首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一般认为,景观斑块面积和破碎化对物种丰富度和分布格局有重要的影响。在宁夏中部荒漠地区,天然柠条林和人工柠条林地交错排列,形成点、片、带状等大小不等的斑块性分布,表现为典型的破碎化斑块格局生境特征。本文采用巴氏罐诱法调查了在小尺度下荒漠景观人工柠条林破碎化生境不同斑块内地表甲虫的物种多样性。结果共获得10科20属29种地表甲虫,其中拟步甲科昆虫占绝对优势,阿小鳖甲Microdera kraatzi alashanica Skopin、克小鳖甲Microdera kraatzi kraatzi(Reitter)为优势种。Rarefaction曲线显示较大面积的斑块有较多的物种多样性,但群落多样性指数各斑间块差异不显著。利用斑块面积对物种数-个体数进行回归分析表明,地表甲虫的物种多样性受斑块面积的影响,生境破碎化会导致地表甲虫多样性下降。  相似文献   

2.
    
Forest fragmentation is thought to threaten primate populations, yet the mechanisms by which this occurs remain largely unknown. However, fragmentation is known to cause dietary shifts in several primate species, and links between food resource distribution and within-group spatial dynamics are well documented. Thus, fragmentation has the potential to indirectly affect spatial dynamics, and these changes may present additional stresses to fragmented populations. I present the results from a 12-month study of Propithecus diadema at Tsinjoarivo, eastern Madagascar, including two groups in fragments and two in continuous forest. Instantaneous data on activity and spatial position were collected during all-day focal animal follows. Fragment groups had much lower cohesion, being more likely to have no neighbor within 5 and 10 m. For continuous forest groups, cohesion was highest in the rainy season (when food patches are large) and lowest in winter (when the animals rely on small-crowned mistletoes), and the chance of having no neighbor within 5 m was positively correlated with mistletoe consumption. Thus their decreased cohesion in fragment groups is inferred to result from their increased reliance on mistletoes and other small resources, which causes them to spread out among multiple patches. This scenario is consistent with the reduced body mass of subordinate individuals (males and immatures) in fragments, and suggests the occurrence of steeper within-group fitness gradients. Further research is necessary to determine whether these patterns apply to other primates; however, since fragmentation tends to cause the loss of the largest trees, many primates in fragments may lose their largest food resources and undergo similar behavioral shifts.  相似文献   

3.
栖息地破碎是生物多样性下降的主要原因之一。栖息地破碎引起的面积效应、隔离效应和边缘效应能影响动物种群的绝灭阈值、分布、多度、种间关系以及生态系统过程, 最终影响动物种群的数量分布。2006年10-11月和2007年10-11月, 利用全球定位系统(GPS)、地理信息系统(GIS)和样方法定量分析京杭运河邵伯至高邮段狗獾栖息地破碎化程度, 确定不同斑块的面积、斑块距离、斑块隔离度以及栖息地质量对斑块中狗獾数量分布的影响。结果表明, 各个斑块内狗獾的洞口数、粪堆数与该斑块的面积显著的正相关(r=0.961, P=0.039; r=0.999, P=0.023), 但与斑块距离、斑块隔离度无显著的相关性(P>0.05)。栖息地的质量也会影响狗獾的数量分布, 多元线性逐步回归分析表明, 人类干扰和与栖息地的郁闭性显著的影响狗獾的数量分布。以上结果说明, 京杭运河邵伯高邮段栖息地的破碎化程度对狗獾的数量分布还没有造成显著的直接影响, 但会间接降低栖息地的质量, 进而影响狗獾的生存。  相似文献   

4.
Abstract Understanding patterns and processes of habitat change is essential for managing and conserving forest fragments in anthropogenically altered landscapes. Digitized aerial photographs from 1944 and 1996 were examined for changes to the indigenous forest landscape in the Karkloof‐Balgowan archipelago in KwaZulu–Natal, South Africa. Attributes relating to proximate land‐use, patch shape, isolation and position in the landscape were used to determine putative causes of forest change. The total change in forest area was ?5.7% (forest covered 6739 ha in 1996). This is contrasted with previous reports for the period 1880–1940 that estimated change in total forest area of up to ?80%. Attrition was the predominant process of forest transformation between 1944 and 1996. Despite little overall change in forest area, 786 mostly small (<0.5 ha) forest patches were lost from the landscape, leaving 1277 forest patches in 1996. An increase in patch isolation, but no change in patch cohesion accompanied the changes in forest area. Ignoring patches that were eliminated, 514 patches decreased in area. This was partly a function of patch size, but the conversion of natural grassland to commercial plantation forestry in the matrix also influenced forest decline. Their small size and irregular shape caused forest patches in the region to be vulnerable to edge effects. Core area declined in a negative exponential way with increasing edge width and the total area of edge habitat exceeded that of core habitat at an edge width of only 50 m. Nevertheless, total core area decreased by only 2% (65 ha) between 1944 and 1996 because most of the eliminated patches were small and contained no core area. The large Karkloof forest (1649 ha) is a conservation priority for forest interior species, but the ecological role and biodiversity value of small forest patches should not be overlooked.  相似文献   

5.
    
Loss and fragmentation of natural habitats are key contributors to the decline of populations and impoverishment of biological communities. The response to these disturbances can vary substantially among taxa and depends on spatial metrics of habitat fragments and the surrounding landscape. Herein we test how fragment area, shape, isolation, and matrix quality affect reptile richness, abundance, and occurrence in Brazilian Atlantic Forest fragments, a biodiversity hotspot with a poorly studied reptile fauna. We used 23 forest fragments, ranging from 2 to 30 hectares, surrounded by different matrix types, including sugarcane crop fields, cattle ranching, subsistence farmlands and rural communities. Species richness, total reptile abundance, population abundance, and occurrence probability of many species decreased with fragment area. Model selection suggested that fragment area is the main predictor of both richness and abundance, but matrix quality as well as fragment shape are also important predictors. For population abundance and occurrence probability, fragment area and proximity were the most important predictors followed by fragment shape and matrix quality, but the strength and even the sign of predictors varied substantially among species. We highlight that the value of small fragments should not be neglected for the conservation of Atlantic Forest reptiles.  相似文献   

6.
Forest fragmentation effects on palm diversity in central Amazonia   总被引:5,自引:0,他引:5  
1 The effects of fragmentation on quantitative measures of floristic diversity in a palm community were examined in the Biological Dynamics of Forest Fragments study area in central Amazonia. Three 1-ha, three 10-ha, two 100-ha and three continuous forest reserves, distributed among three sites, were surveyed. In each reserve, 10 20 × 20 m plots were sampled, resulting in a total of 110 plots representing 4.4 sampled hectares.
2 The taxon composition of this palm community was dominated by stemmed, understorey palms. A total of 23 225 individuals from 36 taxa was recorded; five of the taxa were not sampled in continuous forest.
3 Taxa richness did not vary across reserve size or sites unless taxa not sampled in the continuous forest were removed from the analysis. Smaller forest fragments then harboured fewer taxa in the seedling stage than large forest fragments or continuous forest, despite the short time since isolation (10–15 years). There was a significant effect of location on the number of taxa per plot for all life stages, but only seedling and total were significantly affected by reserve size.
4 Reserve size did not affect the Shannon and Evenness indices. Reserves of similar sizes were floristically more similar than reserves of very different sizes.
5 Palms are important for the structure and composition of the forest. Their conservation may require the establishment of a number of large reserves.  相似文献   

7.
    
We used dung beetles to evaluate the impact of urbanization on insect biodiversity in three Atlantic Forest fragments in Londrina, Paraná, Brazil. This study provides the first empirical evidence of the impact of urbanization on richness, abundance, composition and guild structure of dung beetle communities from the Brazilian Atlantic Forest. We evaluated the community aspects (abundance, richness, composition and food guilds) of dung beetles in fragments with different degrees of immersion in the urban matrix using pitfall traps with four alternative baits (rotten meat, rotten fish, pig dung and decaying banana). A total of 1 719 individuals were collected, belonging to 29 species from 11 genera and six Scarabaeinae tribes. The most urban‐immersed fragment showed a higher species dominance and the beetle community captured on dung presented the greatest evenness. The beetle communities were distinct with respect to the fragments and feeding habits. Except for the dung beetle assemblage in the most urbanized forest fragment, all others exhibited contrasting differences in species composition attracted to each bait type. Our results clearly show that the degree of urbanization affects Atlantic Forest dung beetle communities and that the preservation of forest fragments inside the cities, even small ones, can provide refuges for Scarabaeinae.  相似文献   

8.
    
Patch size is one of the most important factors affecting the distribution and abundance of species, and recent research has shown that patch size is an important niche dimension affecting community structure in aquatic insects. Building on this result, we examined the impact of patch size in conjunction with presence of larval anurans on colonization by aquatic insects. Hyla chrysoscelis (Cope''s gray treefrog) larvae are abundant and early colonists in fishless lentic habitats, and these larvae can fill multiple ecological roles. By establishing larvae in mesocosms prior to colonization, we were able to assess whether H. chrysoscelis larvae have priority effects on aquatic insect assemblages. We conducted a series of three experiments in naturally colonized experimental landscapes to test whether (1) H. chrysoscelis larval density affects insect colonization, (2) variation in patch size affects insect colonization, and (3) the presence and larval density of H. chrysoscelis shift colonization of insects between patches of different size. Larval density independently had almost no effect on colonization, while patch size had species‐specific effects consistent with prior work. When larvae and patch size were tested in conjunction, patch size had numerous, often strong, species‐specific effects on colonization; larval density had effects largely limited to the assemblages of colonizing beetles and water bugs, with few effects on individual species. Higher larval densities in large mesocosms shifted some insect colonization to smaller patches, resulting in higher beta diversity among small patches in proximity to high density large mesocosms. This indicates establishing H. chrysoscelis larvae prior to insect colonization can likely create priority effects that slightly shape insect communities. Our results support the importance of patch size in studying species abundances and distributions and also indicate that colonization order plays an important role in determining the communities found within habitat patches.  相似文献   

9.
    
Alpine/subalpine environments are diverse systems that support many endemic species. Worldwide, these ecosystems are under threat from ski resort disturbances – even in areas broadly designated for biodiversity conservation. The effects of ski resorts on reptiles are largely unknown, making it difficult to implement effective conservation actions. Many ski resorts do not currently address the needs of reptiles, even those listed as threatened, in their management plans. If reptiles are to continue inhabiting ski resorts in Australia, strategies must be implemented that target their conservation. To begin to address this problem, we summarise current research investigating the effects of ski resorts on reptiles. Based on this information, we recommend strategies that will enhance the conservation of reptiles in areas affected by ski‐related disturbances. Suggested strategies include (i) restricting intensive disturbances to already highly modified areas of Australian ski resorts, (ii) avoiding disturbance of remaining native vegetation and structural complexity in ski resorts and (iii) re‐establishing structural complexity at highly modified sites through revegetation programmes, or through the cessation of mowing during peak reptile activity periods. While these strategies are designed to facilitate the persistence of reptiles in ski resorts, their long‐term success can only be evaluated by monitoring their effectiveness.  相似文献   

10.
We assess the impact of habitat fragmentation on the effective size (N(e)) of local populations of the flightless ground beetle Carabus violaceus in a small (<25 ha) and a large (>80 ha) forest fragment separated by a highway. N(e) was estimated based on the temporal variation of allele frequencies at 13 microsatellite loci using two different methods. In the smaller fragment, N(e) estimates ranged between 59 and a few hundred, whereas values between 190 and positive infinity were estimated for the larger fragment. In both samples, we detected a signal of population decline, which was stronger in the small fragment. The estimated time of onset of this N(e) reduction was consistent with the hypothesis that recent road constructions have divided a continuous population into several isolated subpopulations. In the small fragment, N(e) of the local population may be so small that its long-term persistence is endangered.  相似文献   

11.
    
Habitat size, quality and isolation determine the genetic structure and diversity of populations and may influence their evolutionary potential and vulnerability to stochastic events. Small and isolated populations are subject to strong genetic drift and can lose much of their genetic diversity due to stochastic fixation and loss of alleles. The mountain white‐eye Zosterops poliogaster, a cloud forest bird species, is exclusively found in the high mountains of East Africa. We analysed 13 polymorphic microsatellites for 213 individuals of this species that were sampled at different points in time in three mountain massifs differing in habitat size, isolation and habitat degradation. We analysed the genetic differentiation among mountain populations and estimated the effective population sizes. Our results indicate three mountain‐specific genetic clusters. Time cohorts did not show genetic divergences, suggesting that populations are large enough to prevent strong drift effects. Effective population sizes were higher in larger and geographically interconnected habitat patches. Our findings underline the relevance of ecological barriers even for mobile species and show the importance of investigating different estimators of population size, including both approaches based on single and multiple time‐points of sampling, for the inference of the demographic status of a population. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 828–836.  相似文献   

12.
森林片断化是造成生物多样性丧失的主要原因之一,而林业活动是导致森林片断化的重要因素,同时也在森林恢复中起重要作用。本文从小尺度、局域尺度以及生物地理尺度(大尺度)3个生态尺度分析林业活动和森林片断化对甲虫多样性的影响。在小尺度下,林业活动能够通过改变森林生境或微生境的类型和特性而影响甲虫物种分布。在局域尺度下,林业活动(尤其是森林砍伐)往往能提高许多甲虫类群(如步甲)的物种丰富度(α多样性),这主要与来自周围环境物种扩散以及保留了若干耐受新环境能力较强的森林物种有关;然而,对森林生境依赖性很强的特有种受到了森林片断化的负面影响,面临局域种群灭绝的危险。在生物地理尺度下,林业活动(伐木或森林恢复)使森林生境单一化、异质性降低,从而导致对森林生境变化敏感的物种种群数量降低甚至灭绝。基于以上结果,可以归纳出3个基本原则用于指导林业管理,既能保证林业经济收益,又能维持森林生物多样性。首先,保留大面积的原始森林作为特有种的栖息环境基地,为这些物种在将来森林恢复后重新定居提供资源;其次,由于保护区内原始森林面积有限,且所代表的生境类型有限,所以发展依据自然干扰模式的新伐木方法十分必要;最后,依据自然规律(如火灾)进行森林恢复和天然演替,避免森林的单一化,丰富森林生境类型。  相似文献   

13.
大型食肉动物对维持生态系统的结构和功能具有重要作用, 但大部分大型食肉动物处在持续的种群数量和分布面积下降之中, 面临着急迫的研究与保护需求。华北豹(Panthera pardus japonensis)是我国特有的豹亚种, 也是部分区域森林生态系统中仅存的大型食肉动物, 面临着生境破碎化等威胁。本研究使用红外相机调查了宁夏六盘山国家级自然保护区华北豹的分布, 通过构建占域模型分析了华北豹的栖息地利用, 预测了华北豹的适宜栖息地, 并评估了其生境破碎化格局。研究发现, 华北豹在六盘山的平均占域率约为0.135。华北豹偏好植被发育成熟、地势崎岖、温度较低、远离农田和公路的栖息地, 对于农田边缘和居民点等人类活动区域未显示出显著回避。研究识别的六盘山华北豹适宜栖息地主要沿六盘山东西两侧山脉分布, 55%的适宜栖息地斑块位于六盘山国家级自然保护区内。栖息地斑块面积平均为16 km2, 最大达214 km2, 约77%的栖息地斑块面积在10 km2以下。研究表明六盘山国家级自然保护区有效地保护了华北豹现有的适宜栖息地, 但仍存在栖息地破碎化和人类活动干扰等关键限制因素。建议通过栖息地改造、人类活动管理等方式增强六盘山华北豹适宜栖息地斑块连通性; 并通过推动华北豹跨省保护工作等举措促进华北豹种群扩散恢复。  相似文献   

14.
    
Previous breeding-season studies of threatened New Zealand falcons (Falco novaeseelandiae) in plantation forests have suggested that falcons benefit when harvesting creates a mosaic of differently aged stands, especially where young and mature tree stands are adjacent. Thus, changes in the rate and pattern of harvesting may affect habitat heterogeneity by altering the size and distribution of forest patches. We sought to determine guidelines for harvesting that would most benefit falcons by increasing the carrying capacity of the forest for falcons. We used radio-tracking to determine the home-range sizes of non-breeding falcons over 3 seasons and compared winter home-range overlap in the most-selected land cover types by falcons (mature-young edges and open patches) with other land cover types. The distribution of open patches and edges between mature stands and recently cleared areas affected falcon home ranges, home-range overlap, and the likelihood of nesting. Specifically, home ranges were smaller as the density of edges and percentage of open patch increased, and there was greater home-range overlap between individuals in the most-selected land cover types. Numbers of falcons decreased as the size of open patches increased, concomitant with a decrease in edge size, the number of edge borders, and the number of open patches. The likelihood of nesting also decreased as open patch size increased. Our results indicate that smaller open patches spread through a forest, maximizing the amount of mature-young edges, will favor smaller home ranges and therefore potentially greater numbers of falcons. We recommend harvesting protocols that ensure that open patches (0–3-yr-old stands) are <4 km2 in size and retain at least small stands of mature pine to maintain a high density of edges. Similar protocols may increase the carrying capacity for other species occurring in managed systems involving fragmented landscapes or small reserves. © 2021 The Wildlife Society.  相似文献   

15.
    
Hanski's critique of the habitat amount hypothesis (Hanski, 2015, Journal of Biogeography, 42 , 989–993) does not actually constitute a test of the hypothesis, but rather a series of arguments for why he suspects that it is not correct. But the habitat amount hypothesis is exactly that – a hypothesis. It will remain ‘just’ a hypothesis until it has been rigorously tested against empirical data. To facilitate such testing, in Fahrig (2013, Journal of Biogeography, 40 , 1649–1663) I presented specific, testable predictions of the hypothesis. Here, I reiterate the main tests needed, in the hope that some readers will be encouraged to carry them out. I appreciate this opportunity to emphasize that the habitat amount hypothesis needs to be tested against empirical data, and I look forward to seeing the results of such tests.  相似文献   

16.
17.
18.
    
Increased dispersal of individuals among discrete habitat patches should increase the average number of species present in each local habitat patch. However, experimental studies have found variable effects of dispersal on local species richness. Priority effects, predators, and habitat heterogeneity have been proposed as mechanisms that limit the effect of dispersal on species richness. However, the size of a habitat patch could affect how dispersal regulates the number of species able to persist. We investigated whether habitat size interacted with dispersal rate to affect the number of species present in local habitats. We hypothesized that increased dispersal rates would positively affect local species richness more in small habitats than in large habitats, because rare species would be protected from demographic extinction. To test the interaction between dispersal rate and habitat size, we factorially manipulated the size of experimental ponds and dispersal rates, using a model community of freshwater zooplankton. We found that high‐dispersal rates enhanced local species richness in small experimental ponds, but had no effect in large experimental ponds. Our results suggest that there is a trade‐off between patch connectivity (a mediator of dispersal rates) and patch size, providing context for understanding the variability observed in dispersal effects among natural communities, as well as for developing conservation and management plans in an increasingly fragmented world.  相似文献   

19.
    
  • 1 Habitat loss, habitat fragmentation and habitat degradation are the greatest threats to mammals in Europe and the rest of the world. Despite the fact that extensive literature exists, no comprehensive review or synthesis is available to date and this may slow down scientific progress and hamper conservation efforts.
  • 2 The goal of this study is to understand if and in what direction progress has been made in the study of the effects of habitat loss and fragmentation on the spatial distribution of European terrestrial mammals. Firstly, we carry out a general synthesis which is structured around 11 key points. The aim of this point‐by‐point analysis is to identify trends, knowledge gaps and any significant bias in the available literature, and to highlight strengths and shortfalls of the different approaches which have to date been applied. Secondly, we follow a species‐specific systematic approach: for each species, we synthesise key results.
  • 3 Our results show how substantial progress has been hampered for several reasons including: a large predominance of small‐scale field studies of short duration, and a generalised lack of control of: (i) confounding variables; (ii) spatial autocorrelation; and (iii) false absences. Also, despite the relatively high number of studies, few were theoretical studies and even fewer were meta‐analyses. The lack of meta‐analyses is likely to be due to the small amount of crucial details included in the publications, such as model parameters or information on the landscape context (such as the amount of residual forest cover).
  • 4 We synthesise the main results for 14 species. The level of progress is highly variable: for some species, such as the red squirrel Sciurus vulgaris, a series of long‐term, large‐scale process‐oriented studies has allowed an in‐depth understanding of its ecology in fragmented landscapes. On the other hand, with other species such as the bank vole Myodes glareolus, despite a relatively large number of field studies, little progress has been made.
  相似文献   

20.
祖悦晴  魏妍儿  张曦文  于德永 《生态学报》2022,42(17):6937-6947
快速的城市化过程带来的生境斑块破碎化及损失会影响物种迁移、捕食等生态活动,对生物多样性构成威胁。然而,现有生态保护区可能无法覆盖其内生物的必要活动范围。生态保护区外的生境斑块对于维持生态过程也具有重要作用,因此识别生态保护区外的关键斑块并加以保护非常重要。以北京市延庆区为研究区,划分两种生境斑块,即核心生境斑块和潜在生境斑块,并基于图论构建生境网络。考虑地表覆盖类型、坡度、人类活动等因素构建生境阻力面。结合未来土地利用类型变化的模拟,研究城市化过程对区域生境网络和景观连接度的影响,选用CLUE-S模型模拟土地利用类型变化的格局。结合生境斑块特征和未来城市土地利用变化情况设计了3种未来生境变化情景。利用连接概率指数(PC)和网络连接度变化率(dI)评价不同生境变化情景下生态保护区外潜在生境斑块的景观连接度重要性,判断保护优先顺序,并分析景观格局变化对不同迁移能力物种的影响。结果表明:生态保护区外的全部潜在生境斑块对维持生境整体景观连接度有最大2.15%的影响,单个潜在生境斑块对维持景观连接度有最大0.28%的影响。此外,景观格局及其变化对不同迁移能力物种的影响差异显著,因此需针对保护物种和城市生境特征设计保护方案,研究区需要优先保护大中型斑块和位于关键位置的小型斑块。为了满足对生物多样性保护的需求,建议在区分生境斑块保护优先顺序时考虑生境斑块对景观连接度的贡献和城市化扩展过程的压力。研究为城市生物多样性保护和生境管理提供了方法参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号