首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ferritins are primary iron storage proteins and play a crucial role in iron storage and detoxification. Yeast two‐hybrid method was employed to screen the cDNA library of Phascolosoma esculenta. Sequence of positive colony FER147 was analyzed. The higher similarity and conserved motifs for ferritin indicated that it belonged to a new member of ferritin family. The interaction between Ferritin and Fer147 was further confirmed through co‐immunoprecipitation. The pET‐28a‐FER147 prokaryotic expression vector was constructed. The expressed recombinant Fer147 was then isolated, purified, and refolded. When ferritins were treated by different heavy metals, several detection methods, including scanning electron microscopy (SEM), circular dichroism (CD), and inductively coupled plasma–mass spectrometry (ICP‐MS) were applied to examine the structures and functions of the new protein Fer147, recombinant P. esculenta ferritin (Rferritin), and natural horse‐spleen ferritin (Hferritin). SEM revealed that the three ferritin aggregates changed obviously after different heavy metals treatment, meanwhile, a little different in aggregates were detected when the ferritins were trapped by the same heavy metal. Hence, changes in aggregation structure of the three proteins are related to the nature of the different heavy metals and the interaction between the heavy metals and the three ferritins. CD data suggested that the secondary structure of the three ferritins hardly changed after different heavy metals were trapped. ICP–MS revealed that the ferritins exhibit different enrichment capacities for various heavy metals. In particular, the enrichment capacity of the recombinant Fer147 and Rferritin is much higher than that of hferritin.  相似文献   

3.
The organization of two closely clustered genes, Fer1HCH and Fer2LCH, encoding the heavy-chain homolog (HCH) and the light-chain homolog (LCH) subunits of Drosophila melanogaster ferritin are reported here. The 5019-bp sequence of the cluster was assembled from genomic fragments obtained by polymerase chain reaction (PCR) amplification of genomic DNA and from sequences obtained from the Berkeley Drosophila Genome Project (BDGP) (http://www.fruitfly.org). These genes, located at position 99F1, have different exon-intron structures (Fer1HCH has three introns and Fer2LCH has two introns) and are divergently transcribed. Computer analysis of the possibly shared promoter regions revealed the presence of putative metal regulatory elements (MREs), a finding consistent with the upregulation of these genes by iron, and putative NF-kappaB-like binding sites. The structure of two other invertebrate ferritin genes, from the nematode Caenorhabditis elegans (located on chromosomes I and V), was also analyzed. Both nematode genes have two introns, lack iron-responsive elements (IREs), and encode ferritin subunits similar to vertebrate H chains. These findings, along with comparisons of ferritin genes from invertebrates, vertebrates, and plants, suggest that the specialization of ferritin H and L type chains, the complex exon-intron organization of plant and vertebrate genes, and the use of the IRE/iron regulatory protein (IRP) mechanism for regulation of ferritin synthesis are recent evolutionary acquisitions.  相似文献   

4.
Insect secreted ferritins are composed of subunits, which resemble heavy and light chains of vertebrate cytosolic ferritins. We describe here the cloning, expression and characterization of cDNAs encoding the ferritin heavy-chain homologue (HCH) and light-chain homologue (LCH) from the mulberry longicorn beetle, Apriona germari (Coleoptera, Cerambycidae). The A. germari ferritin LCH and HCH cDNA sequences were comprised of 672 and 636 bp encoding 224 and 212 amino acid residues, respectively. The A. germari ferritin HCH subunit contained the conserved motifs for the ferroxidase center typical of vertebrate ferritin heavy chains and the iron-responsive element (IRE) sequence with a predicted stem-loop structure was present in the 5′-untranslated region (UTR) of ferritin HCH mRNA. However, the A. germari ferritin LCH subunit had no IRE at its 5′-UTR and ferroxidase center residues. Phylogenetic analysis confirmed the deduced protein sequences of A. germari ferritin HCH and LCH being divided into two types, G type (LCH) and S type (HCH). Southern blot analysis suggested the possible presence of each A. germari ferritin subunit gene as a single copy and Northern blot analysis confirmed a higher expression pattern in midgut than fat body. The cDNAs encoding the A. germari ferritin subunits were expressed as approximately 30 kDa (LCH) and 26 kDa (HCH) polypeptides in baculovirus-infected insect cells. Western blot analysis and iron staining assay confirmed that A. germari ferritin has a native molecular mass of approximately 680 kDa.  相似文献   

5.
Oligodendrocytes stain more strongly for iron than any other cell in the CNS, and they require iron for the production of myelin. For most cell types transferrin is the major iron delivery protein, yet neither transferrin receptor protein nor mRNA are detectable in mature oligodendrocytes. Thus an alternative iron delivery mechanism must exist. Given the significant long term consequences of developmental iron deficiency and the iron requirements for normal myelination, identification of the iron delivery mechanism for oligodendrocytes is important. Previously we have reported that oligodendrocytes bind H‐ferritin and that H‐ferritin binds to white matter tracts in vivo. Recently, T cell immunoglobulin and mucin domain‐containing protein‐2 (Tim‐2) was shown to bind and internalize H‐ferritin. In the present study we show that Tim‐2 is expressed on oligodendrocytes both in vivo and in vitro. Further, the onset of saturable H‐ferritin binding in CG4 oligodendrocyte cell line is accompanied by Tim‐2 expression. Application of a blocking antibody to the extracellular domain of Tim‐2 significantly reduces H‐ferritin binding to the differentiated CG4 cells and primary oligodendrocytes. Tim‐2 expression on CG4 cells is responsive to iron; decreasing with iron loading and increasing with iron chelation. Taken together, these data provide compelling evidence that Tim‐2 is the H‐ferritin receptor on oligodendrocytes suggesting it is the primary mechanism for iron acquisition by these cells.  相似文献   

6.
Diseases transmitted by hematophagous (blood-feeding) insects are responsible for millions of human deaths worldwide. In hematophagous insects, the blood meal is important for regulating egg maturation. Although a high concentration of iron is toxic for most organisms, hematophagous insects seem unaffected by the iron load in a blood meal. One means by which hematophagous insects handle this iron load is, perhaps, by the expression of iron-binding proteins, specifically the iron storage protein ferritin. In vertebrates, ferritin is an oligomer composed of two types of subunits called heavy and light chains, and is part of the constitutive antioxidant response. Previously, we found that the insect midgut, a main site of iron load, is also a primary site of ferritin expression and that, in the yellow fever mosquito, Aedes aegypti, the expression of the ferritin heavy-chain homologue (HCH) is induced following blood feeding. We now show that the expression of the Aedes ferritin light-chain homologue (LCH) is also induced with blood-feeding, and that the genes of the LCH and HCH are tightly clustered. mRNA levels for both LCH- and HCH-genes increase with iron, H2O2 and hemin treatment, and the temporal expression of the genes is very similar. These results confirm that ferritin could serve as the cytotoxic protector in mosquitoes against the oxidative challenge of the bloodmeal. Finally, although the Aedes LCH has no iron responsive element (IRE) at its 5'-untranslated region (UTR), the 5'-UTR contains several introns that are alternatively spliced, and this alternative splicing event is different from any ferritin message seen to date.  相似文献   

7.
Iron is an important element for many essential processes in living organisms. To acquire iron, the basidiomycete Ustilago maydis synthesizes the iron‐chelating siderophores ferrichrome and ferrichrome A. The chemical structures of these siderophores have been elucidated long time ago but so far only two enzymes involved in their biosynthesis have been described. Sid1, an ornithine monoxygenase, is needed for the biosynthesis of both siderophores, and Sid2, a non‐ribosomal peptide synthetase (NRPS), is involved in ferrichrome generation. In this work we identified four novel enzymes, Fer3, Fer4, Fer5 and Hcs1, involved in ferrichrome A biosynthesis in U. maydis. By HPLC‐MS analysis of siderophore accumulation in culture supernatants of deletion strains, we show that Fer3, an NRPS, Fer4, an enoyl‐coenzyme A (CoA)‐hydratase, and Fer5, an acylase, are required for ferrichrome A production. We demonstrate by conditional expression of the hydroxymethyl glutaryl (HMG)‐CoA synthase Hcs1 in U. maydis that HMG‐CoA is an essential precursor for ferrichrome A. In addition, we heterologously expressed and purified Hcs1, Fer4 and Fer5, and demonstrated the enzymatic activities by in vitro experiments. Thus, we describe the first complete fungal siderophore biosynthetic pathway by functionally characterizing four novel genes responsible for ferrichrome A biosynthesis in U. maydis.  相似文献   

8.
The phototrophic alpha‐proteobacterium, Rhodopseudomonas palustris, is a model for studies of regulatory and physiological parameters that control the activity of nitrogenase. This enzyme produces the energy‐rich compound H2, in addition to converting N2 gas to NH3. Nitrogenase is an ATP‐requiring enzyme that uses large amounts of reducing power, but the electron transfer pathway to nitrogenase in R. palustris was incompletely known. Here, we show that the ferredoxin, Fer1, is the primary but not sole electron carrier protein encoded by R. palustris that serves as an electron donor to nitrogenase. A flavodoxin, FldA, is also an important electron donor, especially under iron limitation. We present a model where the electron bifurcating complex, FixABCX, can reduce both ferredoxin and flavodoxin to transfer electrons to nitrogenase, and we present bioinformatic evidence that FixABCX and Fer1 form a conserved electron transfer pathway to nitrogenase in nitrogen‐fixing proteobacteria. These results may be useful in the design of strategies to reroute electrons generated during metabolism of organic compounds to nitrogenase to achieve maximal activity.  相似文献   

9.
Patients with alcoholic liver disease (ALD) often display disturbed iron indices. Hepcidin, a key regulator of iron metabolism, has been shown to be down‐regulated by alcohol in cell lines and animal models. This down‐regulation led to increased duodenal iron transport and absorption in animals. In this study, we investigated gene expression of duodenal iron transport molecules and hepcidin in three groups of patients with ALD (with anaemia, with iron overload and without iron overload) and controls. Expression of DMT1, FPN1, DCYTB, HEPH, HFE and TFR1 was measured in duodenal biopsies by using real‐time PCR and Western blot. Serum hepcidin levels were measured by using ELISA. Serum hepcidin was decreased in patients with ALD. At the mRNA level, expressions of DMT1, FPN1 and TFR1 genes were significantly increased in ALD. This pattern was even more pronounced in the subgroups of patients without iron overload and with anaemia. Protein expression of FPN1 paralleled the increase at the mRNA level in the group of patients with ALD. Serum ferritin was negatively correlated with DMT1 mRNA. The down‐regulation of hepcidin expression leading to up‐regulation of iron transporters expression in the duodenum seems to explain iron metabolism disturbances in ALD. Alcohol consumption very probably causes suppression of hepcidin expression in patients with ALD.  相似文献   

10.
Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2)   总被引:1,自引:0,他引:1  
Iron is essential to plants. However, when free and in excess, iron can catalyze the formation of oxygen free radicals. Ferritin, a protein capable of storing up to 4500 atoms of iron, can act as an iron buffer inside plant cells. Using a strategy based in amplicon size difference, we were able to analyze the expression profile of the two rice ferritin genes (OsFER1 and OsFER2). Both genes are expressed, although with different regulation and organ distribution. Exposure to copper, Paraquat, SNP and excess iron led to accumulation of ferritin mRNA, remarkably of OsFER2. The iron-induced expression was abolished by treatment with GSH, indicating that the induction observed is dependent of an oxidative step. OsFER2 mRNA levels in rice flag leaves and panicles at different reproductive stages were higher than OsFER1 mRNA levels. No ferritin mRNA was detected in rice seeds. However, imbibition under light led to ferritin expression, which was abolished when seeds were kept in the dark, suggesting a light-regulated induction. Ferritin mRNA accumulation was seen in the dark only when seeds were germinated in the presence of externally supplied iron. We suggest that the primary role of rice ferritins is related to defense against iron-mediated oxidative stress.  相似文献   

11.
Human 29IJ6 IgG was expressed in silkworm using a Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system. The mean amounts of 296IJ6 IgG produced in larval hemolymph and whole pupae were 30.1 μg/larva and 78.0 μg/pupa, respectively. The use of molecular chaperones including calreticulin (CRT), calnexin (CNX), and immunoglobulin heavy chain binding protein (BiP, GRP78) improved the production of 296IJ6 IgG secretion in the larvae fivefold. The total yield of recombinant 29IJ6 IgG was 239 μg/mL when coexpressed with CRT. However, the overexpression of molecular chaperones had negative effects on secretion. The N‐linked glycans of secreted 296IJ6 IgG in silkworm hemolymph were dominated by paucimannose structures. Small amounts of GlcNAc residues linked to the Manα1,3 branch were detected. When molecular chaperones were coexpressed, the compositions of N‐linked glycans in the IgG1 produced were unchanged compared with those produced without them. This suggests that N‐glycosylation is controlled by a regulatory function in the Golgi apparatus even though the post‐translational modification of 296IJ6 IgG was assisted by the coexpression of molecular chaperones. Therefore, if the glycosylation pathways that coexpress N‐acetylglucosaminyltransferase, galactosyltransferase, and sialyltransferase could be improved, silkworm larvae might prove a useful system for producing human antibodies. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
Human factor XI (hFXI) is a 160‐kDa disulphide‐linked homodimer zymogen involved in the coagulation cascade. Its deficiency results in bleeding diathesis referred to as hemophilia C. hFXI bears five N‐glycosylation consensus sites per monomer, N72, N108, N335 on the heavy chain and N432, N473 on the light chain. This study reports the first in‐depth glycosylation analysis of hFXI based on advanced MS approaches. Hydrophilic interaction LC and MS characterization and quantification of the N‐glycans showed that the two major forms are complex biantennary mono‐α2,6‐sialylated (A2S1, 20%) and bis‐α2,6‐sialylated structures (A2S2, 66%). Minor triantennary structures (A3S3F, ~1.5%; A3S3, ~2%) were also identified. MS analyses of intact hFXI revealed full occupation of two of the three heavy‐chain glycosites and almost full‐site occupancy of the light chain. Analysis of hFXI glycopeptides by LC‐MS/MS enabled site‐specific glycan profiling and occupancy. It was evidenced that N335 was not glycosylated and that N72 and N108 were fully occupied, whereas N432 and N473 were occupied at about 92 and 95%, respectively. We also identified a new glycosite of the noncanonical format NXC at N145, occupied at around 5%. These data provide valuable structural information useful to understand the potential roles of N‐glycosylation on hFXI function and could serve as a structural reference.  相似文献   

13.
14.
The effect of Hg treatment on hemolymph and tissue ferritin in the wax moth Galleria mellonella was examined by western blotting. At 48 h after feeding HgCl2, the level of hemolymph ferritin increased approximately 1.8‐fold over that of control insects that were not fed HgCl2, while there was a small increase in tissue ferritin. Time series experiments showed that tissue ferritin had a typically saturated pattern, with a maximum level from 24 to 72 h, although it decreased 12 h following HgCl2 feeding, while hemolymph ferritin first decreased but subsequently increased. Tissue ferritin in the fat body, gut and Malpighian tubules, the main tissues of ferritin expression, was upregulated over time following treatment with Hg, and in particular, tissue ferritin in the gut increased by a large amount at 12–48 h. The results suggest that in G. mellonella, the ferritin‐inducible mechanisms following treatment with HgCl2 are different for hemolymph and tissue ferritin, as are their biochemical properties.  相似文献   

15.
Xi L  Xu K  Qiao Y  Qu S  Zhang Z  Dai W 《Molecular biology reports》2011,38(7):4405-4413
In this study, the expression patterns of four ferritin genes (PpFer1, PpFer2, PpFer3, and PpFer4) in pear were investigated using quantitative real-time PCR. Analysis of tissue-specific expression revealed higher expression level of these genes in leaves than in other tested tissues. These ferritin genes were differentially expressed in response to various abiotic stresses and hormones treatments. The expression of ferritin wasn’t affected by Fe(III)-citrate treatment. Abscisic acid significantly enhanced the expression of all four ferritin genes, especially PpFer2, followed by N-benzylyminopurine, gibberellic acid, and indole-3-acetic acid. The expression peaks of PpFer1 and PpFer3 in leaves appeared at 6, 6, and 12 h, respectively, after pear plant was exposed to oxidative stress (5 mM H2O2), salt stress (200 mM NaCl), and heat stress (40°C). A significant increase in PpFer4 expression was detected at 6 h after salt stress or heat stress. The expression of ferritin genes was not altered by cold stress. These results suggested that ferritin genes might be functionally important in acclimation of pear to salt and oxidative stresses. Hormone treatments had no significant effect on expression of ferritin genes compared to abiotic stresses. This showed accumulation of ferritin genes could be operated by different transduction pathways under abiotic stresses and hormones treatments.  相似文献   

16.
17.
Protein disulfide isomerase (PDI) is a multifunctional polypeptide presents in the endoplasmic reticulum of the cell. Silkworm (Bombyx mori) pupae were used as hosts to produce recombinant PDI (rPDI). The concentration-dependent chaperone activity of rPDI was evidenced by the inhibition of the aggregation of rhodanese. Approximately 297 μg rPDI was purified from a single silkworm pupa. Results of rPDI treated with endoglycosidase H and N-glycanase, PNGase F, indicate that non-N-glycosylated rPDI (occupying 90%) and N-glycosylated rPDI are expressed in the silkworm expression system. The difference in glycosylation between silkworm pupae and yeast is discussed.  相似文献   

18.
For studying the effects of endogenous ferritin gene expressions (NtFer1, GenBank accession number ay083924; and NtFer2, GenBank accession number ay141105) on the iron homeostasis in transgenic tobacco (Nicotiana tabacum L.) plants expressing soybean (Glycine max Merr) ferritin gene (SoyFer1, GenBank accession number m64337), the transgenic tobacco has been produced by placing soybean ferritin cDNA cassette under the control of the CaMV 35S promoter. The exogenous gene expression was examined by both Northern- and Western-blot analyses. Comparison of endogenous ferritin gene expressions between nontransformant and transgenic tobacco plants showed that the expression of NtFer1 was increased in the leaves of transgenic tobacco plants, whereas the NtFer2 expression was unchanged. The iron concentration in the leaves of transgenic tobacco plants was about 1.5-folds higher than that in nontransformant. Enhanced growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weights significantly greater than those in the nontransformant. These results demonstrated that exogenous ferritin expression induced increased expression of at least one of the endogenous ferritin genes in transgenic tobacco plants by enhancing the ferric chelate reductase activity and iron transport ability of the root, and improved the rate of photosynthesis.  相似文献   

19.
Studies of protein N‐glycosylation are important for answering fundamental questions on the diverse functions of glycoproteins in plant growth and development. Here we generated and characterised a comprehensive collection of Lotus japonicusLORE1 insertion mutants, each lacking the activity of one of the 12 enzymes required for normal N‐glycan maturation in the glycosylation machinery. The inactivation of the individual genes resulted in altered N‐glycan patterns as documented using mass spectrometry and glycan‐recognising antibodies, indicating successful identification of null mutations in the target glyco‐genes. For example, both mass spectrometry and immunoblotting experiments suggest that proteins derived from the α1,3‐fucosyltransferase (Lj3fuct) mutant completely lacked α1,3‐core fucosylation. Mass spectrometry also suggested that the Lotus japonicus convicilin 2 was one of the main glycoproteins undergoing differential expression/N‐glycosylation in the mutants. Demonstrating the functional importance of glycosylation, reduced growth and seed production phenotypes were observed for the mutant plants lacking functional mannosidase I, N‐acetylglucosaminyltransferase I, and α1,3‐fucosyltransferase, even though the relative protein composition and abundance appeared unaffected. The strength of our N‐glycosylation mutant platform is the broad spectrum of resulting glycoprotein profiles and altered physiological phenotypes that can be produced from single, double, triple and quadruple mutants. This platform will serve as a valuable tool for elucidating the functional role of protein N‐glycosylation in plants. Furthermore, this technology can be used to generate stable plant mutant lines for biopharmaceutical production of glycoproteins displaying relative homogeneous and mammalian‐like N‐glycosylation features.  相似文献   

20.
One of the goals of recombinant glycoprotein production is to achieve consistent glycosylation. Although many studies have examined the changes in the glycosylation quality of recombinant protein with culture, very little has been done to examine the underlying changes in glycosylation gene expression as a culture progresses. In this study, the expression of 24 genes involved in N‐glycosylation were examined using quantitative RT PCR to gain a better understanding of recombinant glycoprotein glycosylation during production processes. Profiling of the N‐glycosylation genes as well as concurrent analysis of glycoprotein quality was performed across the exponential, stationary and death phases of a fed‐batch culture of a CHO cell line producing recombinant human interferon‐γ (IFN‐γ). Of the 24 N‐glycosylation genes examined, 21 showed significant up‐ or down‐regulation of gene expression as the fed‐batch culture progressed from exponential, stationary and death phase. As the fed‐batch culture progressed, there was also an increase in less sialylated IFN‐γ glycoforms, leading to a 30% decrease in the molar ratio of sialic acid to recombinant IFN‐γ. This correlated with decreased expression of genes involved with CMP sialic acid synthesis coupled with increased expression of sialidases. Compared to batch culture, a low glutamine fed‐batch strategy appears to need a 0.5 mM glutamine threshold to maintain similar N‐glycosylation genes expression levels and to achieve comparable glycoprotein quality. This study demonstrates the use of quantitative real time PCR method to identify possible “bottlenecks” or “compromised” pathways in N‐glycosylation and subsequently allow for the development of strategies to improve glycosylation quality. Biotechnol. Bioeng. 2010;107: 516–528. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号