首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitosan derivatives are obtained by reaction of chitosan with a low degree of acetylation and levulinic acid under different experimental conditions. The chemical structure of the different derivatives obtained is determined using 1H and 13C NMR spectroscopies. The intrinsic viscosity is used to follow the molecular weight evolution. Finally, conditions are described in which water-soluble N-carboxybutylchitosan is obtained. In particular, the time of the reduction step and the ratio between reagents are investigated. Under mild conditions and short times of reduction there is a very low degree of substitution and only the monocarboxybutylchitosan is formed. The dicarboxylated form is never observed. The cyclic derivative (5-methylpyrrolidinone chitosan) is obtained when the reducing agent is added slowly to the reactants.  相似文献   

2.
N-Arylated chitosans were synthesized via Schiff bases formed by the reaction between the primary amino group of chitosan with aromatic aldehydes followed by reduction of the Schiff base intermediates with sodium cyanoborohydride. Treatment of chitosan containing N,N-dimethylaminobenzyl and N-pyridylmethyl substituents with iodomethane under basic conditions led to quaternized N-(4-N,N-dimethylaminobenzyl) chitosan and quaternized N-(4-pyridylmethyl) chitosan. Methylation occurred at either N,N-dimethylaminobenzyl and N-pyridylmethyl groups before the residual primary amino groups of chitosan GlcN units were substituted. The total degree of quaternization of each chitosan varied depending on the extent of N-substitution (ES) and the sodium hydroxide concentration used in methylation. Increasing ES increased the total degree of quaternization but reduced attack at the GlcN units. N,N-dimethylation and N-methylation at the primary amino group of chitosan decreased at higher ES’s. Higher total degrees of quaternization and degrees of O-methylation resulted when higher concentrations of sodium hydroxide were used. The molecular weight of chitosan before and after methylation was determined by gel permeation chromatography under mild acidic condition. The methylation of the N,N-dimethylaminobenzyl derivative with iodomethane was accompanied by numerous backbone cleavages and a concomitant reduction in the molecular weight of the methylated product was observed. The antibacterial activity of water-soluble methylated chitosan derivatives was determined using Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria; minimum inhibitory concentrations (MIC) of these derivatives ranged from 32 to 128 μg/mL. The presence of the N,N-dimethylaminobenzyl and N-pyridylmethyl substituents on chitosan backbone after methylation did not enhance the antibacterial activity against S. aureus. However, N-(4-N,N-dimethylaminobenzyl) chitosan with degree of quaternization at the aromatic substituent and the primary amino group of chitosan of 17% and 16–30%, respectively, exhibited a slightly increased antibacterial activity against E. coli.  相似文献   

3.
Complete 1H and 13C resonance assignments were made for a new type of 3β,7β-dihydroxy-5-cholen-24-oic acid doubly conjugated with sulfuric acid at C-3 and N-acetylglucosamine at C-7 and its glycine- and taurine-amidated triple-conjugates by the combined use of several homonuclear and heteronuclear shift-correlated 2D NMR techniques. The effects of sulfation at C-3, N-acetylglucosaminidation at C-7, and aminoacyl amidation at C-24 on the 1H and 13C chemical shifts and signal multiplicity were clarified. The shielding data serving to characterize each of the bile acid multi-conjugates are also discussed.  相似文献   

4.
A series of novel chitosan derivatives with octyl, sulfate and polyethylene glycol monomethyl ether (mPEG) groups as hydrophobic and hydrophilic moieties, respectively, were synthesized. These PEGylated amphiphilic chitosan derivatives were characterized with 1H NMR, 13C NMR, FTIR and elemental analysis. And their physical properties were measured by wide angle X-ray diffraction (WAXD) and thermogravimetric analysis (TG). The critical micelle concentrations (CMCs) of the modified chitosans determined by using pyrene as a hydrophobic probe in fluorescence spectroscopy were found to be 0.011–0.079 mg/ml, and the log CMC was linearly relative to four structure parameters, that is the degree of substitution (DS) of chitosan unit, sulfate group, PEG unit and octyl group by mole per kilogram. Paclitaxel, a water-insoluble anticancer drug, was solubilized into the polymeric micelles formed by these derivatives utilizing physical entrapment method, with micellar particle size around 100–130 nm, and the highest paclitaxel concentration of 3.94 mg/ml was found in N-mPEG-N-octyl-O-sulfate chitosan (mPEGOSC) micellar solution, which was much higher than that in water (less than 0.001 mg/ml). Therefore, N-mPEG-N-octyl-O-sulfate chitosan micelles may be useful as a prospective carrier for paclitaxel.  相似文献   

5.
Preparation and properties of alginate/carboxymethyl chitosan blend fibers   总被引:5,自引:0,他引:5  
Alginate/carboxymethyl chitosan blend fibers, prepared by spinning their mixture solution through a viscose-type spinneret into a coagulating bath containing aqueous CaCl2, were studied for structure and properties with the aid of infrared spectroscopy (IR), X-ray diffraction (XRD) and scanning electron micrography (SEM). The analyses indicated a good miscibility between alginate and carboxymethyl chitosan, because of the strong interaction from the intermolecular hydrogen bonds. The best values of the dry tensile strength and breaking elongation were obtained when carboxymethyl chitosan content was 30 and 10 wt%, respectively. The wet tensile strength and breaking elongation decreased with the increase of carboxymethyl chitosan content. Introduction of CM-chitosan in the blend fiber improved water-retention properties of blend fiber compared to pure alginate fiber. Antibacterial fibers, obtained by treating the fibres with aqueous solution of N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride and silver nitrate, respectively, exhibited good antibacterial activity to Staphylococcus aureus.  相似文献   

6.
Chitosan has been considered an environmental-friendly polymer. However, its use in agriculture has not been extended yet due to its relatively low solubility in water. N-Methylene phosphonic chitosan (NMPC) is a water-soluble derivative prepared by adding a phosphonic group to chitosan. This study demonstrates that NMPC has a fungicidal effect on the phytopathogenic fungus Fusarium solani f. sp. eumartii (F. eumartii) judged by the inhibition of F. eumartti mycelial growth and spore germination. NMPC affected fungal membrane permeability, reactive oxygen species production, and cell death. Also, this chitosan-derivative exerted antifungal effects against two other phytopathogens, Botrytis cinerea, and Phytophthora infestans. NMPC did not affect tomato cell viability at the same doses applied to these phytopathogens to exert fungicide action. In addition to water solubility, the selective biological cytotoxicity of NMPC adds value in its application as an antimicrobial agent in agriculture.  相似文献   

7.
Low-molecular-weight (LMW) κ-carrageenan was achieved through mild hydrochloric acid hydrolysis of κ-carrageenan. The acylation of LMW κ-carrageenan was performed by use of tetrabutylammonium (TBA) salt of the anionic polysaccharide fragments, succinic anhydride, 4-dimethylaminopyridine and tributylamine under homogeneous conditions in N,N-dimethylformamide at 80 °C. Investigation of FT-IR spectrum of the succinylated LMW κ-carrageenan showed that a monoester derivative with succinyl group was formed when LMW κ-carrageenan reacted with succinic anhydride. The 1H and 13C NMR spectroscopy has been used to characterize the fine structure of O-succinyl derivative of the LMW κ-carrageenan. The 13C and 1H NMR chemical shifts of disaccharide unit of O-succinyl LMW κ-carrageenan have been fully assigned using 2D NMR spectroscopic techniques.  相似文献   

8.
Thermal depolymerization of alginate in the solid state   总被引:2,自引:0,他引:2  
A new method of introduction carboxyl groups to chitosan sulfate by the acylation reaction between hydroxyethyl chitosan sulfates and butane dioic anhydride in homogeneous solution was used to obtain carboxybutyrylated hydroxyethyl chitosan sulfates. The structures of the derivatives were characterized by element analysis, FT-IR, 13C-NMR, and gel permeation chromatography. The content and position of the carboxyl groups could be controlled favorably. Their anticoagulant activity was determined for human plasma with respect to activated partial thromboplastin time (APTT), thrombin time (TT), and prothombin time (PT). The introducing of carboxyl groups to amino groups greatly prolonged the APTT and TT. The best result occurred when the degree of substitution of the carboxyl groups was about 0.4/unit that prolonged APTT and TT with about 5 and 1.5 times compared to that of the uncarboxylated hydroxyethyl chitosan sulfates; another conclusion is that introducing of carboxyl groups into N,O-position gave better results than that just into N-positions. Low S% chitosan sulfate and 6-O-desulfated chitosan sulfate showed little anticoagulant activity but their N,O-carboxybutyrylated derivatives (0.6/unit ds) showed increased APTT or TT, while their N-carboxybutyrylated derivatives (0.6/unit ds) gave no improvement. Generally, the introducing of carboxyl groups could not increase PT in spite of the position introduced.  相似文献   

9.
A new scheme was proposed for synthesizing poly(ethylene glycol)-g-chitosan (PEG-g-CS), where methoxy poly(ethylene glycol) iodide (MPEG-I) (Mn 2000) was used for N-substitution of triphenylmethyl chitosan (TPM-CS) in organic medium. The graft copolymers were obtained by subsequent removal of protecting groups with dichloroacetic acid. By varying PEG-I/TPM-CS feed ratio, the grafting levels (GL) of PEG can be adjusted. The chitosan derivatives were characterized by FTIR, 1H NMR, 13C NMR and DSC. All the copolymers were soluble in water over wide pH range. Furthermore, organosolubility of the hybrids in DMF and DMSO was also achieved when the DS value more than 24%. The lysozyme degradation rate of the copolymers in aqueous neutral medium decreased with the increase of GL value.  相似文献   

10.
Pine needles and their carboxymethyl forms were functionalized by network formation with 2-acrylamido-2-methylpropanesulphonic acid (AAmPSA) in the presence of N,N-methylene bisacrylamide. N-Tetramethylethylene diamine and ammonium persulfate were used as accelerator-initiator systems to prepare these hydrogels. The hydrogels were characterized by FTIR, SEM, and nitrogen analysis and for water uptake capacities before and after metal ion sorption with a view to evaluating their use in the removal of toxic ionic species from waste water. A detailed study of Cr6+ adsorption was carried out as a function of time, temperature, pH, and ionic strength. The thermodynamic parameters of adsorption such as ΔH0, ΔS0, and ΔG0 have been evaluated to understand the underlying mechanism of adsorption. In order to understand their reusability in possible technological applications, biodegradability of these hydrogels and their precursors was studied.  相似文献   

11.
The sulfonic acid function was introduced into chitosan by reacting it with 5-formyl-2-furansulfonic acid, sodium salt, under the mild conditions of the Schiff reaction, thus avoiding polymer degradation and O-substitution. The reaction of chitosan (degree of deacetylation 0·58) with 5-formyl-2-furansulfonic acid, sodium salt produced a viscous solution that, upon hydrogenation, yielded N-sulfofurfuryl chitosan sodium salt. Infrared spectrometry, alkalimetry and elemental analysis provided evidence that the degree of substitution was 0·26. Circular dichroism measurements on solutions showed multiple Cotton bands in the pH interval 7·1–8·3, while at lower and higher pH values just one negative band was observed, thus providing indication of the polyampholyte nature of N-sulfofurfuryl chitosan. The 13C-NMR and FTIR spectra showed typical signals of furane carbons. Metal ion solutions at concentrations in the range 0·1–5·0 m , pH 6, promoted precipitation of metal ion complexes of N-sulfofurfuryl chitosan, with most effective removal from the solutions for Cu(II), Pb(II) and Ni(II). Sulfoethyl N-carboxymethyl chitosan was also synthesized from 2-chloroethanesulfonic acid in organic media: the sulfur content was similar (3·7%) in both polymers.  相似文献   

12.
Chitosan a natural based polymer is non-toxic, biocompatible and biodegradable. Chemical modification of chitosan to generate new bifunctional materials and finally would bring new properties depending on the nature of the group introduced. In our present study, we prepared phosphorylated chitosan (P-chitosan) by using H3PO4/P2O5/Et3PO4/hexanol method. From our present method, we got high yield and high degree of substitution (DS). The prepared P-chitosan (DS-1.18) was characterized by FT IR, 13C NMR, 31P NMR, elemental, XRD, TGA, DTA and SEM studies. After the phosphorylation, the solubility of the polymer was improved. The P-chitosan showed less thermal stability and crystallinity than the chitosan. It was due to the phosphorylation.  相似文献   

13.
The interaction between Ac-AMP2, a lectin-like small protein with antimicrobial and antifungal activity isolated from Amaranthus caudatus, and N,N′,N″-triacetyl chitotriose was studied using 1H NMR spectroscopy. Changes in chemical shift and line width upon increasing concentration of N,N′,N″-triacetyl chitotriose to Ac-AMP2 solutions at pH 6.9 and 2.4 were used to determine the interaction site and the association constant Ka. The most pronounced shifts occur mainly in the C-terminal half of the sequence. They involve the aromatic residues Phe18, Tyr20 and Tyr27 together with their surrounding residues, as well as the N-terminal Val-Gly-Glu segment. Several NOEs between Ac-AMP2 and the N,N′,N″-triacetyl chitotriose resonances are reported.  相似文献   

14.
13C nuclear magnetic resonance spectroscopy (13C n.m.r.) was used to determine the pH titration parameters for the N-terminal N,N-[13C]dimethylamino and N,N-[13C]monomethylamino groups of glycophorins AM and AN, and some 28 related glycoproteins, glycopeptides and peptides. The results show that glycosylation of the Ser and Thr residues at positions 2, 3 and 4 of the glycophorins have a pronounced effect on the titration parameters. Substitution of amino acids 4 and 5 in the glycophorin sequence appears to minimally affect our titration parameters. Internal hydrogen-bonding involving the N-terminal Ser residue may explain some of the unusual pH titration results observed for glycophorin AM.  相似文献   

15.
A new amphiphilic chitosan derivative, octanoylchitosan cinnamate (OCC) was synthesized through regioselective modifications of chitosan. A solution of OCC was spread to water to form a stable monolayer at the air/water interface. The surface pressure (π)–area (A) isotherm indicated that the polymer had a limiting area of about 100 Å2 per repeat unit. YZ-type multilayers were deposited onto hydrophobic substrates through Langmuir–Blodgett (LB) technique. The structural features of the LB films were investigated by UV absorption, circular dichroism (CD) and linear dichroism (LD) spectroscopy. The results showed that the intrinsic chirality originating from the helical order of the OCC backbones was maintained in the LB films. Besides, the polymer backbones were uni-axially oriented in the LB film. The ordered structures of OCC assembled in a dilute solution and in a cast film were also investigated and the results were compared with that of the LB film.  相似文献   

16.
Protein kinase A (PKA) is an important signal transduction target for drug development because it influences critical cellular processes implicated in neuropsychiatric illnesses such as major depressive disorder. The goal of the present study was to develop the first imaging agent for measuring the levels of PKA with positron emission tomography (PET). By rational derivatization of 5-isoquinoline sulfonamides, it was found that the introduction of a methyl group to the sulphonamidic nitrogen on the known PKA inhibitors N-(2-aminoethyl)isoquinoline-5-sulfonamide (H-9, 1) and N-(2-(4-bromocinnamylamino)ethyl)isoquinoline-5-sulfonamide (H-89, 2), (yielding N-(2-aminoethyl)-N-methyl-isoquinoline-5-sulfonamide (4) and N-(2-(4-bromocinnamylamino)ethyl)-N-methyl-isoquinoline-5-sulfonamide (5), respectively) does not appreciably reduce in vitro potency toward PKA. We have facilitated the synthesis of 4 by reacting isoquinoline-5-sulfonyl chloride with N-methylethylenediamine (20% yield). Several techniques were used to thoroughly characterize 4 including multi (1H, 13C and 15N) NMR spectroscopy and X-ray crystallography. Compound 4 and 1-(4-bromophenyl)-1-propen-3-yl bromide were reacted to produce 5 in 16% yield. Compound 2 was reacted with [11C]CH3I to prepare N-(2-(4-bromocinnamylamino) ethyl)-N-[11C]methyl-isoquinoline-5-sulfonamide ([11C]5), with a decay-corrected radiochemical yield of 32%, based on [11C]CO2. [11C]5 was produced with >98% radiochemical purity and 1130 mCi/μmol specific activity after 40 min (end of synthesis). Conscious rats were administered [11C] 5 and sacrificed at 5, 15, 30 and 60 min after injection. Radioactivity from all excised brain regions was <0.2%ID/g at all time points. The modest brain penetration of [11C]5 may limit its use for studying PKA in the central nervous system.  相似文献   

17.
Alternating copolymer of maleic anhydride (MA) with N-isopropylacrylamide (NIPA) has been synthesized. Spectral characterization of this copolymer has been achieved by FTIR, Raman, 1H, 13C NMR spectroscopic methods. Besides hydrodynamic behavior of the copolymer has been also investigated by viscometric method for comparison with that obtained from the solubility profile through algorithmic calculations. As a consequence of the algorithmic calculations DMSO has been determined as the best solvent for the copolymer, poly(MA-alt-NIPA), which is also supported by the viscometric results.  相似文献   

18.
Mesenchymal stem cells (MSCs) are known to be an attractive cell source for tissue engineering and regenerative medicine. One of the main limiting steps for clinical use or biotechnological purposes is the expansion step. The research of compatible biomaterials for MSCs expansion is recently regarded as an attractive topic. The aim of this study was to create new functional biomaterial for MSCs expansion by evaluating the impact of chitosan derivative films modified by enzymatic approach. First, chitosan particles were enzymatically modified with ferulic acid (FA) or ethyl ferulate (EF) under an eco‐friendly procedure. Then, films of chitosan and its modified derivatives were prepared and evaluated by physicochemical and biological properties. Results showed that the enzymatic grafting of FA or EF onto chitosan significantly increased hydrophobic and antioxidant properties of chitosan films. The MSCs cell viability on chitosan derivative films also increased depending on the film thickness and the quantity of grafted phenols. Furthermore, the cytotoxicity test showed the absence of toxic effect of chitosan derivative films towards MSCs cells. Cell morphology showed a well attached and spread phenotype of MSCs cells on chitosan derivative films. On the other hand, due to the higher phenol content of FA‐chitosan films, their hydrophobic, antioxidant properties and cell adhesion were improved in comparison with those of EF‐chitosan films. Finally, this enzymatic process can be considered as a promising process to favor MSCs cell growth as well as to create useful biomaterials for biomedical applications especially for tissue engineering. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:491–500, 2016  相似文献   

19.
A novel fiber-reactive chitosan derivative was synthesized in two steps from a chitosan of low molecular weight and low degree of acetylation. First, a water-soluble chitosan derivative, N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride (HTCC), was prepared by introducing quaternary ammonium salt groups on the amino groups of chitosan. This derivative was further modified by introducing functional (acrylamidomethyl) groups, which can form covalent bonds with cellulose under alkaline conditions, on the primary alcohol groups (C-6) of the chitosan backbone. The fiber-reactive chitosan derivative, O-acrylamidomethyl-HTCC (NMA-HTCC), showed complete bacterial reduction within 20 min at the concentration of 10ppm, when contacted with Staphylococcus aureus and Escherichia coli (1.5-2.5 x 10(5) colony forming units per milliliter [CFU/mL]).  相似文献   

20.
The triazenide complex of Pt(II) trans-(o-Tol)Pt(PEt3)2N3Ar2(1) (Ar = p-FC6H4) was synthesized by reaction of (o-Tol)Pt(PEt3)2BF4 with Ar2N3Na. The 1H, 19F and 31P NMR spectra of this complex in toluene-d8 were studied at different temperatures. Two kinds of dynamic processes were observed. The first one is the intramolecular N,N′ migration of the (o-Tol)Pt(PEt3)2 group, detected by 19F NMR. The second process, revealed by 1H, 19P NMR, is the rotation around the partially double N(2)–N(3) bond. Thermodynamic parameters for these processes were calculated from dynamic NMR spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号