首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We reported in a previous study that proteomic approach, coupled with genomic techniques, could be used to screen and develop multiple candidates for halophilic enzymes from Halobacterium salinarum. In order to evaluate the biodegradation of isopropyl alcohol (IPA) by H. salinarum, the amounts of residual IPA and acetone generated in the growth media were determined using a gas chromatography-flame ionization detector (GC-FID). The protein expression profiles of cells which had been cultured with IPA were obtained with the two-dimensional gel electrophoresis. Proteins evidencing different expression levels in the presence of 0.5% IPA were identified by electrospray ionization-quadruple-time of flight (ESI-Q-TOF) mass spectrometry. We found 12 proteins which were down-regulated, and another 12 proteins which were up-regulated, in the presence of 0.5% IPA and we further identified 17 proteins among them using ESI-TOF MS/MS. Among these identified proteins, we selected glyceraldehyde 3-phosphate dehydrogenase (GAPDH) for further characterization as a halophilic enzyme. We have demonstrated for the first time that H. salinarum possesses the ability to degrade IPA and GAPDH was both stable and active at high salt concentrations, with maximum activity occurring at 1 M NaCl, although the optimal salt concentration with regard to the growth of H. salinarum is 4.3 M.  相似文献   

2.
Halobacterium salinarum is a member of the halophilic archaea. In the present study, H. salinarum was cultured at various NaCl concentrations (3.5, 4.3, and 6.0 M NaCl), and its proteome was determined and identificated via proteomics technique. We detected 14 proteins which were significantly down-regulated in 3.5 M and/or 6 M NaCl. Among the identified protein spots, aldehyde dehydrogenase (ALDH) was selected for evaluation with regard to its potential applications in industry. The most effective metabolism function exhibited by ALDH is the oxidation of aldehydes to carboxylic acids. The ALDH gene from H. salinarum (1.5 kb fragment) was amplified by PCR and cloned into the E. coli strain, BL21 (DE3), with the pGEX-KG vector. We subsequently analyzed the enzyme activity of the recombinant ALDH (54 kDa) at a variety of salt concentrations. The purified recombinant ALDH from H. salinarum exhibited the most pronounced activity at 1 M NaCl. Therefore, the ALDH from H.salinarum is a halophilic enzyme, and may prove useful for applications in hypersaline environments.  相似文献   

3.
Cho CW  Lee SH  Choi J  Park SJ  Ha DJ  Kim HJ  Kim CW 《Proteomics》2003,3(12):2325-2329
Inherent problems exist in the use of two-dimensional gel electrophoresis (2-DE) for sample preparation and separation of proteins from Halobacterium salinarum. In particular, proteins from cells grown in 25% NaCl are difficult to resolve by 2-DE due to the abundance of salt. To remove salts, a 3 kDa molecular weight cut-off column was used. When soluble proteins were separated by 2-DE, most of the proteins were concentrated in the acidic range. For separation of proteins in the pH 3-6 range, ultrazoom immobilized pH gradient strips were used. In addition, sample separation using a IPGphor/Multiphor combined system was a more effective method for the proteome analysis of acidic proteins than using IPGphor for the isoelectric focusing step.  相似文献   

4.
Choi J  Joo WA  Park SJ  Lee SH  Kim CW 《Proteomics》2005,5(4):907-917
The extremely halophilic archaeon, Halobacterium salinarum grows in environments containing over 25% NaCl. The enzymes of this organism have thus been adapted to be active and stable in hypersaline conditions, which makes them strong candidates as robust industrial enzymes. In this study, the proteomics approach was applied to screen novel halophilic enzymes. We focused initially on proteins that are differentially expressed under different salt concentrations in culture media. After two-dimensional gel electrophoresis over a pH 3.5-4.5 range, 29 differentially expressed protein spots were identified by tandem mass spectrometry and six of these had no similarity to preexisting genes of known function. To predict the function of them, we used various bioinformatic methods. Among other proteins, we selected Vng0487h, which showed a high similarity to acetyltransferases. As a step toward assaying the enzymatic activity of this protein, we cloned the Vng0487h gene of H. salinarum and expressed and purified the recombinant protein with a glutathione-S-transferase (GST) tag in Escherichia coli. Using a GST-pulldown assay, a protein fragment derived from E. coli could interact with recombinant Vng0487h, and was identified to be the ribosomal protein L3. This protein showed high sequence homology with ribosomal protein L7/12 from E. coli and ribosomal protein L13p from H. salinarum. This suggests that Vng0487h acetylates a subunit of ribosomal protein, possibly L13p, in H. salinarum. During the present study, an efficient procedure was established to screen novel halophilic enzymes, and to predict and assess their functions.  相似文献   

5.
The unicellular green alga Dunaliella salina is a recognized model for studying plant adaptation to high salinity. To isolate some salt-induced proteins at proteomics levels and to identify their expressions at gene levels, algal cells at logarithmic phase cultured in 1.5 and 3.5 M NaCl media were harvested for protein extraction. Solubilized proteins were applied to two-dimensional gel electrophoresis (2-DE) and analyzed by ImageMaster 2D Platinum software. Twenty-one protein spots whose intensities were elevated threefold to 13-fold at 3.5 M NaCl as compared to 1.5 M NaCl were analyzed by matrix-assisted laser desorption/ionization tandem time of flight mass spectrometry. One salt-induced protein isolated from the 2-DE gels was identified as a glucose-6-phosphate isomerase (GPI) from D. salina (DsGPI). A full-length cDNA of DsGPI was obtained using rapid amplification of cDNA end technique, and it was shown by heterologous expression to encode a protein with a molecular weight consistent with the protein spot in the 2-DE gels. Real-time quantitative RT-PCR demonstrated that the mRNA of DsGPI was induced up to eightfold (P < 0.01) by 2.5 M and 14-fold higher (P < 0.01) by 3.5 M NaCl than by 1.5 M NaCl, respectively. It is concluded that the protein isolated through 2-DE is indeed DsGPI and that the DsGPI gene may be involved in adaptation to high salinity.  相似文献   

6.
Both the moderately halophilic bacterium, Halomonas elongata, and the extremely halophilic archaea, Halobacterium salinarum, can be found in hypersaline environments (e.g., salterns). On complex media, H. elongata grows over a salt range of 0.05-5.2 M, whereas, H. salinarum multiplies over a salt range of 2.5-5.2 M. The purpose of this study was to illustrate the effect that solar (UV-A and UV-B) and germicidal radiation (UV-C) had on the growth patterns of these bacteria at varied salt concentrations. Halomonas elongata grown on a complex medium at 0.05, 1.37, and 4.3 M NaCl was found to be more sensitive to UV-A and UV-B radiation, as the salt concentration of the medium increased. Halobacterium salinarum grown on a complex medium at 3.0 and 4.3 M NaCl did not show a significant drop in viability after 39.3 kJ.m-2 of UV-A and UV-B exposure. When exposed to UV-C, H. elongata exhibited substantially more sensitivity than H. salinarum. In H. elongata, differential sensitivity to UV-C was observed. At 0.05 M NaCl, H. elongata was less sensitive to UV-C than at 1.37 and 4.3 M NaCl. Both bacteria showed some photoreactivation when incubated under visible light following both UV-A, UV-B, and UV-C exposure. Mutagenesis following UV-C exposure was demonstrated by both organisms.  相似文献   

7.
The halophilic archaeon Halobacterium salinarum (strain R1, DSM 671) contains 2784 protein-coding genes as derived from the genome sequence. The cytosolic proteome containing 2042 proteins was separated by two-dimensional gel electrophoresis (2-DE) and systematically analyzed by a semi-automatic procedure. A reference map was established taking into account the narrow isoelectric point (pI) distribution of halophilic proteins between 3.5 and 5.5. Proteins were separated on overlapping gels covering the essential areas of pI and molecular weight. Every silver-stained spot was analyzed resulting in 661 identified proteins out of about 1800 different protein spots using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting (PMF). There were 94 proteins that were found in multiple spots, indicating post-translational modification. An additional 141 soluble proteins were identified on 2-D gels not corresponding to the reference map. Thus about 40% of the cytosolic proteome was identified. In addition to the 2784 protein-coding genes, the H. salinarum genome contains more than 6000 spurious open reading frames longer than 100 codons. Proteomic information permitted an improvement in genome annotation by validating and correcting gene assignments. The correlation between theoretical pI and gel position is exceedingly good and was used as a tool to improve start codon assignments. The fraction of identified chromosomal proteins was much higher than that of those encoded on the plasmids. In combination with analysis of the GC content this observation permitted an unambiguous identification of an episomal insert of 60 kbp ("AT-rich island") in the chromosome, as well as a 70 kbp region from the chromosome that has integrated into one of the megaplasmids and carries a series of essential genes. About 63% of the chromosomally encoded proteins larger than 25 kDa were identified, proving the efficacy of 2-DE MALDI-TOF MS PMF technology. The analysis of the integral membrane proteome by tandem mass spectrometric techniques added another 141 identified proteins not identified by the 2-DE approach (see following paper).  相似文献   

8.
Strains of Halobacteria from an Algerian culture collection were screened for their lipolytic activity against p-nitrophenyl butyrate (PNPB) and p-nitrophenyl palmitate (PNPP). Most strains were active on both esters and 12% hydrolyzed olive oil. A strain identified as Natronococcus sp. was further studied. It grew optimally at 3.5 M NaCl, pH 8 and 40 degrees C. An increase in temperature shifted the optimum salt concentration range for growth from a wider range of 2-4 M, obtained at 25-30 degrees C, to a narrower range of 3.5-4 M, obtained at 35-40 degrees C. At 45 degrees C the optimum salt concentration was 2 M. These results show a clear correlation between salt and temperature requirement. The optimum conditions for the production of hydrolytic activity during growth were: 3.5 M NaCl and pH 8 for PNPB hydrolytic activity and 4 M NaCl and pH 7.5 for PNPP hydrolytic activity; both at 40 degrees C. The clear supernatant of cells grown at 4 M NaCl showed olive oil hydrolysis activity (in presence of 4 M NaCl) demonstrating the occurrence of a lipase activity in this strain. To our knowledge, this is the first report of a lipase activity at such high salt concentration.  相似文献   

9.
The identification of 114 integral membrane proteins from Halobacterium salinarum was achieved using liquid chromatography/tandem mass spectrometric (LC/MS/MS) techniques, representing 20% of the predicted alpha-helical transmembrane proteins of the genome. For this experiment, a membrane preparation with only minor contamination by soluble proteins was prepared. From this membrane preparation a number of peripheral membrane proteins were identified by the classical two dimensional gel electrophoresis (2-DE) approach, but identification of integral membrane proteins largely failed with only a very few being identified. By use of a fluorescently labeled membrane preparation, we document that this is caused by an irreversible precipitation of the membrane proteins upon isoelectric focusing (IEF). Attempts to overcome this problem by using alternative IEF methods and IEF strip solubilisation techniques were not successful, and we conclude that the classical 2-DE approach is not suited for the identification of integral membrane proteins. Computational analysis showed that the identification of integral membrane proteins is further complicated by the generation of tryptic peptides, which are unfavorable for matrix assisted laser desorption/ionization time of flight mass spectrometric peptide mass fingerprint analysis. Together with the result from the analysis of the cytosolic proteome (see preceding paper), we could identify 34% (943) of all gene products in H. salinarum which can be theoretically expressed. This is a cautious estimate as very stringent criteria were applied for identification. These results are available under www.halolex.mpg.de.  相似文献   

10.
The effects of elevated pH and high salt concentrations on tubulin   总被引:1,自引:0,他引:1  
The effects of incubating phosphocellulose-purified bovine tubulin at 4 degrees C in nucleotide-free buffers at alkaline pH or at high concentrations of NaCl, KCl, (NH4)2SO4, or NH4Cl have been studied. At pH greater than or equal to 7.5 or at NaCl concentrations greater than or equal to 0.7 M, tubulin releases bound nucleotides irreversibly and loses, with apparent first-order kinetics, the ability to assemble into microtubules. In 0.1 M 1,4-piperazinediethanesulfonic acid buffer, pH 6.9, in the presence of 1.3 M NH4Cl, tubulin undergoes more rapid loss of capacity to assemble than it does in NaCl and KCl, but 1.3 M (NH4)2SO4 causes no detectable change in tubulin after 1-h incubation. Incubation at high pH or at high neutral salt concentrations also causes an apparently irreversible change in the ultraviolet difference spectrum and in the sedimentation velocity profile of tubulin. At elevated salt concentrations a decrease of approximately 10% in the molar ellipticity within the wavelength range 220-260 nm is observed. The changes that occur during 1-h exposure to pH 8.0 can be completely prevented by including 1 mM guanosine 5'-triphosphate (GTP) or 4 M glycerol in the buffer, but those which occur at pH 9.0 cannot be prevented by these additions. In 1 M NaCl when the ratio of bound guanine nucleotide to tubulin reaches approximately 1.0, tubulin loses the abilities to assemble into microtubules and to bind colchicine. The rate of loss of nucleotide in 2 M NaCl is decreased in the presence of 1 mM GTP, and tubulin is protected almost completely from 1 M NaCl-induced loss of GTP (and retains the ability to exchange [3H]GTP as well) in the presence of bound colchicine. Investigators who anticipate exposing tubulin to buffers of elevated pH or high concentrations of chaotropic salts should be extremely cautious in interpreting the resulting data unless they can demonstrate that irreversible alteration of the protein has not occurred.  相似文献   

11.
Nucleoside diphosphate kinase (HsNDK) from extremely halophilic haloarchaeon, Halobacterium salinarum, requires salt at high concentrations for folding. A D148C mutant, in which Asp148 was replaced with Cys, was designed to enhance stability and folding in low salt solution by S-S bond. It showed increased thermal stability by about 10 °C in 0.2 M NaCl over the wild type HsNDK. It refolded from heat-denaturation even in 0.1 M NaCl, while the wild type required 2 M NaCl to achieve the same level of activity recovery. This enhanced refolding is due to the three S-S bonds between two basic dimeric units in the hexameric HsNDK structure, indicating that assembly of the dimeric unit may be the rate-limiting step in low salt solution. Circular dichroism and native-PAGE analysis showed that heat-denatured HsNDK formed partially folded dimeric structure, upon refolding, in the absence of salt and the native-like secondary structure in the presence of salt above 0.1 M NaCl. However, it remained dimeric upon prolonged incubation at this salt concentration. In contrary, heat-denatured D148C mutant refolded into tetrameric folding intermediate in the absence of salt and native-like structure above 0.1 M salt. This native-like structure was then converted to the native hexamer with time.  相似文献   

12.
The stability of malate dehydrogenase (hMDH) from Halobacterium salinarum in aqueous medium at low salt concentrations (1 and 0.5 M NaCl) was studied at 4 degrees and 25 degrees C. The results showed that hMDH was more stable at the higher salt concentration and the low temperature. hMDH was introduced into reverse micelles of hexadecyltrimethylammonium bromide in cyclohexane with 1-butanol as co-surfactant. The hMDH stability in this system was studied at two omega(0) ([H(2)O]/[surfactant]) values and the effects of salt concentration, presence of substrate and dilution before or after its introduction into reverse micelles were examined. The results showed that the half-life of hMDH dissolved in buffer with 1 M NaCl was 12-50 days in reverse micelles (depending on the various conditions), in contrast to only about 1 day in aqueous medium at 25 degrees C. These observations indicate that reverse micelles provide a microenvironment that allows a much greater stability of this enzyme compared with an aqueous medium.  相似文献   

13.
The [2Fe-2S] ferredoxin (HsFdx) of the halophilic archaeon Halobacterium salinarum exhibits a high degree of sequence conservation with plant-type ferredoxins except for an insertion of 30 amino acids near its N-terminus which is extremely rich in acidic amino acids. Unfolding studies reveal that HsFdx has an unfolding temperature of approximately 85 degrees C in 4.3 M NaCl, but of only 50 degrees C in low salinity, revealing its halophilic character. The three-dimensional structure of HsFdx was determined by NMR spectroscopy, resulting in a backbone rmsd of 0.6 A for the diamagnetic regions of the protein. Whereas the overall structure of HsFdx is very similar to that of the plant-type ferredoxins, two additional alpha-helices are found in the acidic extra domain. (15)N NMR relaxation studies indicate that HsFdx is rigid, and the flexibility of residues is similar throughout the molecule. Monitoring protein denaturation by NMR did not reveal differences between the core fold and the acidic domain, suggesting a cooperative unfolding of both parts of the molecule. A mutant of the HsFdx in which the acidic domain is replaced with a short loop of the nonhalophilic Anabaena ferredoxin shows a considerably changed expression pattern. The halophilic wild-type protein is readily expressed in large amounts in H. salinarum, but not in Escherichia coli, whereas the mutant ferredoxin could only be overexpressed in E. coli. The salt concentration was also found to play a critical role for the efficiency of cluster reconstitution: the cluster of HsFdx could be reconstituted only in a solution containing molar concentrations of NaCl, while the reconstitution of the cluster in the mutant protein proceeds efficiently in low salt. These findings suggest that the acidic domain mediates the halophilic character which is reflected in its thermostability, the exclusive expression in H. salinarum, and the ability to efficiently reconstitute the iron-sulfur cluster only at high salt concentrations.  相似文献   

14.
The extremely halophilic bacterium Salinibacter ruber was previously shown to have a high intracellular potassium content, comparable to that of halophilic Archaea of the family Halobacteriaceae. The amino acid composition of its bulk protein showed a high content of acidic amino acids, a low abundance of basic amino acids, a low content of hydrophobic amino acids, and a high abundance of serine. We tested the level of four cytoplasmic enzymatic activities at different KCl and NaCl concentrations. Nicotinamide adenine dinucleotide (NAD)-dependent isocitrate dehydrogenase functioned optimally at 0.5-2 M KCl, with rates of 60% of the optimum value at 3.3 M. NaCl provided less activation: 70% of the optimum rates in KCl were found at 0.2-1.2 M NaCl, and above 3 M NaCl, activity was low. We also detected nicotinamide adenine dinucleotide phosphate (NADP)-dependent isocitrate activity, which remained approximately constant between 0-3.2 M NaCl and increased with increasing KCl concentration. NAD-dependent malate dehydrogenase functioned best in the absence of salt, but rates as high as 25% of the optimal values were measured in 3-3.5 M KCl or NaCl. NAD-dependent glutamate dehydrogenase, assayed by the reductive amination of 2-oxoglutarate, showed low activity in the absence of salt. NaCl was stimulatory with optimum activity at 3-3.5 M. However, no activity was found above 2.5 M KCl. Although the four activities examined all function at high salt concentrations, the behavior of individual enzymes toward salt varied considerably. The results presented show that Salinibacter enzymes are adapted to function in the presence of high salt concentrations.  相似文献   

15.
1. A procedure is described which gives clean chromatin preparations from the free-living nematode Caenorhabditis elegans. It involves homogenization using glass beads, collection of the precipitate from a low speed centrifugation, removal of cell membranes with Triton X-100, several washes with 0.14 M NaCl, sucrose density gradient centrifugation, a cycle of extraction and reprecipitation using dilute Tris buffer and 0.14 M NaCl respectively, and final extraction of the purified deoxyribonucleoprotein in 10 mM Tris-HCl (pH 8). 2. Acidic urea gel electrophoresis of the histones from C. elegans yielded 4 main groups which were preliminary identified as H1, H2a (+ H3?), H2b, H4 and moved on the gels in that order of increasing mobility. the coincidence of histone H3 with H2a was putative, but its presence was firmly suggested by the generation of a dimeric form in oxidizing conditions. 3. By SDS-Tris-glycine gel electrophoresis of the non-histone chromosomal proteins of C. elegans, about 18 proteins were distinguished with molecular weights ranging from 15,000 to 100,000 daltons.  相似文献   

16.
Protein pattern changes in tomato under in vitro salt stress   总被引:2,自引:0,他引:2  
The investigation of salt-induced changes in the proteome would highlight important genes because of a high resolution of protein separation by two-dimensional gel electrophoresis (2-DE) and protein identification by mass spectrometry and database search. Tomato (Lycopersicon esculentum Mill.) is a model plant for studying the mechanisms of plant salt tolerance. Seeds of tomato cv. Shirazy were germinated on water-agar medium. After germination, seedlings were transferred to Murashige and Skoog nutrient medium supplemented with 0, 40, 80, 120, and 160 mM NaCl. After 24 days, leaf and root samples were collected for protein extraction and shoot dry weight measurement. Alterations induced in leaf and root proteins under salt stress treatments were studied by one-dimensional SDS-PAGE. Leaf proteins were also analyzed by 2-DE. With increasing salt concentration in the medium, shoot dry weight decreased. SDS-PAGE showed induction of at least five proteins with mol wts of 30, 62, and 75 kD in roots and 38 and 46 kD in leaves. On the 2-DE gel, more than 400 protein spots were reproducibly detected. At least 18 spots showed significant changes under salt stress. Three of them corresponded to new proteins, while six proteins were up-regulated and five proteins were down-regulated by salt stress. In addition, salinity inhibited the synthesis of four leaf proteins. Ten spots were analyzed by matrix-assistant laser desorption/ionization-time of flight (MALDI-TOF), which led to the identification of some proteins, which could play a physiological role under salt stress. The expression of new proteins(enoyl-CoA hydratase, EGF receptor-like protein, salt tolerance protein, phosphoglycerate mutase-like protein, and M2D3.3 protein) under salt stress indicates that tomato leaf cells respond to salt stress by changes in different physiological processes. All identified proteins are somehow related to various salt stress responses, such as cell proliferation. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 526–533. The text was submitted by the authors in English.  相似文献   

17.
Protein profiles of Mycobacterium vanbaalenii PYR-1 grown in the presence of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) were examined by two-dimensional gel electrophoresis (2-DE). Cultures of M. vanbaalenii PYR-1 were incubated with pyrene, pyrene-4,5-quinone (PQ), phenanthrene, anthracene, and fluoranthene. Soluble cellular protein fractions were analyzed and compared, using immobilized pH gradient (IPG) strips. More than 1000 gel-separated proteins were detected using a 2-DE analysis program within the window of isoelectric point (pI) 4-7 and a molecular mass range of 10-100 kDa. We observed variations in the protein composition showing the upregulation of multiple proteins for the five PAH treatments compared with the uninduced control sample. By N-terminal sequencing or mass spectrometry, we further analyzed the proteins separated by 2-DE. Due to the lack of genome sequence information for this species, protein identification provided an analytical challenge. Several PAH-induced proteins were identified including a catalase-peroxidase, a putative monooxygenase, a dioxygenase small subunit, a small subunit of naphthalene-inducible dioxygenase, and aldehyde dehydrogenase. We also identified proteins related to carbohydrate metabolism (enolase, 6-phosphogluconate dehydrogenase, indole-3-glycerol phosphate synthase, and fumarase), DNA translation (probable elongation factor Tsf), heat shock proteins, and energy production (ATP synthase). Many proteins from M. vanbaalenii PYR-1 showed similarity with protein sequences from M. tuberculosis and M. leprae. Some proteins were detected uniquely upon exposure to a specific PAH whereas others were common to more than one PAH, which indicates that induction triggers not only specific responses but a common response in this strain.  相似文献   

18.
Nucleosome cores mixed with the high mobility group proteins, HMG1 and HMG2, in 2 M NaCl, 5 M urea, 0.2 mM EDTA and 10 mM Tris pH 7.0, have been reconstituted by salt gradient dialysis. The reconstituted material, in 10 mM Tris pH 7.0, had a sedimentation peak at the same position as that of control nucleosome cores in sucrose density gradient ultracentrifugation. The SDS polyacrylamide gel electrophoresis of the reconstituted nucleosome cores demonstrated that they contain H2B, H3, H4 and HMG2 and are selectively deficient in H2A. The circular dichroism of DNA of the reconstituted cores was indistinguishable from that of control nucleosome cores. The results suggest that HMG2 replaces H2A as a component of the nucleosome histone core during reconstitution.  相似文献   

19.
Birch RM  O'Byrne C  Booth IR  Cash P 《Proteomics》2003,3(5):764-776
The reliable identification and analysis of the low abundance proteins expressed by a cell remains a key challenge in the study of cellular proteomes. The analysis of low abundance proteins is a particular problem when using two-dimensional gel electrophoresis (2-DE) to resolve the cellular proteins since the technology is unable to display the wide dynamic range of protein levels typically synthesized by cells. We have investigated the use of reactive dye compounds for the enrichment of low abundance cellular proteins prior to analysis by 2-DE. The capacity of reactive dye compounds to bind specific protein species was used as the basis for a general chromatographic tool for protein enrichment. Six reactive dye compounds were investigated in detail for the analysis of Escherichia coli proteins. Whole bacterial cell lysates were passed down columns prepared with the reactive dye compounds. The bound proteins were eluted with 1.5 M NaCl and analyzed by 2-DE. Distinctive protein profiles were observed for the bound proteins recovered from the different reactive dye compounds. Selected proteins enriched by these methods were identified by peptide mass mapping. The enrichment procedure developed using reactive dye compounds were used to investigate acid-induced changes in the proteome of E. coli grown at either pH 7.0 or pH 5.8. Increased levels of expression were observed for a number of proteins (for example, GdhA, PanC, ProC, TkrA, EF-TS and YodA) were observed for E. coli grown at pH 5.8. Five identified proteins (AroG, FabI, GlyA, PurA and EF-Tu) showed reduced levels of synthesis for bacteria grown at pH 5.8 compared to pH 7.0. In the case of PanC and FabI the altered expression profiles were only reliably demonstrated using the enrichment protocols. One theme emerging from these data was that the expression of proteins concerned with one-carbon metabolism was perturbed at pH 5.8, which may point to a previously unrecognized affect of low pH stress on the physiology of E. coli cells. We conclude that the prefractionation of cell lysates on reactive dye columns will serve as a valuable generic tool for the analysis of low abundance proteins expressed by both prokaryotic and eukaryotic cells.  相似文献   

20.
Ribosomal proteins were extracted from 30 S subunits of Halobacterium marismortui under native conditions.Their separation was based on gel filtration and hydrophobic chromatography, performed at a concentration of 3.2 M KC1 to avoid denaturation. A total of nine proteins were isolated, purified and identified by partial amino-terminal sequences and two-dimension a gel electrophoresis. There is a high degree of sequence homology with 30 S proteins from H. cutirubrum, and also some with 30 (S) proteins of eubacteria.Proton NMR data indicate unfolding of the proteins in low salt. One of the proteins, however, retains its secondary structure at a salt concentration as low as 0.1 M NaCl, and even in 8 M urea. One reason for this outstanding stability could be the high proportion (50%) of β-structure in this protein as determined from circular dichroism measurements. In general, there is a higher β-sheet content than for 30 S proteins from Escherichia coli. Measurements of Stokes radii indicate several of the proteins to have a rather elongated shape. One of these is a complex consisting of L3/L4 and L20, similar to the LI-complex from E. co&.The presence of this 50 S complex in the preparation of the small subunit suggests a location on the interface between the subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号