首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Propionate metabolism in Salmonella typhimurium occurs via 2-methylcitric acid cycle. The last step of this cycle, the cleavage of 2-methylisocitrate to succinate and pyruvate, is catalysed by 2-methylisocitrate lyase (PrpB). Here we report the X-ray crystal structure of the native and the pyruvate/Mg(2+) bound PrpB from S. typhimurium, determined at 2.1 and 2.3A, respectively. The structure closely resembles that of the Escherichia coli enzyme. Unlike the E. coli PrpB, Mg(2+) could not be located in the native Salmonella PrpB. Only in pyruvate bound PrpB structure, Mg(2+) was found coordinated with pyruvate. Binding of pyruvate to PrpB seems to induce movement of the Mg(2+) by 2.5A from its position found in E. coli native PrpB. In both the native enzyme and pyruvate/Mg(2+) bound forms, the active site loop is completely disordered. Examination of the pocket in which pyruvate and glyoxalate bind to 2-methylisocitrate lyase and isocitrate lyase, respectively, reveals plausible rationale for different substrate specificities of these two enzymes. Structural similarities in substrate and metal atom binding site as well as presence of similar residues in the active site suggest possible similarities in the reaction mechanism.  相似文献   

2.
Following acetate, propionate is the second most abundant low molecular mass carbon compound found in soil. Many microorganisms, including most, if not all fungi, as well as several aerobic bacteria, such as Escherichia coli and Salmonella enterica oxidize propionate via the methylcitrate cycle. The enzyme 2-methylisocitrate lyase (PrpB) from Escherichia coli catalysing the last step of this cycle, the cleavage of 2-methylisocitrate to pyruvate and succinate, was crystallised and its structure determined to a resolution of 1.9A. The enzyme, which strictly depends on Mg(2+) for catalysis, belongs to the isocitrate lyase protein family. A common feature of members of this enzyme family is the movement of a so-called "active site loop" from an open into a closed conformation upon substrate binding thus shielding the reactants from the surrounding solvent. Since in the presented structure, PrpB contains, apart from a Mg(2+), no ligand, the active site loop is found in an open conformation. This conformation, however, differs significantly from the open conformation present in the so far known structures of ligand-free isocitrate lyases. A possible impact of this observation with respect to the different responses of isocitrate lyases and PrpB upon treatment with the common inhibitor 3-bromopyruvate is discussed. Based on the structure of ligand-bound isocitrate lyase from Mycobacterium tuberculosis a model of the substrate-bound PrpB enzyme in its closed conformation was created which provides hints towards the substrate specificity of this enzyme.  相似文献   

3.
In Escherichia coli and Aspergillus nidulans, propionate is oxidized to pyruvate via the methylcitrate cycle. The last step of this cycle, the cleavage of 2-methylisocitrate to succinate and pyruvate is catalysed by 2-methylisocitrate lyase. The enzymes from both organisms were assayed with chemically synthesized threo-2-methylisocitrate; the erythro-diastereomer was not active. 2-Methylisocitrate lyase from E. coli corresponds to the PrpB protein of the prp operon involved in propionate oxidation. The purified enzyme has a molecular mass of approximately 32 kDa per subunit, which is lower than those of isocitrate lyases from bacterial sources ( approximately 48 kDa). 2-Methylisocitrate lyase from A. nidulans shows an apparent molecular mass of 66 kDa per subunit, almost equal to that of isocitrate lyase of the same organism. Both 2-methylisocitrate lyases have a native homotetrameric structure as identified by size-exclusion chromatography. The enzymes show no measurable activity with isocitrate. Starting from 250 mM pyruvate, 150 mM succinate and 10 microM PrpB, the enzymatically active stereoisomer could be synthesized in 1% yield. As revealed by chiral HPLC, the product consisted of a single enantiomer. This isomer is cleaved by 2-methylisocitrate lyases from A. nidulans and E. coli. The PrpB protein reacted with stoichiometric amounts of 3-bromopyruvate whereby the activity was lost and one amino-acid residue per subunit became modified, most likely a cysteine as shown for isocitrate lyase of E. coli. PrpB exhibits 34% sequence identity with carboxyphosphoenolpyruvate phosphonomutase from Streptomyces hygroscopicus, in which the essential cysteine residue is conserved.  相似文献   

4.
Salmonella enterica serovar Typhimurium requires Mn(2+), but only a few Mn(2+)-dependent enzymes have been identified from bacteria. To characterize Mn(2+)-dependent enzymes from serovar Typhimurium, two putative PPP-family protein phosphatase genes were cloned from serovar Typhimurium and named prpA and prpB. Their DNA-derived amino acid sequences showed 61% identity to the corresponding Escherichia coli proteins and 41% identity to each other. Each phosphatase was expressed in E. coli and purified to near electrophoretic homogeneity. Both PrpA and PrpB absolutely required a divalent metal for activity. As with other phosphatases of this class, Mn(2+) had the highest affinity and stimulated the greatest activity. The apparent K(a) of PrpA for Mn(2+) of 65 microM was comparable to that for other bacterial phosphatases, but PrpB had a much higher affinity for Mn(2+) (1.3 microM). The pH optima were pH 6.5 for PrpA and pH 8 for PrpB, while the optimal temperatures were 45 to 55 degrees C for PrpA and 30 to 37 degrees C for PrpB. Each phosphatase could hydrolyze phosphorylated serine, threonine, or tyrosine residues, but their relative specific activities varied with the specific substrate tested. These differences suggest that each phosphatase is used by serovar Typhimurium under different growth or environmental conditions such as temperature or acidity.  相似文献   

5.
Phycomyces blakesleeanus isocitrate lyase (EC 4.1.3.1) is in vivo reversibly inactivated by hydrogen peroxide. The purified enzyme showed reversible inactivation by an ascorbate plus Fe(2+) system under aerobic conditions. Inactivation requires hydrogen peroxide; was prevented by catalase, EDTA, Mg(2+), isocitrate, GSH, DTT, or cysteine; and was reversed by thiols. The ascorbate served as a source of hydrogen peroxide and also reduced the Fe(3+) ions produced in a "site-specific" Fenton reaction. Two redox-active cysteine residues per enzyme subunit are targets of oxidative modification; one of them is located at the catalytic site and the other at the metal regulatory site. The oxidized enzyme showed covalent and conformational changes that led to inactivation, decreased thermal stability, and also increased inactivation by trypsin. These results represent an example of redox regulation of an enzymatic activity, which may play a role as a sensor of redox cellular status.  相似文献   

6.
Andersen syndrome is an autosomal dominant disorder characterized by cardiac arrhythmias, periodic paralysis and dysmorphic features. Many Andersen syndrome cases have been associated with loss-of-function mutations in the inward rectifier K(+) channel Kir2.1 encoded by KCNJ2. Using engineered concatenated tetrameric channels we determined the mechanism for dominant loss-of-function associated with a trafficking-competent missense mutation, Kir2.1-T74A. This mutation alters a conserved threonine residue in an N-terminal domain analogous to the slide helix identified in the structure of a bacterial inward rectifier. Incorporation of a single mutant subunit in channel tetramers was sufficient to cause a selective impairment of whole-cell outward current, but no difference in the level of inward current compared with wild-type (WT) tetramers. The presence of two mutant subunits resulted in greatly reduced outward and impaired inward currents. Experiments using excised inside-out membrane patches revealed that tetramers with one mutant subunit exhibited increased Mg(2+) inhibition. Additional experiments demonstrated that concatenated tetramers containing one T74A subunit had reduced PIP(2) sensitivity, and that outward current carried by mutant tetramers could be restored by addition of PIP(2) in the absence of Mg(2+). Our results are consistent with the involvement of the Kir2.1 N-terminus in PIP(2) modulation of channel activity and support the existence of an inverse relationship between PIP(2) sensitivity and Mg(2+) inhibition of Kir2.1 channels. Our data also indicate that a single mutant subunit is sufficient to explain dominant-negative behavior of Kir2.1-T74A in Andersen syndrome.  相似文献   

7.
Two crystal structures of the C123S mutant of 2-methylisocitrate lyase have been determined, one with the bound reaction products, Mg(2+)-pyruvate and succinate, and the second with a bound Mg(2+)-(2R,3S)-isocitrate inhibitor. Comparison with the structure of the wild-type enzyme in the unbound state reveals that the enzyme undergoes a conformational transition that sequesters the ligand from solvent, as previously observed for two other enzyme superfamily members, isocitrate lyase and phosphoenolpyruvate mutase. The binding modes reveal the determinants of substrate specificity and stereoselectivity, and the stringent specificity is verified in solution using various potential substrates. A model of bound 2-methylisocitrate has been developed based on the experimentally determined structures. We propose a catalytic mechanism involving an alpha-carboxy-carbanion intermediate/transition state, which is consistent with previous stereochemical experiments showing inversion of configuration at the C(3) of 2-methylisocitrate. Structure-based sequence analysis and phylogenic tree construction reveal determinants of substrate specificity, highlight nodes of divergence of families, and predict enzyme families with new functions.  相似文献   

8.
By a newly developed double-stranded mutagenesis technique, histidine (H), glutamate (E), arginine (R) and leucine (L) have been substituted for the lysyl 193 residue (K-193) in isocitrate lyase from Escherichia coli. The substitutions for this residue, which is present in a highly conserved, cationic region, significantly affect both the Km for Ds-isocitrate and the apparent kcat of isocitrate lyase. Specifically, the conservative substitutions, K-193-->H (K193H) and K193R, reduce catalytic activity by ca. 50- and 14-fold, respectively, and the nonconservative changes, K193E and K193L, result in assembled tetrameric protein that is completely inactive. The K193H and K193R mutations also increase the Km of the enzyme by five- and twofold, respectively. These results indicate that the cationic and/or acid-base character of K193 is essential for isocitrate lyase activity. In addition to the noted effects on enzyme activity, the effects of the mutations on growth of JE10, an E. coli strain which does not express isocitrate lyase, were observed. Active isocitrate lyase is necessary for E. coli to grow on acetate as the sole carbon source. It was found that a mutation affecting the activity of isocitrate lyase similarly affects the growth of E. coli JE10 on acetate when the mutated plasmid is expressed in this organism. Specifically, the lag time before growth increases over sevenfold and almost twofold for E. coli JE10 expressing the K193H and K193R isocitrate lyase variants, respectively. In addition, the rate of growth decreases by almost 40-fold for E. coli JE10 cells expressing form K193H and ca. 2-fold for those expressing the K193R variants. Thus, the onset and rate of E. coli growth on acetate appears to depend on isocitrate lyase activity.  相似文献   

9.
Burkholderia sacchari IPT101(T) induced the formation of 2-methylcitrate synthase and 2-methylisocitrate lyase when it was cultivated in the presence of propionic acid. The prp locus of B. sacchari IPT101(T) is required for utilization of propionic acid as a sole carbon source and is relevant for incorporation of 3-hydroxyvalerate (3HV) into copolyesters, and it was cloned and sequenced. Five genes (prpR, prpB, prpC, acnM, and ORF5) exhibited identity to genes located in the prp loci of other gram-negative bacteria. prpC encodes a 2-methylcitrate synthase with a calculated molecular mass of 42,691 Da. prpB encodes a 2-methylisocitrate lyase. The levels of PrpC and PrpB activity were much lower in propionate-negative mutant IPT189 obtained from IPT101(T) and were heterologously expressed in Escherichia coli. The acnM gene (ORF4) and ORF5, which are required for conversion of 2-methylcitric acid to 2-methylisocitric acid in Ralstonia eutropha HF39, are also located in the prp locus. The translational product of ORF1 (prpR) had a calculated molecular mass of 70,598 Da and is a putative regulator of the prp cluster. Three additional open reading frames (ORF6, ORF7, and ORF8) whose functions are not known were located adjacent to ORF5 in the prp locus of B. sacchari, and these open reading frames have not been found in any other prp operon yet. In summary, the organization of the prp genes of B. sacchari is similar but not identical to the organization of these genes in other bacteria investigated recently. In addition, this study provided a rationale for the previously shown increased molar contents of 3HV in copolyesters accumulated by a B. sacchari mutant since it was revealed in this study that the mutant is defective in prpC.  相似文献   

10.
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase catalyzes the divalent cation-dependent cleavage of HMG-CoA to produce acetyl-CoA and acetoacetate. Arginine-41 is an invariant residue in HMG-CoA lyases. Mutation of this residue (R41Q) correlates with human HMG-CoA lyase deficiency. To evaluate the functional importance of arginine-41, R41Q and R41M recombinant mutant human HMG-CoA lyase proteins have been constructed, expressed, and purified. These mutant proteins retain structural integrity based on Mn(2+) binding and affinity labeling stoichiometry. R41Q exhibits a 10(5)-fold decrease in V(max); R41M activity is >or=10-fold lower than the activity of R41Q. Acetyldithio-CoA, an analogue of the reaction product, acetyl-CoA, has been employed to test the function of arginine-41, as well as other residues (e.g., aspartate-42 and histidine-233) implicated in catalysis. Acetyldithio-CoA supports enzyme-catalyzed exchange of the methyl protons of the acetyl group with solvent; exchange is dependent on the presence of Mg(2+) and acetoacetate. In comparison with wild-type human enzyme, D42A and H233A mutant enzymes exhibit 4-fold and 10-fold decreases, respectively, in the proton exchange rate. In contrast, R41Q and R41M mutants do not catalyze any substantial enzyme-dependent proton exchange. These results suggest a role for arginine-41 in deprotonation or enolization of acetyldithio-CoA and implicate this residue in the HMG-CoA cleavage reaction chemistry that leads to acetyl-CoA product formation. Assignment of arginine-41 as an active site residue is also supported by a homology model for HMG-CoA lyase based on the structure of 4-hydroxy-2-ketovalerate aldolase. This model suggests the proximity of arginine-41 to other amino acids (aspartate-42, glutamate-72, histidine-235) implicated as active site residues based on their function as ligands to the activator cation.  相似文献   

11.
Isocitrate lyase (EC 4.1.3.1), a key enzyme in the glyoxylate cycle, was purified 76-fold with 23% yield as an electrophoretically homogeneous protein from the wood-destroying basidiomycete Fomitopsis palustris grown on glucose. The native enzyme has a molecular mass of 186 kDa, consisting of three identical subunits of 60 kDa. The K(m) for DL-isocitrate was found to be 1.6 mM at the optimum pH (7.0). The enzyme required Mg(2+) (K(m) 92 microM) and sulfhydryl compounds for optimal activity. The enzyme activity was strongly inhibited by oxalate and itaconate with a K(i) of 37 and 68 microM, respectively. The inhibition by the glycolysis and tricarboxylic acid cycle intermediates and related compounds suggested that the isocitrate lyase was a regulatory enzyme playing a crucial role in the fungal growth.  相似文献   

12.
The effects of the SH-groups binding agent p-chloromercurybenzoate (rho CMB) and the SH-containing compounds dithiothreitol (DTT), beta-mercaptoethanol (ME) and reduced glutathione (GSH) on activation by Mg2+ and K+ of ATPase in plasma membrane preparations from corn sprout root cells were studied. Rho CMB inhibited the ATPase activity, the degree of inhibition being directly dependent on the increase of the inhibitor concentration (from 10(-6) up to 10(-4) M); the inhibition was eliminated by the SH-containing agents (25 mM). DTT and ME added to the homogenization medium and ME added to the reaction mixture produced different effects on the ATPase activity of the membranes depending on the nature of the cations added. In the absence of the additives the ATPase activity was somewhat decreased, showing a sharp rise in the presence of Mg2+; an addition of K+ to a Mg2+-containing medium further increased the enzyme activity. GSH had no effect on the ATPase activation by the cations.  相似文献   

13.
Andersen syndrome is an autosomal dominant disorder characterized by cardiac arrhythmias, periodic paralysis and dysmorphic features. Many Andersen syndrome cases have been associated with loss-of-function mutations in the inward rectifier K+ channel Kir2.1 encoded by KCNJ2. Using engineered concatenated tetrameric channels we determined the mechanism for dominant loss-of-function associated with a trafficking-competent missense mutation, Kir2.1-T74A. This mutation alters a conserved threonine residue in an N-terminal domain analogous to the slide helix identified in the structure of a bacterial inward rectifier. Incorporation of a single mutant subunit in channel tetramers was sufficient to cause a selective impairment of whole-cell outward current, but no difference in the level of inward current compared with wild-type (WT) tetramers. The presence of two mutant subunits resulted in greatly reduced outward and impaired inward currents. Experiments using excised inside-out membrane patches revealed that tetramers with one mutant subunit exhibited increased Mg2+ inhibition. Additional experiments demonstrated that concatenated tetramers containing one T74A subunit had reduced PIP2 sensitivity, and that outward current carried by mutant tetramers could be restored by addition of PIP2 in the absence of Mg2+. Our results are consistent with the involvement of the Kir2.1 N-terminus in PIP2 modulation of channel activity and support the existence of an inverse relationship between PIP2 sensitivity and Mg2+ inhibition of Kir2.1 channels. Our data also indicate that a single mutant subunit is sufficient to explain dominant-negative behavior of Kir2.1-T74A in Andersen syndrome.  相似文献   

14.
Expression of the PSR132 protein from Dianthus caryophyllus (carnation, clover pink) is induced in response to ethylene production associated with petal senescence, and thus the protein is named petal death protein (PDP). Recent work has established that despite the annotation of PDP in sequence databases as carboxyphosphoenolpyruvate mutase, the enzyme is actually a C-C bond cleaving lyase exhibiting a broad substrate profile. The crystal structure of PDP has been determined at 2.7 A resolution, revealing a dimer-of-dimers oligomeric association. Consistent with sequence homology, the overall alpha/beta barrel fold of PDP is the same as that of other isocitrate lyase/PEP mutase superfamily members, including a swapped eighth helix within a dimer. Moreover, Mg(2+) binds in the active site of PDP with a coordination pattern similar to that seen in other superfamily members. A compound, covalently bound to the catalytic residue, Cys144, was interpreted as a thiohemiacetal adduct resulting from the reaction of glutaraldehyde used to cross-link the crystals. The Cys144-carrying flexible loop that gates access to the active site is in the closed conformation. Models of bound substrates and comparison with the closed conformation of isocitrate lyase and 2-methylisocitrate lyase revealed the structural basis for the broad substrate profile of PDP.  相似文献   

15.
Four mutants specifically deficient in the activity of isocitrate lyase were independently isolated in the alkane yeast Saccharomycopsis lipolytica. Genetic analysis by means of protoplast fusion and mitotic haploidization revealed that the mutations were recessive and non-complementary at a single genetic locus, icl. icl is a structural gene for isocitrate lyase, because some revertants from icl-1 and icl-3 mutants produced thermolabile isocitrate lyase in comparison with the wild-type enzyme, and also because the gene dosage effect was observed on the specific activity of isocitrate lyase in icl+/icl-1 and icl+/icl-3 heterozygotes. The icl-3 mutation also gave rise to temperature-sensitive revertants that could grow on acetate at 23 degrees C but not at 33 degrees C, exhibiting temperature-sensitive synthesis as well as thermostable activity of isocitrate lyase. Studies on purified isocitrate lyase showed that this enzyme is tetrameric and that the enzyme synthesized at 23 degrees C by a temperature-sensitive synthesis mutant was indistinguishable from the wild-type enzyme with respect to the subunit molecular weight (59,000), the isoelectric pH (5.3), the thermostability, and the Km value for threo-Ds-isocitrate (0.2 mM). When induced by acetate at 33 degrees C, the temperature-sensitive synthesis mutant did not express isocitrate lyase activity but did synthesize polypeptides whose electrophoretic mobilities were equal to that of the purified mutant enzyme. Hence, the temperature-sensitive mutation assumed in the structural gene for isocitrate lyase might have prevented the maturation of the polypeptide chains synthesized at the restrictive temperature.  相似文献   

16.
Previous studies demonstrated that two accessory proteins, HypA and HypB, play a role in nickel-dependent maturation of both hydrogenase and urease in Helicobacter pylori. Here, the two proteins were purified and characterized. HypA bound two Ni(2+) ions per dimer with positive cooperativity (Hill coefficient, approximately 2.0). The dissociation constants K(1) and K(2) for Ni(2+) were 58 and 1.3 microM, respectively. Studies on purified site-directed mutant proteins in each of the five histidine residues within HypA, revealed that only one histidine residue (His2) is vital for nickel binding. Nuclear magnetic resonance analysis showed that this purified mutant version (H2A) was similar in structure to that of the wild-type HypA protein. A chromosomal site-directed mutant of hypA (in the codon for His2) lacked hydrogenase activity and possessed only 2% of the wild-type urease activity. Purified HypB had a GTPase activity of 5 nmol of GTP hydrolyzed per nmol of HypB per min. Site-directed mutagenesis within the lysine residue in the conserved GTP-binding motif of HypB (Lys59) nearly abolished the GTPase activity of the mutant protein (K59A). In native solution, both HypA and HypB exist as homodimers with molecular masses of 25.8 and 52.4 kDa, respectively. However, a 1:1 molar mixture of HypA plus HypB gave rise to a 43.6-kDa species composed of both proteins. A 43-kDa heterodimeric HypA-HypB complex was also detected by cross-linking. The cross-linked adduct was still observed in the presence of 0.5 mM GTP or 1 microM nickel or when the mutant version of HypA (altered in His2) and HypB (altered in Lys59) were tested. Individually, HypA and HypB formed homodimeric cross-linked adducts. An interaction between HypA and the Hp0868 protein (encoded by the gene downstream of hypA) could not be detected via cross-linking, although such an interaction was predicted by yeast two-hybrid studies. In addition, the phenotype of an insertional mutation within the Hp0868 gene indicated that its presence is not critical for either the urease or the hydrogenase activity.  相似文献   

17.
This is the first report on a bacterial verterbrate-type GTP-dependent phosphoenolpyruvate carboxykinase (PCK). The pck gene of Mycobacterium smegmatis was cloned. The recombinant PCK was overexpressed in Escherichia coli in a soluble form and with high activity. The purified enzyme was found to be monomeric (72 kDa), thermophilic (optimum temperature, 70 degrees C), very stable upon storage at 4 degrees C, stimulated by thiol-containing reducing agents, and inhibited by oxalate and by alpha-ketoglutarate. The requirement for a divalent cation for activity was fulfilled best by Mn(2+) and Co(2+) and poorly by Mg(2+). At 37 degrees C, the highest V(m) value (32.5 units/mg) was recorded with Mn(2+) and in the presence of 37 mm dithiothreitol (DTT). The presence of Mg(2+) (2 mm) greatly lowered the apparent K(m) values for Mn(2+) (by 144-fold in the presence of DTT and by 9.4-fold in the absence of DTT) and Co(2+) (by 230-fold). In the absence of DTT but in the presence of Mg(2+) (2 mm) as the co-divalent cation, Co(2+) was 21-fold more efficient than Mn(2+). For producing oxaloacetate, the enzyme utilized both GDP and IDP; ADP served very poorly. The apparent K(m) values for phosphoenolpyruvate, GDP, and bicarbonate were >100, 66, and 8300 micrometer, respectively, whereas those for GTP and oxaloacetate (for the phosphoenolpyruvate formation activity) were 13 and 12 microm, respectively. Thus, this enzyme preferred the gluconeogenesis/glycerogenesis direction. This property fits the suggestion that in M. smegmatis, pyruvate carboxylase is not anaplerotic but rather gluconeogenic (Mukhopadhyay, B., and Purwantini, E. (2000) Biochim. Biophys. Acta. 1475, 191-206). Both in primary structure and kinetic properties, the mycobacterial PCK was very similar to its vertebrate-liver counterparts and thus could serve as a model for these enzymes; examples for several immediate targets are presented.  相似文献   

18.
A purification scheme is described for the glyoxylate cycle enzyme isocitrate lyase from maize scutella. Purification involves an acetone precipitation and a heat denaturation step, followed by ammonium sulfate precipitation and chromatography on DEAE-cellulose and on blue-Sepharose. The latter step results in the removal of the remaining malate dehydrogenase activity, and of a high molecular mass (62 kDa) but inactive degradation product of isocitrate lyase. Catalase can be completely removed by performing the DEAE-cellulose chromatography in the presence of Triton X-100. Pure isocitrate lyase can be stored without appreciable loss of activity at -70 degrees C in 5 mM triethanolamine buffer containing 6 mM MgCl2, 7 mM 2-mercaptoethanol, and 50% (v/v) glycerol, pH 7.6. Maize isocitrate lyase is a tetrameric protein with a subunit molecular mass of 64 kDa. Purity of the enzyme preparation was demonstrated by polyacrylamide gel electrophoresis in the presence of dodecylsulfate, in acid (pH 3.2) urea and by isoelectric focusing (pI = 5.1). Maize isocitrate lyase is devoid of covalently linked sugar residues. From circular dichroism measurements we estimate that its structure comprises 30% alpha-helical and 15% beta-pleated sheet segments. The enzyme requires Mg2+ ions for activity, and only Mn2+ apparently is able to replace this cation to a certain extent. The kinetics of the isocitrate lyase-catalyzed cleavage reaction were investigated, and the amino acid composition of the maize enzyme was determined. Finally the occurrence of an association between maize isocitrate lyase and catalase was observed. Such a multienzyme complex may be postulated to play a protective role in vivo.  相似文献   

19.
Site-directed mutagenesis was performed on Glu143, an essential amino acid in Lactobacillus casei folylpolyglutamate synthetase (FPGS) and the structurally equivalent residue, Glu146, in Escherichia coli FPGS. Glu143 is positioned near the P-loop and interacts with the Mg(2+) of Mg NTP-binding proteins. We have solved the structure of the E143A mutant of L. casei FPGS in the presence of AMPPCP and Mg(2+). The structure showed a water molecule at the place where Mg(2+) bound to the wild type enzyme. Mutant proteins E143A, and even E143D and E143Q with conservative mutations, lacked enzyme activity and failed to complement the methionine auxotrophy of the E. coli folC mutant SF4, showing that Glu143 is an essential residue. Both the L. casei and the E. coli FPGS mutant proteins bound methylene-tetrahydrofolate diglutamate and dihydropteroate normally. The E. coli E146Q mutant FPGS bound ADP with the same affinity as the wild type enzyme but bound ATP with much lower affinity and had higher ATPase activity than the wild type enzyme. The mutant enzyme was defective in forming the acyl-phosphate reaction intermediate from ATP and dihydropteroate. The E. coli FPGS requires activation by dihydropteroate or tetrahydrofolate binding to allow full activity. In the absence of a pteroate substrate, only 30% of the total enzyme binds ATP. We suggest that dihydropteroate causes a conformational change to allow increased ATP binding. The mutant enzyme was similarly activated by dihydropteroate resulting in increased ADP binding.  相似文献   

20.
1. Ribosomes and the tetramer arrangement peculiar to the tissues of chick embryos exposed to low temperatures were separated by sucrose-density-gradient centrifugation, and the effects of variation of the concentrations of Mg(2+), Ca(2+) and K(+) studied. 2. Lowering of the Mg(2+) concentration from standard buffer conditions caused a reversible dissociation of tetramers into monomers and of these into subunits. 3. Ca(2+) replaced Mg(2+) in causing the re-formation of tetramers and monomers from subunits after dissociation in low Mg(2+) concentrations. 4. Ca(2+) also caused an almost complete conversion of monomers into dimers in the presence of Mg(2+). 5. The effect of Ca(2+) on the formation of dimers was abolished by pretreatment of the ribosomes with ribonuclease, but the re-formation of tetramers was unaffected. 6. Increase of the K(+) concentration from that of the standard buffer caused dissociation of monomers and dimers into subunits. 7. Raised K(+) concentration also caused a stepwise alteration of the tetramer from a particle with a sedimentation coefficient of 197S, which constitutes the bulk of the tetramer at low K(+) concentrations, first to a 184S peak and finally to material with a sedimentation coefficient of about 155S. 8. The implications of these results on hypotheses of the arrangement of the individual monomers in the tetramer are discussed and a new model for the structure is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号