this prediction. Furthermore, using master equations and van Kampen system-size expansion techniques, we provide an analytical expression for the spectrum of stochastic fluctuations, revealing how the outbreak period varies with the environmental transmission.  相似文献   

14.
Monkeypox, caused by the monkeypox virus (MPXV), is a zoonotic disease endemic mainly in West and Central Africa. As of 27 September 2022, human monkeypox has occurred in more than 100 countries (mostly in non-endemic regions) and caused over 66,000 confirmed cases, which differs from previous epidemics that mainly affected African countries. Due to the increasing number of confirmed cases worldwide, the World Health Organization (WHO) has declared the monkeypox outbreak as a Public Health Emergency of International Concern on July 23, 2022. The international outbreak of human monkeypox represents a novel route of transmission for MPXV, with genital lesions as the primary infection, and the emergence of monkeypox in the current outbreak is also new, as novel variants emerge. Clinical physicians and scientists should be aware of this emerging situation, which presents a different scenario from previous outbreaks. In this review, we will discuss the molecular virology, evasion of antiviral immunity, epidemiology, evolution, and detection of MPXV, as well as prophylaxis and treatment strategies for monkeypox. This review also emphasizes the integration of relevant epidemiological data with genomic surveillance data to obtain real-time data, which could formulate prevention and control measures to curb this outbreak.  相似文献   

15.
The reports of the 15 recorded outbreaks of benign myalgic encephalomyelitis have been reviewed and in one instance the original clinical data studied. We believe that a lot of these epidemics were psychosocial phenomena caused by one of two mechanisms, either mass hysteria on the part of the patients or altered medical perception of the community. We suggest that the name “myalgia nervosa” should be used for any future cases of functional disorder which present the same clinical picture.  相似文献   

16.
Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations.  相似文献   

17.
Seasonal variation of infectious diseases is one of the oldest observations in epidemiology, most particularly for Influenza and other respiratory viral infections. The reason for this seasonality is poorly understood, despite the profound importance of these infections as communicable diseases capable of causing global epidemics. Environmental factors including relative humidity, vapor pressure and temperature are known to affect seasonal virus survival and transmission. Immunological status of the host and evolution of the virus have also been proposed to be the reason behind the cyclic recurrence. The molecular basis of these effects or their interplay with biological factors has not been reported before. Here a theoretical analysis shows that the structure of the viral envelope determines its persistence and transmission in various environmental conditions. Physico-chemical properties of the virus particles and their interaction with atmospheric processes along with the availability and susceptibility of hosts generates the conspicuous seasonality prevalent in the temperate zones and the apparent lack of it in the tropics. Additionally this model can estimate virus transmission in different weather conditions. This model may help to determine the right actions effective in preventing outbreaks of the flu-like respiratory viruses.  相似文献   

18.
Zika virus (ZIKV) had remained a relatively obscure flavivirus until a recent series of outbreaks accompanied by unexpectedly severe clinical complications brought this virus into the spotlight as causing an infection of global public health concern. In this review, we discuss the history and epidemiology of ZIKV infection, recent outbreaks in Oceania and the emergence of ZIKV in the Western Hemisphere, newly ascribed complications of ZIKV infection, including Guillain-Barré syndrome and microcephaly, potential interactions between ZIKV and dengue virus, and the prospects for the development of antiviral agents and vaccines.  相似文献   

19.
Our chances to halt epidemic outbreaks rely on how accurately we represent the population structure underlying the disease spread. When analysing global epidemics this force us to consider metapopulation models taking into account intra- and inter-community interactions. Here I introduce and analyze a metapopulation model which accounts for several features observed in real outbreaks. First, I demonstrate that depending on the intra-community expected outbreak size and the fraction of social bridges the epidemic outbreaks die out or there is a finite probability to observe a global epidemics. Second, I show that the global scenario is characterized by resurgent epidemics, their number increasing with increasing the intra-community average distance between individuals. Finally, I present empirical data for the AIDS epidemics supporting the model predictions.  相似文献   

20.
H5N1 highly pathogenic avian influenza virus was first detected in a goose in Guangdong Province of China in 1996. Multiple genotypes of H5N1 viruses have been identified from apparently healthy waterfowl since 1999. In the years 2004–2008, over 100 outbreaks in domestic poultry occurred in 23 provinces and caused severe economic damage to the poultry industry in China. Beginning from 2004, a culling plus vaccination strategy has been implemented for the control of epidemics. Since then, over 35420000 poultry have been depopulated, and over 55 billion doses of the different vaccines have been used to control the outbreaks. Although it is logistically impossible to vaccinate every single bird in China due to the large poultry population and the complicated rearing styles, there is no doubt that the increased vaccination coverage has resulted in decreased disease epidemic and environmental virus loading. The experience in China suggests that vaccination has played an important role in the protection of poultry from H5N1 virus infection, the reduction of virus load in the environment, and the prevention of H5N1 virus transmission from poultry to humans. Supported by the Key Animal Infectious Disease Control Program of the Ministry of Agriculture, the Chinese National S&T Plan(Grant No. 2004BA519A-57), National Key Basic Research and Development Program of China (Grant Nos: 2005CB523005, 2005CB523200).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号