首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For the bivoltine (Dazao) strain of the silkworm Bombyx mori L., diapause expression in progeny is induced by exposure to conditions of 25 °C and continuous illumination (LL) during the maternal generation, whereas an environment of 15 °C and constant darkness (DD) results in nondiapause progeny. Initiation of diapause in progeny can be prevented by treatment of diapause‐programmed eggs with hydrochloric acid (HCl) at approximately 24 h post‐oviposition. To investigate whether glutathione is involved in the regulation of diapause induction and initiation in this species, measurements of total glutathione, reduced glutathione (GSH), oxidised glutathione (GSSG), GSH/GSSG ratio, glutathione S‐transferase (GST) and peroxiredoxins (Prdx) are compared in eggs incubated under LL and DD conditions, and between diapause eggs and those treated with HCl. Compared with DD, eggs incubated under LL have higher total glutathione (GSH + 2GSSG), lower GSH, higher GSSG, a lower GSH/GSSG ratio, lower GST activity and higher Prdx activity at stages 20–25 of maternal embryogenesis. The lower ratio of GSH/GSSG is indicative of pro‐oxidative conditions during diapause induction, which may result from the stronger oxidation of GSH. Compared with HCl‐treated eggs, diapause eggs have lower total glutathione, no difference in GSH, lower GSSG, a higher GSH/GSSG ratio, no difference in GST activity and lower Prdx between 36 and 72 h post‐oviposition. The higher ratio GSH/GSSG is indicative of reducing conditions during diapause initiation, which may a result of the weaker oxidation of GSH. Moreover, variations of Prdx and GST suggest that Prdx rather than GST plays an important role in the oxidation of GSH during the induction and initiation of diapause.  相似文献   

2.
赵林川  时连根 《昆虫学报》2010,53(12):1333-1338
即时浸酸在阻止家蚕Bombyx mori卵滞育发动的同时, 显著提高了家蚕卵H2O2含量。还原型谷胱甘肽(reduced glutathione, GSH)与氧化型谷胱甘肽(oxidized glutathione, GSSG)的比值是一种氧化胁迫状态的动态指标。为了调查即时浸酸是否造成滞育家蚕卵氧化胁迫, 本研究利用分光光度法分别测定了滞育家蚕卵和5 min即时浸酸滞育家蚕卵中GSH和GSSG含量以及谷胱甘肽转移酶(glutathione-S-transferase, GST)活性。结果表明: 处理后24 h, 即时浸酸处理家蚕卵的总谷胱甘肽(GSH+2GSSG)含量、 GSH含量、 GSSG含量、 GSH/GSSG比值和GST活性分别相当于同期滞育家蚕卵的204%, 78%, 550%, 14%和97%。据此推测, 即时浸酸在阻止滞育发动的同时, 可能通过促进GSH氧化为GSSG, 而显著降低了GSH/GSSG比值, 使家蚕卵处于过氧化状态。  相似文献   

3.
Molecular oxygen is key to aerobic life but is also converted into cytotoxic byproducts referred to as reactive oxygen species (ROS). Intracellular defense systems that protect cells from ROS-induced damage include glutathione reductase (GR), thioredoxin reductase (TrxR), superoxide dismutase (Sod), and catalase (Cat). Sod and Cat constitute an evolutionary conserved ROS defense system against superoxide; Sod converts superoxide anions to H(2)O(2), and Cat prevents free hydroxyl radical formation by breaking down H(2)O(2) into oxygen and water. As a consequence, they are important effectors in the life span determination of the fly Drosophila. ROS defense by TrxR and GR is more indirect. They transfer reducing equivalents from NADPH to thioredoxin (Trx) and glutathione disulfide (GSSG), respectively, resulting in Trx(SH)(2) and glutathione (GSH), which act as effective intracellular antioxidants. TrxR and GR were found to be molecularly conserved. However, the single GR homolog of Drosophila specifies TrxR activity, which compensates for the absence of a true GR system for recycling GSH. We show that TrxR null mutations reduce the capacity to adequately protect cells from cytotoxic damage, resulting in larval death, whereas mutations causing reduced TrxR activity affect pupal eclosion and cause a severe reduction of the adult life span. We also provide genetic evidence for a functional interaction between TrxR, Sod1, and Cat, indicating that the burden of ROS metabolism in Drosophila is shared by the two defense systems.  相似文献   

4.
Thioredoxin reductase (TrxR) is a pivotal regulator of redox homeostasis, while dysregulation of redox homeostasis is a hallmark for cancer cells. Thus, there is considerable potential to inhibit the aberrantly upregulated TrxR in cancer cells to discover selective cancer therapeutic agents. Nevertheless, the structural types of TrxR inhibitors presented currently are still relatively limited. We herein report that PACMA 31, previously reported to inhibit protein disulfide isomerase (PDI), is a potent TrxR inhibitor. PACMA 31 possesses a pharmacophore scaffold that is structurally different from the announced TrxR inhibitors and exhibits effective cytotoxicity against cervical cancer cells. Our results reveal that PACMA 31 selectively inhibits TrxR over the related glutathione reductase (GR) and in the presence of reduced glutathione (GSH). Further studies with mutant enzyme and molecular docking suggest that the propynamide fragment of PACMA 31 interacts covalently with the selenocysteine residue of TrxR. Moreover, PACMA 31 effectively and selectively curbs TrxR activity in cells and further stimulates the production of reactive oxygen species (ROS) at low micromolar concentrations, which in turn triggers the accumulation of oxidized thioredoxin (Trx) and GSSG in cells. Follow-up studies demonstrate that PACMA 31 targets TrxR in cells to induce oxidative stress-mediated cancer cell apoptosis. Our results provide a new structural type of TrxR inhibitor that may serve as a useful probe for investigating the biology of TrxR-implicated pathways, and uncover a new target of PACMA 31 that contributes to it becoming a candidate for cancer treatment.  相似文献   

5.
Urig S  Lieske J  Fritz-Wolf K  Irmler A  Becker K 《FEBS letters》2006,580(15):3595-3600
The substrate spectrum of human thioredoxin reductase (hTrxR) is attributed to its C-terminal extension of 16 amino acids carrying a selenocysteine residue. The concept of an evolutionary link between thioredoxin reductase and glutathione reductase (GR) is presently discussed and supported by the fact that almost all residues at catalytic and substrate recognition sites are identical. Here, we addressed the question if a deletion of the C-terminal part of TrxR leads to recognition of glutathione disulfide (GSSG), the substrate of GR. We introduced mutations at the putative substrate binding site to enhance GSSG binding and turnover. However, none of these enzyme species accepted GSSG as substrate better than the full length cysteine mutant of TrxR, excluding a role of the C-terminal extension in preventing GSSG binding. Furthermore, we show that GSSG binding at the N-terminal active site of TrxR is electrostatically disfavoured.  相似文献   

6.
The bivoltine silkworm Bombyx mori (Lepidoptera: Bombycidae) exhibits a maternally controlled embryonic diapause. Maternal silkworms decide whether to lay diapause or nondiapause eggs depending on environmental factors such as the temperature and photoperiod during the egg and larval stages, and then induce diapause eggs during the pupal stage. However, little is known about the molecular mechanism that conveys the outcome of whether to produce diapause or nondiapause eggs from the egg or larval stages to the pupal stage. This study used microarray analysis to investigate differentially expressed genes in the larval brains of diapause‐ and nondiapause‐egg producers, to which bivoltine silkworms were destined by thermal or photic stimulation during the egg stage. The cytochrome P450 18a1 and Krüppel homolog 1 genes were upregulated in producers of diapause eggs compared with those of nondiapause eggs under both experimental conditions. Cytochrome P450 18a1 encodes a key enzyme for steroid hormone inactivation and Krüppel homolog 1 is an early juvenile hormone‐inducible gene that mediates the repression of metamorphosis. The upregulation of these genes during the larval stage might be involved in the signaling pathway that transmits information about the diapause program from the egg stage to the pupal stage in the silkworm.  相似文献   

7.
The main function of reduced glutathione (GSH) is to protect from oxidative stress as a reactive oxygen scavenger. However, in the context of redox regulation, the ratio between GSH and its oxidized form (GSSG) determines the redox state of redox-sensitive cysteines in some proteins and, thus, acts as a signaling system. While GSH/GSSG can catalyze oxido-reduction of intra- and inter-chain disulfides by thiol-disulfide exchange, this review focuses on the formation of mixed disulfides between glutathione and proteins, also known as glutathionylation. The review discusses the regulatory role of this post-translational modification and the role of protein disulfide oxidoreductases (thioredoxin/thioredoxin reductase, glutaredoxin, protein disulfide isomerase) in the reversibility of this process.  相似文献   

8.
In most organisms, thioredoxin (Trx) and/or glutathione (GSH) systems are essential for redox homeostasis and deoxyribonucleotide synthesis. Platyhelminth parasites have a unique and simplified thiol-based redox system, in which the selenoprotein thioredoxin-glutathione reductase (TGR), a fusion of a glutaredoxin (Grx) domain to canonical thioredoxin reductase domains, is the sole enzyme supplying electrons to oxidized glutathione (GSSG) and Trx. This enzyme has recently been validated as a key drug target for flatworm infections. In this study, we show that TGR possesses GSH-independent deglutathionylase activity on a glutathionylated peptide. Furthermore, we demonstrate that deglutathionylation and GSSG reduction are mediated by the Grx domain by a monothiolic mechanism and that the glutathionylated TGR intermediate is resolved by selenocysteine. Deglutathionylation and GSSG reduction via Grx domain, but not Trx reduction, are inhibited at high [GSSG]/[GSH] ratios. We found that Trxs (cytosolic and mitochondrial) provide alternative pathways for deglutathionylation and GSSG reduction. These pathways are operative at high [GSSG]/[GSH] and function in a complementary manner to the Grx domain-dependent one. Despite the existence of alternative pathways, the thioredoxin reductase domains of TGR are an obligate electron route for both the Grx domain- and the Trx-dependent pathways. Overall, our results provide an explanation for the unique array of thiol-dependent redox pathways present in parasitic platyhelminths. Finally, we found that TGR is inhibited by 1-hydroxy-2-oxo-3-(N-3-methyl-aminopropyl)-3-methyl-1-triazene (NOC-7), giving further evidence for NO donation as a mechanism of action for oxadiazole N-oxide TGR inhibitors. Thus, NO donors aimed at TGR could disrupt the entire redox homeostasis of parasitic flatworms.  相似文献   

9.
Trotter EW  Grant CM 《EMBO reports》2003,4(2):184-188
Our studies in yeast show that there is an essential requirement for either an active thioredoxin or an active glutathione (GSH)–glutaredoxin system for cell viability. Glutathione reductase (Glr1) and thioredoxin reductase (Trr1) are key regulatory enzymes that determine the redox state of the GSH–glutaredoxin and thioredoxin systems, respectively. Here we show that Trr1 is required during normal cell growth, whereas there is no apparent requirement for Glr1. Analysis of the redox state of thioredoxins and glutaredoxins in glr1 and trr1 mutants reveals that thioredoxins are maintained independently of the glutathione system. In contrast, there is a strong correlation between the redox state of glutaredoxins and the oxidation state of the GSSG/2GSH redox couple. We suggest that independent redox regulation of thioredoxins enables cells to survive in conditions under which the GSH–glutaredoxin system is oxidized.  相似文献   

10.
11.
Thioredoxin reductase 1 (TrxR1) in cytosol is the only known reductant of oxidized thioredoxin 1 (Trx1) in vivo so far. We and others found that aurothioglucose (ATG), a well known active-site inhibitor of TrxR1, inhibited TrxR1 activity in HeLa cell cytosol but had no effect on the viability of the cells. Using a redox Western blot analysis, no change was observed in redox state of Trx1, which was mainly fully reduced with five sulfhydryl groups. In contrast, auranofin killed cells and oxidized Trx1, also targeting mitochondrial TrxR2 and Trx2. Combining ATG with ebselen gave a strong synergistic effect, leading to Trx1 oxidation, reactive oxygen species accumulation, and cell death. We hypothesized that there should exist a backup system to reduce Trx1 when only TrxR1 activity was lost. Our results showed that physiological concentrations of glutathione, NADPH, and glutathione reductase reduced Trx1 in vitro and that the reaction was strongly stimulated by glutaredoxin1. Simultaneous depletion of TrxR activity by ATG and glutathione by buthionine sulfoximine led to overoxidation of Trx1 and loss of HeLa cell viability. In conclusion, the glutaredoxin system and glutathione have a backup role to keep Trx1 reduced in cells with loss of TrxR1 activity. Monitoring the redox state of Trx1 shows that cell death occurs when Trx1 is oxidized, followed by general protein oxidation catalyzed by the disulfide form of thioredoxin.  相似文献   

12.
Thioredoxin (Trx) is a protein disulfide reductase that, together with nicotinamide adenine dinucleotide phosphate (NADPH) and thioredoxin reductase (TrxR), controls oxidative stress or redox signaling via thiol redox control. Human cytosolic Trx1 has Cys32 and Cys35 as the active site and three additional cysteine residues (Cys62, Cys69, and Cys73), which by oxidation generates inactive Cys62 to Cys69 two-disulfide Trx. This, combined with TrxR with a broad substrate specificity, complicates assays of mammalian Trx and TrxR. We sought to understand the autoregulation of Trx and TrxR and to generate new methods for quantification of Trx and TrxR. We optimized the synthesis of two fluorescent substrates, di-eosin–glutathione disulfide (Di-E–GSSG) and fluorescein isothiocyanate-labeled insulin (FiTC–insulin), which displayed higher fluorescence on disulfide reduction. Di-E–GSSG showed a very large increase in fluorescence quantum yield but had a relatively low affinity for Trx and was also a weak direct substrate for TrxR, in contrast to GSSG. FiTC–insulin was used to develop highly sensitive assays for TrxR and Trx. Reproducible conditions were developed for reactivation of modified Trx, commonly present in frozen or oxidized samples. Trx in cell extracts and tissue samples, including plasma and serum, were subsequently analyzed, showing highly reproducible results and allowing measurement of trace amounts of Trx.  相似文献   

13.
Ribonucleotide reductase (RNR) activity requires an electron donor, which in bacteria, yeast, and plants is usually either reduced thioredoxin (Trx) or reduced glutaredoxin. Mice lacking glutathione reductase are viable and, although mice lacking thioredoxin reductase 1 (TrxR1) are embryonic-lethal, several studies have shown that mouse cells lacking the txnrd1 gene, encoding TrxR1, can proliferate normally. To better understand the in vivo electron donor requirements for mammalian RNR, we here investigated whether replication of TrxR1-deficient hepatocytes in mouse livers either employed an alternative source of Trx-reducing activity or, instead, solely relied upon the glutathione (GSH) pathway. Neither normal nor genetically TrxR1-deficient livers expressed substantial levels of mRNA splice forms encoding cytosolic variants of TrxR2, and the TrxR1-deficient livers showed severely diminished total TrxR activity, making it unlikely that any alternative TrxR enzyme activities complemented the genetic TrxR1 deficiency. To test whether the GSH pathway was required for replication, GSH levels were depleted by administration of buthionine sulfoximine (BSO) to juvenile mice. In controls not receiving BSO, replicative indexes were similar in hepatocytes having two, one, or no functional alleles of txnrd1. After BSO treatment, hepatocytes containing either two or one copies of this gene were also normal. However, hepatocytes completely lacking a functional txnrd1 gene exhibited severely reduced replicative indexes after GSH depletion. We conclude that hepatocyte proliferation in vivo requires either GSH or at least one functional allele of txnrd1, demonstrating that either the GSH- or the TrxR1-dependent redox pathway can independently support hepatocyte proliferation during liver growth.  相似文献   

14.
15.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

16.
为了建立家蚕Bombyx mori的药物筛选和毒性评价模型, 以剂量为2 000 mg/kg的抗结核模药异烟肼饲喂家蚕5龄第3天幼虫后检测其中肠和脂肪体的抗氧化解毒相关代谢的变化。结果表明: 雌蚕中肠组织中, 总谷胱甘肽(GSH+2GSSG)、 还原型谷胱甘肽(reduced glutathione, GSH)和氧化型谷胱甘肽(oxidized glutathione, GSSG)含量均呈现迅速上升再缓慢下降趋势; 谷胱甘肽S 转移酶(glutathione S-transferase, GST)活性升高到较大值后逐渐降低; GSH/GSSG的比值下降表明, 在72 min后中肠组织向氧化态转移。脂肪体组织中, 总谷胱甘肽、 GSH和GSSG含量变化均呈现迅速下降再迅速上升的趋势; GST活性达到最大值后逐渐降低后趋于平稳; GSH/GSSG比值升高表明, 在72 min后脂肪体组织向还原态转移。无论雌蚕还是雄蚕, 总谷胱甘肽、 GSH和GSSG含量以及GST活性均是脂肪体高于中肠。雌蚕的总谷胱甘肽含量、 GSH和GSSG含量高于雄蚕, 但雄蚕的GST活性高于雌性。结果说明, 摄入异烟肼引起了家蚕幼虫体内谷胱甘肽氧化还原状态的改变和酶活性的变化, 在这个过程中脂肪体起主要解毒代谢作用。  相似文献   

17.
The changes of ascorbic acid, dehydroascorbic acid, and glutathione content and related enzyme activities were studied in apple buds during dormancy and thidiazuron-induced bud break. An increase in ascorbic acid, reduced form of glutathione (GSH), total glutathione, total non-protein thiol (NPSH) and non-glutathione thiol (RSH) occurred as a result of induction by thidiazuron during bud break, whereas dehydroascorbic acid and oxidized glutathione (GSSG) decreased during the same period. Thidiazuron also enhanced the ratio of GSH/GSSG, and activities of ascorbate free radical reductase (AFR; EC 1.6.5.4), ascorbate peroxidase (EC 1.11.1.11). dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2). The ascorbic acid content and the activities of AFR, ascorbate peroxidase, and DHAR peaked when buds were in the side green or green tip stage just prior to the start of rapid expansion, and declined thereafter. The GSH, NPSH, RSH, ratio of GSH/GSSG, and activities of GR increased steadily during bud development.  相似文献   

18.
Cellular mechanisms that maintain redox homeostasis are crucial, providing buffering against oxidative stress. Glutathione, the most abundant low molecular weight thiol, is considered the major cellular redox buffer in most cells. To better understand how cells maintain glutathione redox homeostasis, cells of Saccharomyces cerevisiae were treated with extracellular oxidized glutathione (GSSG), and the effect on intracellular reduced glutathione (GSH) and GSSG were monitored over time. Intriguingly cells lacking GLR1 encoding the GSSG reductase in S. cerevisiae accumulated increased levels of GSH via a mechanism independent of the GSH biosynthetic pathway. Furthermore, residual NADPH-dependent GSSG reductase activity was found in lysate derived from glr1 cell. The cytosolic thioredoxin-thioredoxin reductase system and not the glutaredoxins (Grx1p, Grx2p, Grx6p, and Grx7p) contributes to the reduction of GSSG. Overexpression of the thioredoxins TRX1 or TRX2 in glr1 cells reduced GSSG accumulation, increased GSH levels, and reduced cellular glutathione Eh′. Conversely, deletion of TRX1 or TRX2 in the glr1 strain led to increased accumulation of GSSG, reduced GSH levels, and increased cellular Eh′. Furthermore, it was found that purified thioredoxins can reduce GSSG to GSH in the presence of thioredoxin reductase and NADPH in a reconstituted in vitro system. Collectively, these data indicate that the thioredoxin-thioredoxin reductase system can function as an alternative system to reduce GSSG in S. cerevisiae in vivo.  相似文献   

19.
20.
The enzyme glutathione reductase (GR) recycles oxidized glutathione (GSSG) by converting it to the reduced form (GSH) in an NADPH-dependent manner. A specific antibody raised against recombinant rat GR was used to localize the protein in the female reproductive organs during the estrous cycle in the rat. In the ovary, the strongest reactivity to the antibody was observed in oocytes, followed by granulosa cells, corpus luteum, and interstitial cells. A strongly positive reaction was also observed mainly in the oviduct epithelia, uterine epithelia, and endometrial gland in the reproductive tract. Oviducts contained the highest GR activity. The GR activity of uterus during metestrus was about twice as high as that for other stages of the cycle. The levels of GR proteins in the tissues roughly matched the activities. The expression of the GR mRNA was highest during metestrus. Because GSH is known to increase gamete viability and the efficiency of fertility, GR, which is expressed in these tissues, is predicted to play a pivotal role in the reproduction process as a source of GSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号