首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The molecular mechanism(s) by which high glucose induces fibronectin expression via G-protein activation in the kidney are largely unknown. This investigation describes the effect of high glucose (HG) on a small GTP-binding protein, Rap1b, expression and activation, and the relevance of protein kinase C (PKC) and Raf pathways in fibronectin synthesis in cultured renal glomerular mesangial cells (MCs). In vivo experiments revealed a dose-dependent increase in Rap1b expression in glomeruli of diabetic rat kidneys. Similarly, in vitro exposure of MCs to HG led to an up-regulation of Rap1b with concomitant increase in fibronectin (FN) mRNA and protein expression. The up-regulation of Rap1b mRNA was mitigated by the PKC inhibitors, calphostin C, and bisindolymaleimide, while also reducing HG- induced FN expression in non-transfected MCs. Overexpression of Rap1b by transfection with pcDNA 3.1/Rap1b in MCs resulted in the stimulation of FN synthesis; however, the PKC inhibitors had no significant effect in reducing FN expression in Rap1b-transfected MCs. Transfection of Rap1b mutants S17N (Ser --> Asn) or T61R (Thr --> Arg) in MCs inhibited the HG-induced increased FN synthesis. B-Raf and Raf-1 expression was investigated to assess whether Rap1b effects are mediated via the Raf pathway. B-Raf, and not Raf-1, expression was increased in MCs transfected with Rap1b. HG also caused activation of Rap1b, which was largely unaffected by anti-platelet-derived growth factor (PDGF) antibodies. HG-induced activation of Rap1b was specific, since Rap2b activation and expression of Rap2a and Rap2b were unaffected by HG. These findings indicate that hyperglycemia and HG cause an activation and up-regulation of Rap1b in renal glomeruli and in cultured MCs, which then stimulates FN synthesis. This effect appears to be PKC-dependent and PDGF-independent, but involves B-Raf, suggesting a novel PKC-Rap1b-B-Raf pathway responsible for HG-induced increased mesangial matrix synthesis, a hallmark of diabetic nephropathy.  相似文献   

2.
The BCR/ABL fusion tyrosine kinase activates various intracellular signaling pathways, thus causing chronic myeloid leukemia (CML). Here we demonstrate that the inducible expression of BCR/ABL in a murine hematopoietic cell line, TonB210, leads to the activation of the Ras family small GTPase Rap1, which is inhibited by the ABL kinase inhibitor imatinib. The Rap1 activity in a CML cell line, K562, was also inhibited by imatinib. Inhibition of Rap1 activation by a dominant negative mutant of Rap1, Rap1-N17, or SPA-1 inhibited the BCR/ABL-induced activation of Elk-1. BCR/ABL also activated in a kinase activity-dependent manner the B-Raf kinase, which is an effector molecule of Rap1 and a potent activator of the MEK/Erk/Elk-1 signaling pathway. Together, these data suggest that, in addition to the well-established Ras/Raf-1 pathway, BCR/ABL activates the alternative signaling pathway involving Rap1 and B-Raf to activate Erk, which may play important roles in leukemogenesis.  相似文献   

3.
The gastrointestinal hormone, glucose-dependent insulinotropic polypeptide (GIP), is one of the most important regulators of insulin secretion following ingestion of a meal. GIP stimulates insulin secretion from the pancreatic beta-cell via its G protein-coupled receptor activation of adenylyl cyclase and other signal transduction pathways, but there is little known regarding subsequent protein kinase pathways that are activated. A screening technique was used to determine the relative abundance of 75 protein kinases in CHO-K1 cells expressing the GIP receptor and in two pancreatic beta-cell lines (betaTC-3 and INS-1 (832/13) cells). This information was used to identify kinases that are potentially regulated following GIP stimulation, with a focus on GIP regulation of the ERK1/2 MAPK pathway. In CHO-K1 cells, GIP induced phosphorylation of Raf-1 (Ser-259), Mek1/2 (Ser-217/Ser-221), ERK1/2 (Thr-202 and Tyr-204), and p90 RSK (Ser-380) in a concentration-dependent manner. Activation of ERK1/2 was maximal at 4 min and was cAMP-dependent protein kinase-dependent and protein kinase C-independent. Studies using a beta-cell line (INS-1 clone 832/13) corroborated these findings, and it was also demonstrated that the ERK1/2 module could be activated by GIP in the absence of glucose. Finally, we have shown that GIP regulation of the ERK1/2 module is via Rap1 but does not involve Gbetagamma subunits nor Src tyrosine kinase, and we propose that cAMP-based regulation occurs via B-Raf in both CHO-K1 and beta-cells. These results establish the importance of GIP in the cellular regulation of the ERK1/2 module and identify a role for cAMP in coupling its G protein-coupled receptors to ERK1/2 activity in pancreatic beta-cells.  相似文献   

4.
5.
6.
A method is described that enabled us to study the adhesiveness of J-774 murine macrophages. Cell attachment was stimulated by activators of kinase C (i.e., phorbol esters) as well as kinase A (cyclic adenosine monophosphate; cAMP). This novel effect of cAMP was observed when its levels were increased via receptor triggering (prostaglandin E1, beta-adrenergic agonists), activation of Ns (cholera toxin), or inhibition of phosphodiesterase (Ro 20-1724) or when the kinase was directly activated by Br8-cAMP. The simultaneous treatment with kinase A and kinase C activators at the time of attachment resulted in a partially additive response. On the other hand, preincubation of the cells in suspension with one of the activators rendered them refractory to subsequent stimulation at the onset of the adhesion assay, whatever agent was used. Such a refractoriness was also observed in cells preincubated with oleoyl-acetyl-glycerol (OAG). On the other hand, when added at the time of attachment, this near-physiological activator of kinase C evoked a biphasic response: the early stimulation of cell attachment was followed by an accelerated rate of "detachment." In conclusion, kinase C and kinase A play a role in the sequence of events leading to cell adhesion. The cross desensitization observed is distal and takes place at or beyond the kinase step.  相似文献   

7.
8.
Certain hormonal primary messengers identified in the mammalian palate during its ontogeny transmit information to the interior of the cell via transmembrane signaling systems that control the production of the secondary messenger cyclic adenosine monophosphate. The singular role of intracellular cyclic AMP is to activate cAMP-dependent protein kinases (cAMP-dPK). cAMP-dPK were thus identified and characterized in the developing murine embryonic palate. Incubation of cytosolic fractions of embryonic palatal tissue with cAMP resulted in a dose-dependent increase in the cAMP-dPK activity ratio. A transient elevation of basal cAMP-dPK was seen during the period of palatal ontogeny that corresponded temporally with a previously demonstrated transient elevation of palatal basal cAMP levels. Fractions of embryonic palatal tissue cytosols derived by diethylaminoethyl (DEAE)-Sephacel chromatography were analyzed for phosphotransferase activity and for [3H]-cAMP binding to the regulatory (R) subunits of cAMP-dPK. Such analyses revealed two peaks of activity on day 13 of gestation. Based on the salt concentration at which the material in these peaks eluted from DEAE, its ability to cochromatograph with authentic cAMP-dPK isozymes, its molecular weight as determined by sodium dodecyl sulfate-polycrylamide gel electrophoresis, and the ability of the material to be photoaffinity labeled with [3H]-8-azidoadenosine 3',5' cyclic phosphate, types I and II cAMP-dPK were identified. Regulatory subunits of cAMP-dPK were characterized by the binding of [3H]-cAMP to cytosolic fractions of embryonic palatal tissue. Such binding was saturable (Bmax = 1,096 fmol/mg protein) and of high affinity (Kd = 7 nM). Only cAMP and cyclic guanosine monophosphate competed in a dose-related manner with [3H]-cAMP for binding to R subunits of cAMP-dPK. Adenosine, cTMP, and adenosine triphosphate, at doses up to 10(-4) M, did not compete for binding. Temporal analysis of binding data indicated that the number of binding sites transiently decreased during day 13 of gestation. Characterization of cAMP-dPK in tissue derived from the developing mammalian palate allows consideration of cAMP-dPK as a key regulatory enzyme capable of transducing hormonally elevated intracellular levels of cAMP into metabolic responses during orofacial ontogenesis.  相似文献   

9.
Addition of [gamma -32P]ATP to a 2% Brij-78 40,000g supernatant of sea urchin sperm results in the cAMP-dependent phosphorylation of eight to ten proteins. One phosphoprotein of Mr 190 kD is sperm adenylate cyclase (AC). An antiserum to the AC immunoprecipitates the Mr 190 kD protein. Peptide maps of immunoprecipitates show that the AC is the only phosphoprotein present in the Mr 200 kD range. With respect to the in vitro phosphorylation of AC, the endogenous kinase has a Km for ATP of 5.2 microM and is maximally stimulated by 4-8 microM cAMP. The protein kinase inhibitors H8 (9 microM) and PKI (30 U/ml) inhibit the phosphorylation of the AC. The catalytic subunit of bovine cAMP-dependent protein kinase phosphorylates the AC on the same peptides as the endogenous protein kinase. Cyanogen bromide generated peptide maps of the phosphorylated AC show a minimum of five sites of phosphorylation. No change in the Km or Vmax of the sperm AC resulted from the additional phosphorylation by bovine kinase. Calcium ions at submicromolar concentrations completely block the in vitro phosphorylation of the AC, suggesting the presence in the preparation of a Ca2(+) -activated protein phosphatase. To our knowledge, this is the first report of the phosphorylation of an AC by cAMP-dependent protein kinase.  相似文献   

10.
11.
12.
13.
Mechanical force regulates gene expression and cell proliferation in a variety of cell types, but the mechanotransducers and signaling mechanisms involved are highly speculative. We studied the fibroblast signaling mechanism that is activated when cells are switched from mechanically stressed to mechanically relaxed conditions, i.e., stress relaxation. Within 10 min after initiation of stress relaxation, we observed a transient 10-20-fold increase in cytoplasmic cyclic AMP (cAMP) and a threefold increase in protein kinase A activity. The increase in cAMP depended on stimulation of adenylyl cyclase rather than inhibition of phosphodiesterase. Generation of cAMP was inhibited by indomethacin, and release of arachidonic acid was found to be an upstream step of the pathway. Activation of signaling also depended on influx of extracellular Ca2+ because addition of EGTA to the incubations at concentrations just sufficient to exceed Ca2+ in the medium inhibited the stress relaxation-dependent increase in free arachidonic acid and cAMP. This inhibition was overcome by adding CaCl2 to the medium. On the other hand, treating fibroblasts in mechanically stressed cultures with the calcium ionophore A23187-stimulated arachidonic acid and cAMP production even without stress relaxation. In summary, our results show that fibroblast stress relaxation results in activation of a Ca(2+)-dependent, adenylyl cyclase signaling pathway. Overall, the effect of stress relaxation on cAMP and PKA levels was equivalent to that observed after treatment of cells with forskolin.  相似文献   

14.
Hematopoietic progenitor kinase 1 (HPK1) is a hematopoietic cell-restricted member of the Ste20 serine/threonine kinase super family. We recently reported that the immunosuppressive eicosanoid, prostaglandin E(2) (PGE(2)), is capable of activating HPK1 in T cells. In this report, we demonstrate that unlike the TCR-induced activation of HPK1 kinase activity, the induction of HPK1 catalytic activity by PGE(2) does not require the presence of phosphotyrosine-based signaling molecules such as Lck, ZAP-70, SLP-76, and Lat. Nor does the PGE(2)-induced HPK1 activation require the intermolecular interaction between its proline-rich regions and the SH3 domain-containing adaptor proteins, as required by the signaling from the TCR to HPK1. Instead, our study reveals that PGE(2) signal to HPK1 via a 3' -5 '-cyclic adenosine monophosphate-regulated, PKA-dependent pathway. Consistent with this observation, changing the serine 171 residue that forms the optimal PKA phosphorylation site within the "activation loop" of HPK1 to alanine completely prevents this mutant from responding to PGE(2)-generated stimulation signals. Moreover, the inability of HPK1 to respond to PGE(2) stimulation in PKA-deficient S49 cells further supports the importance of PKA in this signaling pathway. We speculate that this unique signaling pathway enables PGE(2) signals to engage a proven negative regulator of TCR signal transduction pathway and uses it to inhibit T cell activation.  相似文献   

15.
The Ras-related protein, Rap1B, has previously been shown to serve as a PKA substrate in vitro and to be phosphorylated by cAMP elevating agents in human platelets. We have purified a Rap1 protein that serves as a PKA substrate from human neutrophils, and we now identify this protein as Rap1A. A 23-kDa protein that co-migrated with recombinant Rap1A was phosphorylated in electroporated human neutrophils upon stimulation by cAMP in the presence of [gamma-32P]ATP. This protein could be immunoprecipitated by the Rap1A/B-specific antibody, R61. The 23-kDa phosphoprotein was monitored during the purification of Rap1 from neutrophil membrane extracts and was shown to copurify with Rap1 during the DEAE Sephacel, heptylamine Sepharose, and MonoQ chromatography steps utilized. The purified protein was phosphorylated to an extent of 1 mol phosphate/mol GTP gamma S bound. This protein was identified as Rap1A by: 1) amino acid sequence analysis; and 2) immunoblotting with a Rap1A-specific antibody. The amino acid phosphorylated on Rap1A by PKA was a serine residue. The site of phosphorylation was indicated by carboxypeptidase digestion and confirmed using a mutant recombinant Rap1A lacking the relevant serine (serine-180). Rap1A, not Rap1B, appears to be the major 23-kDa PKA substrate in human neutrophils. It is possible that Rap1A plays a role in human neutrophils in mediating the inhibitory effects of cAMP-elevating agents upon chemoattractant-stimulated cell activation.  相似文献   

16.
In addition to its well-known effects on parturition and lactation, oxytocin (OT) plays an important role in modulation of pain and nociceptive transmission. But, the mechanism of this effect is unclear. To address the possible role of OT on pain modulation at the peripheral level, the effects of OT on intracellular calcium levels ([Ca2+]i) in rat dorsal root ganglion (DRG) neurons were investigated by using an in vitro calcium imaging system. DRG neurons were grown in primary culture following enzymatic and mechanical dissociation of ganglia from 1- or 2-day-old neonatal Wistar rats. Using the fura-2-based calcium imaging technique, the effects of OT on [Ca2+]i and role of the protein kinase C (PKC)-mediated pathway in OT effect were assessed. OT caused a significant increase in basal levels of [Ca2+]i after application at the doses of 30 nM (n?=?34, p?<?0.01), 100 nM (n?=?41, p?<?0.001) and 300 nM (n?=?46, p?<?0.001). The stimulatory effect of OT (300 nM) on [Ca2+]i was persistent in Ca2+-free conditions (n?=?56, p?<?0.01). Chelerythrine chloride, a PKC inhibitor, significantly reduced the OT-induced increase in [Ca2+]i (n?=?28, p?<?0.001). We demonstrated that OT activates intracellular calcium signaling in cultured rat primary sensory neurons in a dose- and PKC-dependent mechanism. The finding of the role of OT in peripheral pain modification may serve as a novel target for the development of new pharmacological strategies for the management of pain.  相似文献   

17.
1. DEAE-cellulose chromatography of mouse brain cytosol indicated the presence of only the type II isoenzyme of cyclic AMP-dependent protein kinase. Mouse heart cytosol contained approximately equal amounts of the type I and type II isoenzymes. 2. Both brain and heart type II isoenzymes reassociated after a transient exposure to cyclic AMP, but the heart type I isoenzyme remained dissociated. 3. Elution of brain cytosol continuously exposed to cyclic AMP resolved multiple peaks of protein kinase and cyclic AMP-binding activities. A single peak of kinase and multiple peaks of cyclic AMP-binding activities were found under the same conditions with heart cytosol. Various control experiments suggested that the heterogeneity within the brain type II isoenzymic class had not been caused by proteolysis. 4. Kinetic experiments with unfractionated brain cytosol showed that the binding of cyclic AMP, the dissociation of cyclic AMP from protein and the rate of heat denaturation of the cyclic AMP-binding activity gave results consistent with the presence of multiple binding species. 5. It concluded that the type II isoenzymic peak obtained by DEAE-cellulose chromatography of mouse brain cytosol represents a class of enzymes containing multiple regulatory and catalytic subunits. The two heart cytosol isoenzymes contain a common catalytic subunit. The degree of protein kinase 'microheterogeneity", defined as the presence of multiple regulatory and/or catalytic subunits within a single isoenzymic class, appears to be tissue-specific.  相似文献   

18.
AMP-activated protein kinase (AMPK) is a sensor of cellular energy state in response to metabolic stress and other regulatory signals. AMPK is controlled by upstream kinases which have recently been identified as LKB1 or Ca2+/calmodulin-dependent protein kinase kinase beta (CaMKKbeta). Our study of human endothelial cells shows that AMPK is activated by thrombin through a Ca2+-dependent mechanism involving the thrombin receptor protease-activated receptor 1 and Gq-protein-mediated phospholipase C activation. Inhibition of CaMKK with STO-609 or downregulation of CaMKKbeta using RNA interference decreased thrombin-induced AMPK activation significantly, indicating that CaMKKbeta was the responsible AMPK kinase. In contrast, downregulation of LKB1 did not affect thrombin-induced AMPK activation but abolished phosphorylation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside. Thrombin stimulation led to phosphorylation of acetyl coenzyme A carboxylase (ACC) and endothelial nitric oxide synthase (eNOS), two downstream targets of AMPK. Inhibition or downregulation of CaMKKbeta or AMPK abolished phosphorylation of ACC in response to thrombin but had no effect on eNOS phosphorylation, indicating that thrombin-stimulated phosphorylation of eNOS is not mediated by AMPK. Our results underline the role of Ca2+ as a regulator of AMPK activation in response to a physiologic stimulation. We also demonstrate that endothelial cells possess two pathways to activate AMPK, one Ca2+/CaMKKbeta dependent and one AMP/LKB1 dependent.  相似文献   

19.
We have previously shown that the dispersion and aggregation of carotenoid droplets in goldfish xanthophores are regulated, respectively, by phosphorylation and dephosphorylation of a carotenoid droplet protein p57. There is a basal level of p57 phosphorylation of p57 in unstimulated cells, which is greatly stimulated by adrenocorticotropic hormone (ACTH) or cyclic adenosine monophosphate (cAMP) acting via cAMP-dependent protein kinase. We have also observed that, in permeabilized xanthophores, pigment dispersion can be induced when cAMP is replaced by fluoride. Since p57 has multiple phosphorylation sites, there is the question of whether all p57 phosphorylation is by cAMP-dependent protein kinase or whether phosphorylation by cAMP-independent protein kinase coupled with inhibition of phosphatase activity by fluoride can replace cAMP-dependent protein kinase and that the ability of fluoride to replace cAMP for pigment dispersion in permeabilized cells is probably due to activation of adenylcyclase. We also show that ACTH causes an approximately threefold increase in the level of cAMP in these cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号