首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Performances of biological treatment processes of saline wastewater are usually low because of adverse effects of salt on microbial flora. High salt concentrations in wastewater cause plasmolysis and loss of activity of cells resulting in low COD removal efficiencies. In order to improve biological treatment performance of saline wastewater, a halophilic organism Halobacter halobium was used along with activated sludge culture.A synthetic wastewater composed of diluted molasses, urea, KH2PO4 and various concentrations of salt (1%–5% NaCl) was treated in an aerobic-biological reactor by fed-batch operation. Activated sludge culture with and without Halobacter were used as seed cultures. Variations of COD removal rate and efficiency with salt concentration were determined for both cultures and results were compared. Inclusion of Halobacter into activated sludge culture resulted in significant improvements in COD removal efficiency. A rate expression including salt inhibition effect was proposed and kinetic constants were determined by using experimental data.This study was supported by the Technical and Scientific Research Council of Turkey.  相似文献   

2.
Characterization and biological treatment of pickling industry wastewater   总被引:2,自引:0,他引:2  
Pickling industry wastewaters present unique difficulties in biological treatment because of high salt content (3–6% salt). Conventional activated sludge cultures disintegrate or loose microbial activity as a result of plasmolysis at salt concentrations above 1%. In order to overcome adverse effects of salt in pickling wastewater, salt tolerant bacteria (Halobacter halobium) was added to activated sludge culture and used in biological treatment of the wastewater in an activated sludge unit. After characterization and nutrient balancing of the wastewater, an activated sludge unit was used in laboratory to investigate the effects of major process variables such as sludge age and hydraulic residence time on performance of the system. Single stage and two stage activated processes were used for the treatment of the pickling wastewater. More than 95% of COD removal was obtained with a single stage process at a sludge age of θc=10?d and hydraulic residence time of θH=30?h. Similar results were obtained with the two stage process, when sludge ages and hydraulic residence times for each stage were θc1c2=10?d, and θH1H2=15?h, respectively. Kinetic coefficients were determined and the design equations were developed by using the experimental data.  相似文献   

3.
Biological treatment of saline wastewater by conventional activated sludge culture usually results in low removal of chemical oxygen demand (COD) because of plasmolysis of the organisms at high salt concentrations. Since salt removal operations by physicochemical processes before biological treatment are costly, a salt-tolerant organism (Halobacter halobium) was used for effective biological treatment of saline wastewater in this study. Halobacter halobium was used in activated sludge culture for COD removal from saline wastewater (1–5% salt) by fed-batch operation of an aeration tank. Inclusion of Halobacter halobium into activated sludge culture improved the rate and extent of COD removals especially with salt above 2% (w/v).  相似文献   

4.

Background

In this study, a hybrid treatment system (Fluidized Bed positioned in a biological reactor of an Activated Sludge process) was used to treat saline domestic wastewater. The performance of the mentioned hybrid system was compared with the conventional activated sludge. A pilot study was conducted, and Chemical Oxygen Demand (COD), Electrical Conductivity (EC), Total Dissolved Solids (TDS) and pH were measured to investigate treatment efficiency. Three saline wastewater samples with salt concentrations of 0.5, 1, and 1.5 % and detention times of 2, 4 and 6 h were loaded into both rectors of hybrid system and activated sludge.

Results

The results showed that Chemical Oxygen Demand (COD) removals at salt concentrations of 0.5, 1, 1.5 % were equal to 80, 71, 48.5 for the hybrid system and 62, 47.7, 26.5 for the activated sludge system respectively. Likewise, similar results obtained for other contamination indices indicating the superiority of the hybrid system in comparison to activated sludge system. Moreover, another advantage of the hybrid system was that the activated sludge needed sludge returning while sludge returning was not required in the hybrid system. In addition, by loading fixed rate of air into both systems, dissolved oxygen concentration in the hybrid reactor is higher than the conventional reactor.

Conclusions

Therefore, the hybrid system had a significantly higher efficiency than conventional reactor to treat saline domestic wastewater.
  相似文献   

5.
A rotating biodisc contactor (RBC) was used for biological treatment of synthetic saline wastewater with and without sludge (cell) recycle. Synthetic wastewater composed of diluted molasses, urea, KHzPO4, MgSO4 and 3% salt (NaCl) was fed to the RBC unit with different flow rates. Underflow from a sedimentation tank placed at the end of RBC unit was recycled to the RBC unit with a constant flow rate. COD removal rates and efficiencies were determined for the cases of with and without sludge recycle and compared. COD removal efficiencies and rates obtained with sludge recycle were higher than those obtained without sludge recycle at low A/Q ratios (high flow rate) because of extra residence time provided by sedimentation tank. However, no significant difference was observed in the performance of RBC with and without sludge recycle at high A/Q ratios (low flow rates). Because of poor sedimentation characteristics of the culture no significant increase in biomass concentration in the RBC was observed when the system was operated with sludge recycle.  相似文献   

6.
Biological treatment systems for high strength wastewaters are usually operated in continuous mode such as activated sludge systems. When operated at steady-state, continuous systems result in constant effluent standards. However, in the presence of shock loadings and/or toxic compounds in feed wastewater, system performance drops quite significantly as a result of partial loss of microbial activity. In fed-batch operation, wastewater is fed to the aeration tank with a flow rate determined by effluent standards. In this type of operation, wastewater can be fed to biological oxidation unit intermittently or continuously with a low flow rate without any effluent removal. Feed flow rate is adjusted by measuring COD concentration in the effluent. As a result of intermittent addition of wastewater high COD concentrations and toxic compounds are diluted in large volume of aeration tank and inhibition effects of those compounds are reduced. As a result, biological oxidation of these compounds take place at a much higher rate. In order to show the aforementioned advantage of fed-batch operation, a high strength synthetic wastewater consisting of diluted molasses, urea, KH2PO4 and MgSO4 was treated in an biological aeration tank by fed-batch operation. Organisms used were an active and dominant culture of Zooglea ramigera commonly encountered in activated sludge operations. COD removal kinetics was found to be first order and the rate constant was determined.  相似文献   

7.
《Process Biochemistry》1999,34(5):429-439
Fenton’s oxidation and activated carbon adsorption were examined as pretreatment processes for dyestuff wastewater having high salinity, colour, and non-biodegradable organic concentrations. In this work, each wastewater stream produced by individual production processes was classified as streams R1, R2, and R3. The stream having a value of BOD5/COD lower than 0.4 was pretreated by Fenton’s oxidation or activated carbon adsorption to increase the ratio of BOD5/COD which indicates biodegradability. For Fenton’s oxidation with one stream having a value of BOD5/COD lower than 0.4, the optimal reaction pH was 3.0 and the minimum dosing concentration (mg l−1) of H2O2:FeSO4·7H2O was 700:3500. Stream R3, which consisted mainly of methanol was efficiently treated by activated carbon adsorption. The ratio of BOD5/COD was also increased to 0.432 and 0.31 from 0.06 in Fenton’s oxidation and activated carbon adsorption, respectively. A biological treatment system using a fixed bed reactor was also investigated to enhance biological treatment efficiency at various hydraulic retention times, pretreatment conditions by Fenton’s reagent and salt concentrations by dyestuff wastewater. In addition, the efficiency of Fenton’s oxidation as a post-treatment system was also investigated to present a total treatment process of dyestuff wastewater. As the influent COD and salinity were increased, the effluent SS and COD were consequently increased. However, as the microorganisms became adapted to the changed influent condition, the treatment efficiency of the fixed bed reactor quickly recovered under the high COD and salinity since the microorganisms were well adapted to toxic influent conditions. A wastewater treatment process consisting of chemical oxidation, activated carbon adsorption, fixed bed biofilm process and Fenton’s oxidation as a post-treatment system can be useful to treat dyestuff wastewater having high salinity, colour, and non-biodegradable organic concentration.  相似文献   

8.
In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process.  相似文献   

9.
The present study investigates the biodegradation of pharmaceutically active compounds (PhACs) by active biomass in activated sludge. Active heterotrophs (Xbh) which are known to govern COD removal are suggested as a determining factor for biological PhAC removal as well. Biodegradation kinetics of five polar PhACs were determined in activated sludge of two wastewater treatment plants which differed in size, layout and sludge retention time (SRT).Results showed that active fractions of the total suspended solids (TSS) differed significantly between the two sludges, indicating that TSS does not reveal information about heterotrophic activity. Furthermore, PhAC removal was significantly faster in the presence of high numbers of heterotrophs and a low SRT. Pseudo first-order kinetics were modified to include Xbh and used to describe decreasing PhAC elimination with increasing SRT.  相似文献   

10.
Salt inhibition kinetics in nitrification of synthetic saline wastewater   总被引:3,自引:0,他引:3  
Nitrification kinetics of synthetic saline wastewater was investigated by using an activated sludge unit. Initial experiments were performed with salt-free wastewater to obtain baseline information. Experiments with 3% salt concentration were performed at different sludge ages in order to investigate the system performance and salt inhibition effects on kinetic constants. Minimum sludge age required for complete nitrification increased from 12 days for salt-free wastewater to 25 days for 3% salt content. Salt inhibition was non-competitive type affecting both the maximum rate and the saturation constants. Inhibition constants were determined by using the experimental data as K(T1) = 200 g/liter and K(T2) = 7.4 g/liter. Further experiments were performed with salt concentrations between 0-5% to quantify variation of the rate and extent of COD removal with salt concentration. The rate and extent of nitrification decreased approximately 20% with 5% salt as compared to salt-free wastewater.  相似文献   

11.
Ceramic industry wastewaters not only contain high suspended and total solids but also significant amounts of dissolved organics resulting in high BOD or COD loads. Suspended solids can be removed from the wastewater by chemical precipitation. However, dissolved BOD/COD compounds can only be removed by biological or chemical oxidation. Effluent wastewater from chemical sedimentation stage of EGE CERAMIC industry was characterized and subjected to biological treatment in a laboratory scale activated sludge unit. Experiments were conducted at different hydraulic and solids retention times. The best results were obtained with Šc=20 h of hydraulic and Šc=20 days of solids retention times (sludge age) resulting in effluent COD concentration of 40 mg/l from a feed wastewater of 720 mg/l COD content. The suspended solids content of the activated sludge effluent was approximately 52 mg/l.  相似文献   

12.
Odours from wastewater treatment plants are comprised of a mixture of various gases, of which hydrogen sulphide (H2S) is the main constituent. Sulphurous compounds can be degraded by microorganisms commonly found in wastewater. The use of activated sludge (AS) diffusion as a dual-role system, for the treatment of wastewater and for odour control, offers an alternative to traditional sulphurous waste gas treatment processes, such as biofilters, bioscrubbers and biotrickling filters, both in practical terms (use of existing facilities) and economically (minimal capital cost). Activated sludge diffusion avoids the common problems associated with these processes such as media plugging, excess biomass accumulation, gas short-circuiting, and moisture control and maintaining the correct biofilm thickness. The design issues to be considered when using AS diffusion for odour abatement, comprise odourous air pre-treatment,blowers and diffuser types, corrosion protection and increase in odour emission intensity. Nitrification inhibition depends on the composition and acclimation of the biomass, the concentration of H2S and other components of the wastewater. Hydrogen sulphide removal rates of >98% were consistently achieved for loads of 3–34 mg H2S/g MLSS/h, in two case studies, which also showed that sludge type has an impact on the ability of the sludge to degrade H2S. Wastewater process performance measured as five-day biological oxygen demand (BOD5), chemical oxygen demand (COD) and effluent suspended solids removal was not affected by H2S diffusionat 5 ppm. A change in the microorganism population dynamics of anactivated sludge was observed when it was exposed to H2S for aperiod of more than 21 days.  相似文献   

13.
《Process Biochemistry》2007,42(3):449-453
An upflow anaerobic packed bed reactor was operated continuously with synthetic saline wastewater at different initial COD concentrations (COD0 = 1900–6300 mg/L), salt concentrations (0–5%, w/v) and hydraulic retention times (θH = 11–30 h) to investigate the effect of those operating parameters on COD removal from saline synthetic wastewater. Anaerobic salt tolerant bacteria, Halanaerobium lacusrosei, were used as dominant microbial culture in the process. The percent COD removal reached up to 94% at COD0 = 1900 mg/L, 19 h hydraulic retention time and 3% salt concentration. No substrate inhibition effect was observed at high feed CODs. Increasing hydraulic retention time from 11 h to 30 h resulted in a substantial improvement in the COD removal from 60% to 84% at around COD0 = 3400 mg/L and 3% salt concentration. Salt inhibition effect on COD utilization was observed at above 3% salt concentration. Modified Stover–Kincannon model was applied to the experimental data to determine the biokinetic coefficients. Saturation value constant, and maximum utilization rate constant of Stover–Kincannon model for COD were determined as KB = 5.3 g/L day, Umax = 7.05 g/L day, respectively.  相似文献   

14.
The ability to remove inorganic phosphate from synthetic wastewater was tested with about 40 microbial strains, and Pseudomonas aeruginosa IAM 1007 was found to give good performance under aerobic conditions. However, the phosphate removal under batch anaerobic/aerobic (A/O) treatment was not satisfactory in pure cultures of several strains including P. aerginosa, and Aceinetobacter calcoaceticus, but the activated sludge from a plant with an A/O process almost depleted the phosphate. Mixed cultures of P. aeruginosa in the presence of the facultativelu anaerobic strains of A-1 or A-8 isolated from the activated sludge showed enhanced phosphate removal. This suggests a symbiotic effect among microbial species on biological removal of inorganic phosphate in the A/O process.  相似文献   

15.
The main purpose of this paper is to study naphthalene (NAP) biodegradation by acclimated activated sludge, employing the culture-enrichment method in a continuous flow bioreactor of the wastewater treatment process. The effects of various COD loadings and influent flow rates of an artificial wastewater containing 15 mg l−1 NAP on the biodegradation rates of the activated sludge will be investigated, in order to determine the biodegradation kinetics and minimum mean cell residence time of the activated sludge. From the experimental results, it was found that the resulting enriched activated sludge follows the growth rate of the Monod type and can biodegrade those COD and NAP loadings in the influents efficiently, and its bio-treatment efficiency on NAPs increases with the decrease of influent flow rate. The sludge volume index (SVI) of the resulting enriched activated sludge meets the design value required by the convectional activated sludge process for the treatment of wastewater.  相似文献   

16.
Surplus biological sludge from wastewater treatment operations was converted into activated carbon and then added to the aerated vessel of an activated sludge process treating phenol and glucose. The addition of activated carbon, either sludge-based or commercial, enhanced phenol removal from 58 to 98.7% and from 87 to 93% for COD with feed concentrations of 100 mg phenol l–1 and 2500 mg COD l–1. No differences were found between the activated sludge-activated carbon bench scale continuous reactors operating with either commercial or sludge-based activated carbon in spite of the higher adsorption capacity of the former.  相似文献   

17.
The performance of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated by microbial analysis and kinetic modelling. The microbial community present in the granular sludge was detected using fluorescent in situ hybridization (FISH) and further confirmed using polymerase chain reaction. A group of 16S rRNA based fluorescent probes and primers targeting Archaea and Eubacteria were selected for microbial analysis. FISH results indicated the presence and dominance of a significant amount of Eubacteria and diverse group of methanogenic Archaea belonging to the order Methanococcales, Methanobacteriales, and Methanomicrobiales within in the UASB reactor. The influent brewery wastewater had a relatively high amount of volatile fatty acids chemical oxygen demand (COD), 2005 mg/l and the final COD concentration of the reactor was 457 mg/l. The biogas analysis showed 60–69 % of methane, confirming the presence and activities of methanogens within the reactor. Biokinetics of the degradable organic substrate present in the brewery wastewater was further explored using Stover and Kincannon kinetic model, with the aim of predicting the final effluent quality. The maximum utilization rate constant U max and the saturation constant (K B) in the model were estimated as 18.51 and 13.64 g/l/day, respectively. The model showed an excellent fit between the predicted and the observed effluent COD concentrations. Applicability of this model to predict the effluent quality of the UASB reactor treating brewery wastewater was evident from the regression analysis (R 2?=?0.957) which could be used for optimizing the reactor performance.  相似文献   

18.
《Process Biochemistry》2010,45(4):563-572
In this study, the effect of the pretreatment of NH4-N by struvite precipitation on biological nitrogen removal was investigated in treating swine wastewater. Evaluation was mainly focused on nitrification which occurred in the activated sludge system after struvite precipitation. Laboratory experiments were performed at four different hydraulic retention times (HRT), i.e., 48, 32, 24 and 16 h. Results of the long-term operation of systems showed that the struvite precipitation used as the pretreatment of raw swine wastewater enhanced the nitrification performance in activated sludge system by reducing the applied loading rates of NH4-N and TCOD in all operating conditions. The reduction of the applied NH4-N loading rate kept the levels of free ammonia (FA) concentration in biological reactors low and it prevented nitrite accumulation. In addition, the struvite precipitation elicited the biological denitrification reaction and PO4-P removal by increasing the ratios of carbon-to-nitrogen and carbon-to-phosphorus of wastewater after struvite precipitation. The struvite precipitation also enhanced the biological TCOD removal performance by reducing the toxic effect of FA. Triplicate INT-dehydrogenase tests clearly showed that FA inhibited the degradation of organic matter in activated sludge system. Finally, the struvite precipitation contributed to high TCOD, T-N and PO4-P removals of 83, 90, and 97% by facilitating biological reaction at a short HRT of 16 h.  相似文献   

19.
The performance of an activated sludge wastewater treatment process consisting of an aeration tank and a secondary settler has been studied. A tanks-in-series model with backflow was used for mathematical modeling of the activated sludge wastewater treatment process. Non-linear algebraic equations obtained from the material balances of MLSS (mixed liquor suspended solids or activated sludge), BOD (biological oxygen demand) and DO (dissolved oxygen) for the aeration tank and the settler and from the behavior of the settler were solved simultaneously using the modified Newton-Raphson technique. The concentration profiles of MLSS, BOD and DO in the aeration tank were obtained. The simulation results were examined from the viewpoints of mixing in the aeration tank and flow in the secondary settling tank. The relationships between the overall performance of the activated sludge process and the operating and design parameters such as hydraulic residence time, influent BOD, recycle ratio and waste sludge ratio were obtained.  相似文献   

20.
In this work wine vinasses have been treated separately by means of a chemical ozonation and a biological aerobic degradation in an activated sludge system, and later by means of a combined process which consisted of an aerobic pretreatment followed by an ozonation treatment, in continuous reactors in all cases. In the ozonation experiments, the hydraulic retention time and the ozone partial pressure were varied leading to substrate removals in the range 4.4-16%, with increases in this removal when both operating variables were increased. A kinetic study, which combines mixed flow reactor model for the liquid phase and plug flow reactor model for the gas phase, allows to determine the rate constant for the ozone reaction and the consumption ratio, which are kO3 = 3.6 l/(g COD · h) and b = 22.5 g COD degraded/mol O3 consumed. The aerobic degradation experiments were conducted in the activated sludge system with variations in the retention time and influent organic substrate concentration in the wastewater. A modified Contois model applied to the experimental results leads to the determination of the kinetic parameters of that model: K1 = 5.43 l/g VSS and qmax = 6.29 g COD/(g VSS · h). Finally, the combined process reveals an improvement in the efficiency of the ozonation stage due to the previous aerobic treatment with increases in the substrate removal reached and in the rate constant obtained, the last one being kO3 = 5.6 l/(g COD · h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号