首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sarcosine oxidase from Corynebacterium sp. U-96 is a heterotetrameric enzyme. Here we report the crystal structures of the enzyme in complex with dimethylglycine and folinic acid. The alpha subunit is composed of two domains, contains NAD(+), and binds folinic acid. The beta subunit contains dimethylglycine, FAD, and FMN, and these flavins are approximately 10A apart. The gamma subunit is in contact with two domains of alpha subunit and has possibly a folate-binding structure. The delta subunit contains a single atom of zinc and has a Cys(3)His zinc finger structure. Based on the structures determined and on the previous works, the structure-function relationship on the heterotetrameric sarcosine oxidase is discussed.  相似文献   

2.
The primary structures of the C and D subunits of sarcosine oxidase from Corynebacterium sp. U-96 were determined by sequencing the peptide fragments derived from their enzymatic digestions. The C and D subunits were shown to be composed of 199 and 92 residues, respectively. Each amino acid sequence showed a high homology with the sequence of the corresponding subunit from Corynebacterium sp. P-1. However, there were some differences between these two species, that is, four N-terminal residues were truncated in the C subunit, but six C-terminal residues were truncated in the D subunit. The D subunit contained three cysteine residues, but no disulfide bonds are in the subunit. Overall sequences of both subunit showed no homology with any other protein in the data base.  相似文献   

3.
Sarcosine oxidase from Corynebacterium sp. U-96 is a heterotetrameric enzyme that was reported to contain 1 mol of covalently bound FAD and 1 mol of non-covalently-bound FAD. This work describes the result of reinvestigation of the cofactors in this enzyme. The enzyme was found to contain 1 mol of non-covalently-bound NAD+, 1 mol of non-covalently-bound FAD, and 1 mol of covalent FMN. The covalent FMN was identified by the mass and amino acid sequence analyses of the flavin peptide.  相似文献   

4.
The flavoenzyme nitroalkane oxidase catalyzes the oxidation of primary and secondary nitroalkanes to the corresponding aldehydes and ketones plus nitrite. The structure of the enzyme shows that Ser171 forms a hydrogen bond to the flavin N5, suggesting that it plays a role in catalysis. Cys397 and Tyr398 were previously identified by chemical modification as potential active site residues. To more directly probe the roles of these residues, the S171A, S171V, S171T, C397S, and Y398F enzymes have been characterized with nitroethane as substrate. The C397S and Y398 enzymes were less stable than the wild-type enzyme, and the C397S enzyme routinely contained a substoichiometric amount of FAD. Analysis of the steady-state kinetic parameters for the mutant enzymes, including deuterium isotope effects, establishes that all of the mutations result in decreases in the rate constants for removal of the substrate proton by ∼5-fold and decreases in the rate constant for product release of ∼2-fold. Only the S171V and S171T mutations alter the rate constant for flavin oxidation. These results establish that these residues are not involved in catalysis, but rather are required for maintaining the protein structure.  相似文献   

5.
Many proteins and bioactive peptides contain an N-terminal pyroglutamate residue (Pyr1). This residue reduces the susceptibility of the protein to aminopeptidases and often has important functional roles. The antitumor ribonuclease RC-RNase 3 (RNase 3) from oocytes of Rana catesbeiana (bullfrog) is one such protein. We have produced recombinant RNase 3 containing the N-terminal Pyr1 (pRNase 3) and found it to be indistinguishable from the native RNase 3 by mass spectrometry and a variety of other biochemical and immunological criteria. We demonstrated by NMR analysis that the Pyr1 of pRNase 3 forms hydrogen bonds with Lys9 and Ile96 and stabilizes the N-terminal alpha-helix in a rigid conformation. In contrast, the N-terminal alpha-helix becomes flexible and the pKa values of the catalytic residues His10 and His97 altered when Pyr1 formation is blocked by an extra methionine at the N terminus in the recombinant mqRNase 3. Thus, our results provide a mechanistic explanation on the essential role of Pyr1 in maintaining the structural integrity, especially at the N-terminal alpha-helix, and in providing the proper environment for the ionization of His10 and His97 residues for catalysis and cytotoxicity against HeLa cells.  相似文献   

6.
This work presents a study aimed at the theoretical prediction of pK(a) values of aminopyridines, as a factor responsible for the activity of these compounds as blockers of the voltage-dependent K(+) channels. To cover a large range of pK(a) values, a total of seven substituted pyridines is considered as a calibration set: pyridine, 2-aminopyridine, 3-aminopyridine, 4-aminopyridine, 2-chloropyridine, 3-chloropyridine, and 4-methylpirydine. Using ab initio G1, G2 and G3 extrapolation methods, and the CPCM variant of the Polarizable Continuum Model for solvation, we calculate gas phase and solvation free energies. pK(a) values are obtained from these data using a thermodynamic cycle for describing protonation in aqueous and gas phases. The results show that the relatively inexpensive G1 level of theory is the most accurate at predicting pK(a) values in aminopyridines. The highest standard deviation with respect to the experimental data is 0.69 pK(a) units for absolute values calculations. The difference increases slightly to 0.74 pK(a) units when the pK(a) is computed relative to the pyridine molecule. Considering only compounds at least as basic as pyridine (the values of interest for bioactive aminopyridines) the error falls to 0.10 and 0.12 pK(a) units for the absolute and relative computations, respectively. The technique can be used to predict the effect of electronegative substituents in the pK(a) of 4-AP, the most active aminopyridine considered in this work. Thus, 2-chloro and 3-chloro-4-aminopyridine are taken into account. The results show a decrease of the pK(a), suggesting that these compounds are less active than 4-AP at blocking the K(+) channel.  相似文献   

7.
Lysyl oxidase (LOX) is implicated in several extracellular matrix related disorders, including fibrosis and cancer. Methods of inhibition of LOX in vivo include antibodies, copper sequestration and toxic small molecules such as β-aminopropionitrile. Here, we propose a novel approach to modulation of LOX activity based on the kinetic isotope effect (KIE). We show that 6,6-d2-lysine is oxidised by LOX at substantially lower rate, with apparent deuterium effect on Vmax/Km as high as 4.35 ± 0.22. Lys is an essential nutrient, so dietary ingestion of D2Lys and its incorporation via normal Lys turnover suggests new approaches to mitigating LOX-associated pathologies.  相似文献   

8.
The pKa's of the 6-CH groups of 1,3-dimethyluracil, N-methyl-2-pyridone, and N-methyl-4-pyridone were determined through their reactions with bases derived from carbon acids with known pKa and the reactions of their corresponding carbanions with the carbon acids. No correlation between the stability of the carbanions and the rate of decarboxylation of corresponding carboxylic acids was found.  相似文献   

9.
M.R. Gunner  Junjun Mao  Yifan Song  Jinrang Kim 《BBA》2006,1757(8):942-968
A protein structure should provide the information needed to understand its observed properties. Significant progress has been made in developing accurate calculations of acid/base and oxidation/reduction reactions in proteins. Current methods and their strengths and weaknesses are discussed. The distribution and calculated ionization states in a survey of proteins is described, showing that a significant minority of acidic and basic residues are buried in the protein and that most of these remain ionized. The electrochemistry of heme and quinones are considered. Proton transfers in bacteriorhodopsin and coupled electron and proton transfers in photosynthetic reaction centers, 5-coordinate heme binding proteins and cytochrome c oxidase are highlighted as systems where calculations have provided insight into the reaction mechanism.  相似文献   

10.
Heterotetrameric sarcosine oxidase from Corynebacterium sp.U-96(SO-U96) contains non-covalent and covalent flavins. Lys-358 and Lys-171 in the beta subunit is present at non-covalent flavin adenine dinucleotide (FAD)- and covalent flavin monodinucleotide (FMN)-binding sites, respectively. The Lys-358 mutant, K358R showed 0.07% activity and higher apparent K(m) for sarcosine than the wild-type enzyme, but K358A and K358D mutants showed no activity, suggesting the importance of amino group of Lys358 in the sarcosine-binding to the enzyme. The Lys171 mutants, K171R, K171A and K171D showed 58, 39 and 32% activity of the wild-type enzyme, respectively. An apparent K(m) for oxygen and K(d) of enzyme-sulphite complex increased by the mutation. The rate of reduction of the FAD of K171 mutants with sarcosine did not change by the mutation. The stopped-flow photodiode array analyses of the anaerobic reduction with sarcosin of the wild-type and K171 mutant enzymes showed characteristic spectra of neutral and anionic semiquinones, especially for K171A enzyme. On the basis of these results, the reductive-half reaction of the wild-type and K171 mutant enzymes is explained by a mechanism involving the semiquinones. Low activity of K171 mutants is suggested to be derived from the low rate of oxidation of the reduced FMN in the enzyme.  相似文献   

11.
ThepH-titration and dynamic behaviour of the seven lysine side chains in bovine calmodulin were studied by carbon-13 NMR. The amino groups of the calcium saturated protein and its proteolytic fragments TR1C(1–75) and TR2C (78–148) were dimethylated with carbon-13 labeled formaldehyde; this modification did not alter the protein's structure or its ability to activate the enzyme cyclic nucleotide phosphodiesterase. Tentative assignments for 5 out of the 7 dimethyl lysine resonances could be obtained by comparing spectra of the fully and partially modified protein, with those of the proteolytic fragments. ThepKa values measured for calcium saturated calmodulin ranged between 9.5 (Lys 75) and 10.2 (Lys 13); two residues (Lys 94 and Lys 13) showed a biphasic titration curve suggesting their possible involvement in ion-pairs. The dynamic behavior of the lysine side chains was deduced from spin lattice relaxation measurements. All side chains were flexible and this was not influenced by the removal of calcium, or the addition of the calmodulin antagonist trifluoperazine. The latter data suggest that the lysine side chains are not directly involved in calmodulin's target binding sites.  相似文献   

12.
13.
Steady-state kinetics of Acremonium sp. HI-25 ascorbate oxidase toward p-hydroquinone derivatives have been examined by using an electrochemical analysis based on the theory of steady-state bioelectrocatalysis. The electrochemical technique has enabled one to examine the influence of electronic and chemical properties of substrates on the activity. It was proven that the oxidative activity of ascorbate oxidase was dominated by the highly selective substrate-binding affinity based on electrostatic interaction beyond the one-electron redox potential difference between ascorbate oxidase’s type 1 copper site and substrate.  相似文献   

14.
Structure-activity relationship studies were conducted to reduce CYP2D6-mediated metabolism in a series of indene H1-antihistamines. Reductions in pKa via incorporation of a β-fluoro substituent or a heteroaryl moiety were shown to reduce contributions to metabolism through this pathway. Several compounds, including 8l, 8o, and 12f were identified with promising primary in vitro profiles and reduced biotransformation via CYP2D6.  相似文献   

15.
Brazzein is a small, intensely sweet protein. As a probe of the functional properties of its solvent-exposed loop, two residues (Arg-Ile) were inserted between Leu18 and Ala19 of brazzein. Psychophysical testing demonstrated that this mutant is totally tasteless. NMR chemical shift mapping of differences between this mutant and brazzein indicated that residues affected by the insertion are localized to the mutated loop, the region of the single alpha-helix, and around the Cys16-Cys37 disulfide bond. Residues unaffected by this mutation included those near the C-terminus and in the loop connecting the alpha-helix and the second beta-strand. In particular, several residues of brazzein previously shown to be essential for its sweetness (His31, Arg33, Glu41, Arg43, Asp50, and Tyr54) exhibited negligible chemical shift changes. Moreover, the pH dependence of the chemical shifts of His31, Glu41, Asp50, and Tyr54 were unaltered by the insertion. The insertion led to large chemical shift and pKa perturbation of Glu36, a residue shown previously to be important for brazzein's sweetness. These results serve to refine the known sweetness determinants of brazzein and lend further support to the idea that the protein interacts with a sweet-taste receptor through a multi-site interaction mechanism, as has been postulated for brazzein and other sweet proteins (monellin and thaumatin).  相似文献   

16.
Heterotetrameric sarcosine oxidase is a flavoprotein that catalyses the oxidative demethylation of sarcosine. It is thought that the dehydrogenated substrate is the anionic form of sarcosine. To verify this assumption, the rate of flavin-adenine dinucleotide (FAD) reduction (k(red)) was analysed using protiated and deuterated sarcosine (N-methyl-d(3)-Gly) at various pH values using stopped-flow method. By increasing the pH from 6.2 to 9.8, k(red) increased for both substrates and reached a plateau, but the pK(a) value (reflecting the ionization of the enzyme-substrate complex) was 6.8 and 7.1 for protiated and deuterated sarcosine, respectively, and the kinetic isotope effect of k(red) decreased from approximately 19 to 8, indicating deprotonation of the bound sarcosine. The k(red)/K(d) (K(d), sarcosine dissociation constant) increased with increasing pH and reached a plateau. The pK (reflecting the ionization of free enzyme or free sarcosine) was 7.0 for both substrates, suggesting deprotonation of the βLys358 residue, which has a pK(a) of 6.7, as the pK(a) of the free sarcosine amine proton was determined to be approximately 10.1. These results indicate that the amine proton of sarcosine is transferred to the unprotonated Lys residue in the enzyme-substrate complex.  相似文献   

17.
Electrostatic interactions play a complex role in stabilizing proteins. Here, we present a rigorous thermodynamic analysis of the contribution of individual Glu and His residues to the relative pH-dependent stability of the designed disulfide-linked leucine zipper AB(SS). The contribution of an ionized side-chain to the pH-dependent stability is related to the shift of the pK(a) induced by folding of the coiled coil structure. pK(a)(F) values of ten Glu and two His side-chains in folded AB(SS) and the corresponding pK(a)(U) values in unfolded peptides with partial sequences of AB(SS) were determined by 1H NMR spectroscopy: of four Glu residues not involved in ion pairing, two are destabilizing (-5.6 kJ mol(-1)) and two are interacting with the positive alpha-helix dipoles and are thus stabilizing (+3.8 kJ mol(-1)) in charged form. The two His residues positioned in the C-terminal moiety of AB(SS) interact with the negative alpha-helix dipoles resulting in net stabilization of the coiled coil conformation carrying charged His (-2.6 kJ mol(-1)). Of the six Glu residues involved in inter-helical salt bridges, three are destabilizing and three are stabilizing in charged form, the net contribution of salt-bridged Glu side-chains being destabilizing (-1.1 kJ mol(-1)). The sum of the individual contributions of protonated Glu and His to the higher stability of AB(SS) at acidic pH (-5.4 kJ mol(-1)) agrees with the difference in stability determined by thermal unfolding at pH 8 and pH 2 (-5.3 kJ mol(-1)). To confirm salt bridge formation, the positive charge of the basic partner residue of one stabilizing and one destabilizing Glu was removed by isosteric mutations (Lys-->norleucine, Arg-->norvaline). Both mutations destabilize the coiled coil conformation at neutral pH and increase the pK(a) of the formerly ion-paired Glu side-chain, verifying the formation of a salt bridge even in the case where a charged side-chain is destabilizing. Because removing charges by a double mutation cycle mainly discloses the immediate charge-charge effect, mutational analysis tends to overestimate the overall energetic contribution of salt bridges to protein stability.  相似文献   

18.
Paper electrophoresis has been used over the pH range 1.2 to 10.4 to measure apparent pK(a) values for malvidin-3-O-glucoside of pK(a(1)) 1.76+/-0.07, pK(a(2)) 5.36+/-0.04, and pK(a(3)) 8.39+/-0.07. Using solvent partitioning between buffered aqueous solutions and n-octanol, several micro-pK(a) constants for malvidin-3-O-glucoside were also identified, highlighting the complex nature of malvidin-3-glucoside equilibria. As a nonspectrophotometric procedure, the charge-dependent electrophoretic mobility method provided independent information on the net charge and color of anthocyanin species at wine pH (ca. 3.6). At this pH, the color of malvidin-3-glucoside in red wines is consistent only with the uncharged quinonoidal base as a major colored component of the equilibria.  相似文献   

19.
Besides the formation of the aminotriazine N6-[4-(3-amino-1,2,4-triazin-5-yl)-2,3-dihydroxybutyl]-L-lysine, the reaction of [1-13C]D-glucose with lysine and aminoguanidine leads to the generation of 6-[2-([[amino(imino)methyl]hydrazono]methyl)pyridinium-1-yl]-L-norleucine (14-13C1). The dideoxyosone N6-(2,3-dihydroxy-5,6-dioxohexyl)-L-lysine was shown to be a precursor in the formation of 14-13C1, which proceeds via the reactive carbonyl intermediate 6-(2-formylpyridinium-1-yl)-L-norleucine (13-13C1). In order to study the reactivity of 13-13C1, the model compound 1-butyl-2-formylpyridinium (18) was prepared in a two-step procedure starting from 2-pyridinemethanol. The reaction of the pyridinium-carbaldehyde 18 with L-lysine yielded the Strecker analogous degradation product 2-(aminomethyl)-1-butylpyridinium and another compound, which was shown to be as 1-butyl-2-[(2-oxopiperidin-3-ylidene)methyl]pyridinium. Reaction of 18 with the C-H acidic 4-hydroxy-5-methylfuran-3(2H)-one leads to the formation of the condensation product 1-butyl-2-[hydroxy-(4-hydroxy-5-methyl-3-oxofuran-2(3H)-ylidene)methyl]-pyridinium.  相似文献   

20.
细胞色素b6f蛋白复合体(Cyt b6f)参与光合膜上电子传递和跨膜质子转移,在体内以二体形式存在,每个单体只结合1分子叶绿素a(Chla).该Chla性质独特,光照条件下十分稳定,是甲醇中游离Chla的120~130倍,然而其光稳定性的机制仍未彻底阐明.Cyt b6f 2.7的晶体结构显示,Chla中心的Mg离子和H2O分子配位,并且该H2O分子通过氢键与复合体亚基Ⅳ的氨基酸G136和T137相互作用.本研究基于这一结构特点,对上述2个氨基酸进行了定点突变,以干扰、破坏氢键网络.结果发现,突变不仅导致蛋白与Chla结合能力下降,而且显著降低了Chla的光稳定性,这一结果表明,Cyt b6f中Chla相关的氢键网络对其稳定性具有重要的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号