首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p53 is an important mediator of the cellular stress response with roles in cell cycle control, DNA repair, and apoptosis. 53BP2, a p53-interacting protein, enhances p53 transactivation, impedes cell cycle progression, and promotes apoptosis through unknown mechanisms. We now demonstrate that endogenous 53BP2 levels increase following UV irradiation induced DNA damage in a p53-independent manner. In contrast, we found that the presence of a wild-type (but not mutant) p53 gene suppressed 53BP2 steady-state levels in cell lines with defined p53 genotypes. Likewise, expression of a tetracycline-regulated wild-type p53 cDNA in p53-null fibroblasts caused a reduction in 53BP2 protein levels. However, 53BP2 levels were not reduced if the tetracycline-regulated p53 cDNA was expressed after UV damage in these cells. This suggests that UV damage activates cellular factors that can relieve the p53-mediated suppression of 53BP2 protein. To address the physiologic significance of 53BP2 induction, we utilized stable cell lines with a ponasterone A-regulated 53BP2 cDNA. Conditional expression of 53BP2 cDNA lowered the apoptotic threshold and decreased clonogenic survival following UV irradiation. Conversely, attenuation of endogenous 53BP2 induction with an antisense oligonucleotide resulted in enhanced clonogenic survival following UV irradiation. These results demonstrate that 53BP2 is a DNA damage-inducible protein that promotes DNA damage-induced apoptosis. Furthermore, 53BP2 expression is highly regulated and involves both p53-dependent and p53-independent mechanisms. Our data provide new insight into 53BP2 function and open new avenues for investigation into the cellular response to genotoxic stress.  相似文献   

2.
The kinesin spindle protein (KSP), a microtubule motor protein, is essential for the formation of bipolar spindles during mitosis. Inhibition of KSP activates the spindle checkpoint and causes apoptosis. It was shown that prolonged inhibition of KSP activates Bax and caspase-3, which requires a competent spindle checkpoint and couples with mitotic slippage. Here we investigated how Bax is activated by KSP inhibition and the roles of Bax and p53 in KSP inhibitor-induced apoptosis. We demonstrate that small interfering RNA-mediated knockdown of Bax greatly attenuates KSP inhibitor-induced apoptosis and that Bax activation is upstream of caspase activation. This indicates that Bax mediates the lethality of KSP inhibitors and that KSP inhibition provokes apoptosis via the intrinsic apoptotic pathway where Bax activation is prior to caspase activation. Although the BH3-only protein Puma is induced after mitotic slippage, suppression of de novo protein synthesis that abrogates Puma induction does not block activation of Bax or caspase-3, indicating that Bax activation is triggered by a posttranslational event. Comparison of KSP inhibitor-induced apoptosis between matched cell lines containing either functional or deficient p53 reveals that inhibition of KSP induces apoptosis independently of p53 and that p53 is dispensable for spindle checkpoint function. Thus, KSP inhibitors should be active in p53-deficient tumors.  相似文献   

3.
4.
5.
Tumor suppressor p53 controls cell cycle progression and apoptosis following DNA damage, thus minimizing carcinogenesis. Mutations in the human DDB2 gene generate the E subgroup of xeroderma pigmentosum (XP-E). We report here that XP-E strains are defective in UV irradiation-induced apoptosis due to severely reduced basal and UV-induced p53 levels. These defects are restored by infection with a p53 cDNA expression construct or with a DDB2 expression construct if and only if it contains intron 4, which includes a nonmutated p53 consensus-binding site. We propose that both before and after UV irradiation, DDB2 directly regulates p53 levels, while DDB2 expression is itself regulated by p53.  相似文献   

6.
There are several pathways leading to apoptosis. It is not clear whether cells choose one of them or use multiple processes when they commit to apoptosis. MOLT-4 cells undergo apoptosis after X-irradiation through the p53-dependent pathway and/or ceramide signal. To evaluate the relative contribution of these pathways, we studied effects of the expression of various levels of transfected murine mutant p53 cDNA (TGC-->CGC of codon 173, corresponding to codonl76 in human p53) on the induction of apoptosis in X-irradiated or heated MOLT-4 cells. When survival was determined by the dye-exclusion test at 24 h after irradiation, the percentage of X-ray- or heat-induced dead cells was markedly decreased, depending on the expression level of mutant p53 protein in transfected clones. The appearance of apoptotic cells as determined by morphological changes was also decreased. These inhibitions were almost complete at 24 h after irradiation with X-rays in the case of the highest-expressing clone. p21 WAF1 protein was increased in MOLT-4 cells after X-irradiation, but not in the transfectant. These results suggest that murine mutant p53 protein has a dominant-negative effect against normal p53 in MOLT-4, and that the X-ray-induced apoptosis in MOLT-4 is fully p53-dependent.  相似文献   

7.
The aim of our work was to evaluate mechanisms leading to radiosensitization of MOLT-4 leukemia cells following valproic acid (VA) treatment. Cells were pretreated with 2 mM VA for 24 h followed by irradiation with a dose of 0.5 or 1 Gy. The effect of both noxae, alone and combined, was detected 1 and 24 hours after the irradiation. Induction of apoptosis was evaluated by a flow cytometry. The extent of DNA damage was further determined by phosphorylation of histone H2AX using confocal microscopy. Changes in protein expression were identified by SDS-PAGE/immunoblotting. Two-millimolar VA increased apoptosis induction after irradiation as well as phosphorylation of H2AX and provokes an increase in the level of p53 and its phosphorylation at Ser392 in 4 h post-irradiation. Likewise, p21 protein reached its maximal expression in 4 h after the irradiation of VA-treated cells. Twenty four hours later, only the p53 phosphorylated at Ser15 was detected. At the same time, the protein mdm2 (negative regulator of p53) was maximally activated. The 24-hour treatment of MOLT-4 leukemia cells with 2 mM VA results in radiosensitizing, increases apoptosis induction, H2AX phosphorylation, and also p53 and p21 activation.  相似文献   

8.
The aim of our work was to evaluate mechanisms leading to radiosensitization of MOLT-4 leukemia cells following valproic acid (VA) treatment. Cells were pretreated with 2 mM VA for 24 h followed by irradiation with a dose of 0.5 or 1 Gy. The effect of both noxae, alone and combined, was detected 1 and 24 hours after the irradiation. Induction of apoptosis was evaluated by a flow cytometry. The extent of DNA damage was further determined by phosphorylation of histone H2AX using confocal microscopy. Changes in protein expression were identified by SDS-PAGE/immunoblotting. Two-millimolar VA increased apoptosis induction after irradiation as well as phosphorylation of H2AX and provokes an increase in the level of p53 and its phosphorylation at Ser392 in 4 h post-irradiation. Likewise, p21 protein reached its maximal expression in 4 h after the irradiation of VA-treated cells. Twenty four hours later, only the p53 phosphorylated at Ser15 was detected. At the same time, the protein mdm2 (negative regulator of p53) was maximally activated. The 24-hour treatment of MOLT-4 leukemia cells with 2 mM VA results in radiosensitizing, increases apoptosis induction, H2AX phosphorylation, and also p53 and p21 activation.  相似文献   

9.
10.
Cells of a human RSa cell line, with high sensitivity to UV killing and low capacity for DNA repair, when pretreated with 1-100 units/ml of human interferon (HuIFN) preparations for more than 12 h before irradiation, acquired an enhancement of UV-induced DNA-repair replication synthesis in association with recovery from inhibition of total cellular DNA synthesis and UV survival. Prompt and transient induction of plasminogen activator activities was also found within 5 min after UV irradiation in the cells pretreated with HuIFN but not in the cells non-pretreated with HuIFN. The enhancement and induction effects of HuIFN were observed, irrespective of the kind of HuIFN preparation used (alpha, beta or gamma, and natural or recombinant) and in other UV-sensitive fibroblast cells which were derived from Cockayne syndrome and xeroderma pigmentosum fibroblasts (XP1KY). However, all of the enhancement of DNA-repair synthesis and the induction of plasminogen activator activities by HuIFN was suppressed by treatment with cycloheximide immediately after UV irradiation.  相似文献   

11.
12.
Phosphorylation is important in p53-mediated DNA damage responses. After UV irradiation, p53 is phosphorylated specifically at murine residue Ser389. Phosphorylation mutant p53.S389A cells and mice show reduced apoptosis and compromised tumor suppression after UV irradiation. We investigated the underlying cellular processes by time-series analysis of UV-induced gene expression responses in wild-type, p53.S389A, and p53−/− mouse embryonic fibroblasts. The absence of p53.S389 phosphorylation already causes small endogenous gene expression changes for 2,253, mostly p53-dependent, genes. These genes showed basal gene expression levels intermediate to the wild type and p53−/−, possibly to readjust the p53 network. Overall, the p53.S389A mutation lifts p53-dependent gene repression to a level similar to that of p53−/− but has lesser effect on p53-dependently induced genes. In the wild type, the response of 6,058 genes to UV irradiation was strictly biphasic. The early stress response, from 0 to 3 h, results in the activation of processes to prevent the accumulation of DNA damage in cells, whereas the late response, from 12 to 24 h, relates more to reentering the cell cycle. Although the p53.S389A UV gene response was only subtly changed, many cellular processes were significantly affected. The early response was affected the most, and many cellular processes were phase-specifically lost, gained, or altered, e.g., induction of apoptosis, cell division, and DNA repair, respectively. Altogether, p53.S389 phosphorylation seems essential for many p53 target genes and p53-dependent processes.  相似文献   

13.
The effect of chemoresistance induction in radiosensitivity and cellular behavior after irradiation remains misunderstood. This study was designed to understand the relationship between radiation-induced cell cycle arrest, apoptosis, and radiosensitivity in KB cell line and KB3 subline selected after 5-fluorouracil (5FU) exposure. Exposure of KB cells to 5FU led to an increase in radiosensitivity. G2/M cell cycle arrest was observed in the two cell lines after irradiation. The radioresistant KB cell line reached the maximum arrest two hours before KB3. The cellular exit from this arrest was found to be related to the wild type p53 protein expression induction. After irradiation, only KB3 cell line underwent apoptosis. This apoptosis induction seemed to be independent of G2/M arrest exit, which was carried out later. The difference in radiosensitivity between KB and KB3 subline may result therefore from both a difference in apoptosis induction and a difference in G2/M arrest maximum duration. Moreover, 5FU exposure has led to an increase in constitutive p53 protein expression, which may be associated with an increase in basal apoptosis cell fraction. Given the existing correlation between radiosensitivity and the percentage of basal apoptosis, the constitutive p53 protein expression may be related to intrinsic radiosensitivity in our cellular model.  相似文献   

14.
In this study, we examined the effects of radiation and ara-C on induction of apoptosis and on the apoptosis-promoting genes p53, Bax and Fas/APO-1, in BV173 human leukemia cells, which harbor the wild-type p53 gene. It has been reported that p53 upregulates Fas/APO-1 and Bax expression. Both irradiation and ara-C treatment resulted in apoptosis and induction of p53 proteins within hours. The Bax gene was activated in irradiated and ara-C-treated BV173 cells, but Fas/APO-1 was induced only in irradiated BV173 cells. Radiation and ara-C treatment did not induce Bax or Fas/APO-1 protein expression in p53-null HL60 cells. Radiation weakly induced Fas/APO-1 expression in KBM-7 cells, which harbor a partially defective p53 gene. Both HL60 and KBM-7 cells are more resistant to radiation- and ara-C-induced apoptosis than BV173 cells. These results suggest that functional p53 is necessary for the activation of Bax and Fas/APO-1 expression. However, elevated p53 protein is not sufficient to activate Fas/APO-1 gene expression in ara-C-treated cells. Using two-dimensional gel electrophoresis, we found that the p53 proteins in irradiated and ara-C-treated BV173 cells have different isoelectric points; they converged to a single isoelectric point after in vitro treatment with phosphatase. These results suggest that different genotoxic treatments cause different phosphorylations of p53, which may account for the different levels of activation of Fas/APO-1 expression.  相似文献   

15.
The induction of apoptosis in cells of human colon cancer cell lines after gamma irradiation was investigated to determine whether apoptosis was mediated by TP53 and the subsequent expression of its downstream target, the NSAID-activated gene (NAG1). HCT116 (TP53(+/+)), HCT15 (TP53 mutant) and TP53 null HCT116 (TP53(-/-)) cells were irradiated with gamma rays, and apoptosis was measured at various times after irradiation. In HCT116 TP53(+/+) cells, apoptosis was increased after irradiation; the increase was dependent on the time after treatment and the dose of gamma rays. However, in HCT15 TP53 mutant cells and HCT116 TP53(-/-) cells, there were no remarkable changes in apoptosis. The expression of TP53 protein in HCT116 cells was increased after irradiation and was followed by an increase in the expression of NAG1 protein. In contrast, the expression of NAG1 protein in TP53 mutant cells and TP53(-/-) cells was not increased by the radiation treatment, suggesting that NAG1 was required for apoptosis. The expression of NAG1 increased apoptosis in HCT116 cells, but radiation treatment did not further increase apoptosis. The transfection of a NAG1 siRNA into HCT116 cells suppressed radiation-induced apoptosis and inhibited the induction of NAG1 protein without altering the expression of TP53. a NAG1 luciferase promoter construct that included both of the TP53 binding sites, was activated by radiation in dose-dependent manner, while the promoters lacking one or both of the TP53 binding sites in the NAG1 promoter activity either was less responsive or did not respond. The findings reported here indicate that gamma radiation activates the TP53 tumor suppressor, which then increases the expression of NAG1. NAG1 mediates the induction of apoptosis in human colorectal cells.  相似文献   

16.
In response to DNA damage, mammalian cells adopt checkpoint regulation, by phosphorylation and stabilization of p53, to delay cell cycle progression. However, most cancer cells that lack functional p53 retain an unknown checkpoint mechanism(s) by which cells are arrested at the G(2)/M phase. Here we demonstrate that a human homolog of Cds1/Rad53 kinase (hCds1) is rapidly phosphorylated and activated in response to DNA damage not only in normal cells but in cancer cells lacking functional p53. A survey of various cancer cell lines revealed that the expression level of hCds1 mRNA is inversely related to the presence of functional p53. In addition, transfection of normal human fibroblasts with SV40 T antigen or human papilloma viruses E6 or E7 causes a marked induction of hCds1 mRNA, and the introduction of functional p53 into SV40 T antigen- and E6-, but not E7-, transfected cells decreases the hCds1 level, suggesting that p53 negatively regulates the expression of hCds1. In cells without functional ataxia telangiectasia mutated (ATM) protein, phosphorylation and activation of hCds1 were observed in response to DNA damage induced by UV but not by ionizing irradiation. These results suggest that hCds1 is activated through an ATM-dependent as well as -independent pathway and that it may complement the function of p53 in DNA damage checkpoints in mammalian cells.  相似文献   

17.
18.
The wild-type human MDM2 protooncogene was tested for its ability to modulate apoptotic activity of the de novo expressed p53 tumor suppressor gene in K562 cells. We also studied the role of some cytokines in this phenomenon. K562, a human myeloid leukemia cell line, does not express p53 at the mRNA or protein level. In this study, we stably transfected K562 with eukaryotic vectors containing either normal p53 cDNA (pC53-SN3) or mutated p53 (143Val-->Ala) cDNA (pC53-SCX3). Transfectants expressing WT p53 or those expressing mutant p53 are called K562 SN and K562 SM respectively. Many leukemic cell lines undergo apoptosis when de novo WT p53 is expressed alone. In contrast, while the resulting clones (K562 SN and K562 SM) expressed p53, they did not undergo apoptosis. However, when treated with MDM2 mRNA antisense (MDM2 AS) oligodeoxynucleotides (ODNs), K562 SN demonstrated apoptotic features at both molecular and morphological levels. No change was observed when the other clones (K562 and K562 SM) were treated with MDM2 AS. Apoptosis induced in this manner was associated with a relatively small increase in intracellular calcium [Ca2+]i. Cells cultured in medium previously supplemented with recombinant human (rh) interleukin (IL)-3 and rh-erythropoietin (Epo) did not undergo apoptosis. Moreover, K562 SN cells were induced to differentiate. This differentiation was evaluated by measuring hemoglobin (Hb) level in cellular extracted proteins and by analyzing erythroid colony number and morphology. High Hb synthesis was obtained when K562 SN cells were cultured with cytokines (IL-3 + Epo) combined with MDM2 AS. Our results are consistent with the hypothesis that the function of the proto-oncogene MDM2 is to provide a 'feedback' mechanism for the p53-dependent pathway of apoptosis that could be shunted toward differentiation.  相似文献   

19.
20.
53BP1 is a human BRCT protein that was originally identified as a p53-interacting protein by the Saccharomyces cerevisiae two-hybrid screen. Although the carboxyl-terminal BRCT domain shows similarity to Crb2, a DNA damage checkpoint protein in fission yeast, there is no evidence so far that implicates 53BP1 in the checkpoint. We have identified a Xenopus homologue of 53BP1 (XL53BP1). XL53BP1 is associated with chromatin and, in some cells, localized to a few large foci under normal conditions. Gamma-ray irradiation induces increased numbers of the nuclear foci in a dose-dependent manner. The damage-induced 53BP1 foci appear rapidly (in 30 min) after irradiation, and de novo protein synthesis is not required for this response. In human cells, 53BP1 foci colocalize with Mrel1 foci at later stages of the postirradiation period. XL53BP1 is hyperphosphorylated after X-ray irradiation, and inhibitors of ATM-related kinases delay the relocalization and reduce the phosphorylation of XL53BP1 in response to X-irradiation. In AT cells, which lack ATM kinase, the irradiation-induced responses of 53BP1 are similarly affected. These results suggest a role for 53BP1 in the DNA damage response and/or checkpoint control which may involve signaling of damage to p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号