首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolutionarily conserved phosphoinositide 3-kinase (PI3K) signaling pathway mediates both the metabolic effects of insulin and the growth-promoting effects of insulin-like growth factor-1 (IGF-1). We have generated mice deficient in both the p85alpha/p55alpha/p50alpha and the p85beta regulatory subunits of class I(A) PI3K in skeletal muscles. PI3K signaling in the muscle of these animals is severely impaired, leading to a significant reduction in muscle weight and fiber size. These mice also exhibit muscle insulin resistance and whole-body glucose intolerance. Despite their ability to maintain normal fasting and fed blood glucose levels, these mice show increased body fat content and elevated serum free fatty acid and triglyceride levels. These results demonstrate that in vivo p85 is a critical mediator of class I(A) PI3K signaling in the regulation of muscle growth and metabolism. Our finding also indicates that compromised muscle PI3K signaling could contribute to symptoms of hyperlipidemia associated with human type 2 diabetes.  相似文献   

2.
The phosphatidylinositol 3-kinase (PI3K) signaling pathway has inherent oncogenic potential. It is up-regulated in diverse human cancers by either a gain of function in PI3K itself or in its downstream target Akt or by a loss of function in the negative regulator PTEN. However, the complete consequences of this up-regulation are not known. Here we show that insulin and epidermal growth factor or an inactivating mutation in the tumor suppressor PTEN specifically increase the protein levels of hypoxia-inducible factor (HIF) 1alpha but not of HIF-1beta in human cancer cell lines. This specific elevation of HIF-1alpha protein expression requires PI3K signaling. In the prostate carcinoma-derived cell lines PC-3 and DU145, insulin- and epidermal growth factor-induced expression of HIF-1alpha was inhibited by the PI3K-specific inhibitors LY294002 and wortmannin in a dose-dependent manner. HIF-1beta expression was not affected by these inhibitors. Introduction of wild-type PTEN into the PTEN-negative PC-3 cell line specifically inhibited the expression of HIF-1alpha but not that of HIF-1beta. In contrast to the HIF-1alpha protein, the level of HIF-1alpha mRNA was not significantly affected by PI3K signaling. Vascular endothelial growth factor reporter gene activity was induced by insulin in PC-3 cells and was inhibited by the PI3K inhibitor LY294002 and by the coexpression of a HIF-1 dominant negative construct. Vascular endothelial growth factor reporter gene activity was also inhibited by expression of a dominant negative PI3K construct and by the tumor suppressor PTEN.  相似文献   

3.
The phosphatase and tensin homolog (PTEN), originally identified as a tumor suppressor, is an important regulator of the PI3K–Akt pathway. PTEN plays crucial roles in various cellular processes, including cell survival, cell growth, cell proliferation, cell differentiation, and cell metabolism. In metabolic tissues, PTEN expression affects insulin sensitivity and glucose homeostasis. In skeletal muscle, the deletion of PTEN regulates muscle development and protects the mutant mice from insulin resistance and diabetes. Notably, the regulatory role of PTEN in skeletal muscle stem cells has been recently reported. In this review, we mainly discuss the role of PTEN in regulating the development, glucose metabolism, stem cell fate decision, and regeneration of skeletal muscle.  相似文献   

4.
BACKGROUND: Size regulation is fundamental in developing multicellular organisms and occurs through the control of cell number and cell size. Studies in Drosophila have identified an evolutionarily conserved signaling pathway that regulates organismal size and that includes the Drosophila insulin receptor substrate homolog Chico, the lipid kinase PI(3)K (Dp110), DAkt1/dPKB, and dS6K. RESULTS: We demonstrate that varying the activity of the Drosophila insulin receptor homolog (DInr) during development regulates organ size by changing cell size and cell number in a cell-autonomous manner. An amino acid substitution at the corresponding position in the kinase domain of the human and Drosophila insulin receptors causes severe growth retardation. Furthermore, we show that the Drosophila genome contains seven insulin-like genes that are expressed in a highly tissue- and stage-specific pattern. Overexpression of one of these insulin-like genes alters growth control in a DInr-dependent manner. CONCLUSIONS: This study shows that the Drosophila insulin receptor autonomously controls cell and organ size, and that overexpression of a gene encoding an insulin-like peptide is sufficient to increase body size.  相似文献   

5.
Sepsis still remains a major cause for morbidity and mortality in patients. The molecular mechanisms underlying the disease are still enigmatic. A great number of therapeutic approaches have failed and treatment strategies are limited to date. Among those few admitted for clinical intervention, intensive insulin treatment has proven to be effective in the reduction of disease related complications in critically ill patients. Insulin effectively reduces glucose levels and thereby contributes to protection. On the other hand insulin is a potent signaling pathway activator. One of those is the PI3K signaling axis. Activation of PI3K is known to limit pro-inflammatory gene expression. Here we can show that in a mouse model of insulin hypersensitivity induced by the deletion of the PI3K antagonist PTEN, specifically in hepatic tissue, significant protection is conferred in murine models of lethal endotoxemia and sepsis. Acute inflammatory responses are diminished, glucose metabolism normalized and vascular activation is reduced. Furthermore we investigated the hepatic gene expression profile of relevant anti-inflammatory genes in PTEN deficient mice and found marked upregulation of PPARγ and HO-1. We conclude from our data that insulin hypersensitivity via sustained activation of the PI3K signaling pathway exerts protective effects in acute inflammatory processes.  相似文献   

6.
The phosphoinositide 3-kinase (PI3K) signaling pathway is one of the most altered in cancer, leading to a range of cellular responses including enhanced proliferation, survival, and metabolism, and is thus an attractive target for anticancer drug development. Stimulation of the PI3K pathway can be initiated by alterations at different levels of the signaling cascade including growth factor receptor activation, as well as mutations in PIK3CA, PTEN, and AKT genes frequently found in a broad range of cancers. Given its role in glucose metabolism, we investigated the utility of [(18)F]fluorodeoxyglucose positron emission tomography ([(18)F]FDG PET) as a pharmacodynamic biomarker of PI3K pathway-induced glucose metabolism. PTEN deletion in human colon carcinoma cells led to constitutive AKT activation but did not confer a phenotype of increased cell proliferation or glucose metabolism advantage in vivo relative to isogenic tumors derived from cells with a wild-type allele. This was not due to the activation context, that is, phosphatase activity, per se because PIK3CA activation in xenografts derived from the same lineage failed to increase glucose metabolism. Acute inhibition of PI3K activity by LY294002, and hence decreased activated AKT expression, led to a significant reduction in tumor [(18)F]FDG uptake that could be explained at least in part by decreased membrane glucose transporter 1 expression. The pharmacodynamic effect was again independent of PTEN status. In conclusion, [(18)F]FDG PET is a promising pharmacodynamic biomarker of PI3K pathway inhibition; however, its utility to detect glucose metabolism is not directly linked to the magnitude of activated AKT protein expression.  相似文献   

7.
The control of cell and organ growth is fundamental to the development of multicellular organisms. Here, we show that dPTEN, a Drosophila homolog of the mammalian PTEN tumor suppressor gene, plays an essential role in the control of cell size, cell number, and organ size. In mosaic animals, dPTEN(-) cells proliferate faster than their heterozygous siblings, show an autonomous increase in cell size, and form organs of increased size, whereas overexpression of dPTEN results in opposite phenotypes. The loss-of-function phenotypes of dPTEN are suppressed by mutations in the PI3K target Dakt1 and the translational initiation factor eif4A, suggesting that dPTEN acts through the PI3K signaling pathway to regulate translation. Although activation of PI3K and Akt has been reported to increase rates of cellular growth but not proliferation, loss of dPTEN stimulates both of these processes, suggesting that PTEN regulates overall growth through PI3K/Akt-dependent and -independent pathways. Furthermore, we show that dPTEN does not play a major role in cell survival during Drosophila development. Our results provide a potential explanation for the high frequency of PTEN mutation in human cancer.  相似文献   

8.
Gastrin-releasing peptide (GRP), the mammalian equivalent of bombesin (BBS), is an autocrine growth factor for neuroblastoma; its receptor is up-regulated in undifferentiated neuroblastomas. Phosphatidylinositol 3-kinase (PI3K) is a critical cell survival pathway; it is negatively regulated by the PTEN tumor suppressor gene. We have recently found that poorly differentiated neuroblastomas express decreased PTEN protein levels. Moreover, overexpression of the GRP receptor, a member of the G-protein coupled receptor family, down-regulates PTEN expression, resulting in increased neuroblastoma cell growth. Therefore, we sought to determine whether GRP or BBS activates PI3K in neuroblastoma cells (BE(2)-C, LAN-1, SK-N-SH). GRP or BBS treatment rapidly increased phosphorylation of Akt and GSK-3beta in neuroblastoma cells. Inhibition of GRP receptor, with antagonist GRP-H2756 or siRNA, attenuated BBS-induced phosphorylation of Akt. LY294002, a PI3K inhibitor, also abrogated BBS-stimulated phospho-Akt as well as its cell cycle targets. GRP increased G1/S phase progression in SK-N-SH cells. BBS-mediated BrdU incorporation was blocked by LY294002. Our findings identify PI3K as an important signaling pathway for GRP-mediated neuroblastoma cell growth. A novel therapy targeted at GRP/GRP receptor may prove to be an effective treatment option to inhibit PI3K in neuroblastomas.  相似文献   

9.
Chronic growth hormone (GH) therapy has been shown to cause insulin resistance, but the mechanism remains unknown. PTEN, a tumor suppressor gene, is a major negative regulator of insulin signaling. In this study, we explored the effect of chronic GH on insulin signaling in the context of PTEN function. Balb/c healthy mice were given recombinant human or bovine GH intraperitoneally for 3 weeks. We found that phosphorylation of Akt was significantly decreased in chronic GH group and the expression of PTEN was significantly increased. We further examined this effect in the streptozotocin-induced Type I diabetic mouse model, in which endogenous insulin secretion was disrupted. Insulin/PI3K/Akt signaling was impaired. However, different from the observation in healthy mice, the expression of PTEN did not increase. Similarly, PTEN expression did not significantly increase in chronic GH-treated mice with hypoinsulinemia induced by prolonged fasting. We conducted in-vitro experiments in HepG2 cells to validate our in-vivo findings. Long-term exposure to GH caused similar resistance of insulin/PI3K/Akt signaling in HepG2 cells; and over-expression of PTEN enhanced the impairment of insulin signaling. On the other hand, disabling the PTEN gene by transfecting the mutant PTEN construct C124S or siPTEN, disrupted the chronic GH induced insulin resistance. Our data demonstrate that PTEN plays an important role in chronic-GH-induced insulin resistance. These findings may have implication in other pathological insulin resistance.  相似文献   

10.
Loss of tissue polarity and increased proliferation are the characteristic alterations of the breast tumor phenotype. To investigate these processes, we used a three-dimensional (3D) culture system in which malignant human breast cells can be reverted to a normal phenotype by exposure to inhibitors of phosphatidylinositol 3-kinase (PI3K). Using this assay, we find that Akt and Rac1 act as downstream effectors of PI3K and function as control points of cellular proliferation and tissue polarity, respectively. Our results also demonstrate that the PI3K signaling pathway is an integral component of the overall signaling network induced by growth in 3D, as reversion affected by inhibition of PI3K signaling also down-modulates the endogenous levels of beta1 integrin and epidermal growth factor receptor, the upstream modulators of PI3K, and up-regulates PTEN, the antagonist of PI3K. These findings reveal key events of the PI3K pathway that play distinct roles to maintain tissue polarity and that when disrupted are instrumental in the malignant phenotype.  相似文献   

11.
PI3K/Akt plays a critical role in prostate cancer cell growth and survival. Recent studies have shown that the effect of PI3K/Akt in prostate cells is mediated through androgen signaling. The PI3K inhibitor, LY294002, and a tumor suppressor, PTEN, negatively regulate the PI3K/Akt pathway and repress AR activity. However, the molecular mechanisms whereby PI3K/Akt and PTEN regulate the androgen pathway are currently unclear. Here, we demonstrate that blocking the PI3K/Akt pathway reduces the expression of an endogenous AR target gene. Moreover, we show that the repression of AR activity by LY294002 is mediated through phosphorylation and inactivation of GSK3beta, a downstream substrate of PI3K/Akt, which results in the nuclear accumulation of beta-catenin. Given the recent evidence that beta-catenin acts as a coactivator of AR, our findings suggest a novel mechanism by which PI3K/Akt modulates androgen signaling. In a PTEN-null prostate cancer cell line, we show that PTEN expression reduces beta-catenin-mediated augmentation of AR transactivation. Using the mutants of beta-catenin, we further demonstrate that the repressive effect of PTEN is mediated by a GSK3beta-regulated degradation of beta-catenin. Our results delineate a novel link among the PI3K, wnt, and androgen pathways and provide fresh insights into the mechanisms of prostate tumor development and progression.  相似文献   

12.
AimsInsulin/insulin-like growth factor-1 (IGF-1) signaling plays an important role in many biological processes. The class IA isoform of phosphoinositide 3-kinase (PI3K) is an important downstream effector of the insulin/IGF-1 signaling pathway. The aim of this study is to examine the effect of persistent activation of PI3K on gene expression and markers of cellular senescence in murine hearts.Main methodsTransgenic mice expressing a constitutively active PI3K in a heart-specific manner were analyzed at the ages of 3 and 20 months. Effects of persistent activation of PI3K on gene expression were comprehensively analyzed using microarrays.Key findingsUpon comprehensive gene expression profiling, the genes whose expression was increased included those for several heat shock chaperons. The amount and nuclear localization of a forkhead box O (FOXO) protein was increased. In addition, the gene expression of insulin receptor substrate-2 decreased, and that of phosphatase and tensin homolog deleted on chromosome ten (PTEN) increased, suggesting that the persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling. The expression of markers of cellular senescence, such as senescence-associated beta-galactosidase activity, cell cycle inhibitors, proinflammatory cytokines, and lipofuscin, did not differ between old wild-type and caPI3K mice.SignificanceThe persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling pathway in a transgenic mouse line. Markers of cellular senescence were not changed in the aged mutant mice.  相似文献   

13.
The tumor suppressor PTEN is altered in many cancers, including breast cancer, but only a handful of factors are known to control its expression. PTEN plays a vital role in cell survival and proliferation by regulating Akt phosphorylation, a key component of the phosphatidylinositol 3 kinase (PI3K) pathway. Here we show that insulin-like growth factor-II (IGF-II), which signals through PI3K, regulates PTEN expression in the mammary gland. IGF-II injection into mouse mammary gland significantly increased PTEN expression. Transgenic IGF-II expression also increased mammary PTEN protein, leading to reductions in Akt phosphorylation, epithelial proliferation, and mammary morphogenesis. IGF-II induced PTEN promoter activity and protein levels and this involved the immediate early gene egr-1. Thus, we have identified a novel negative feedback loop within the PI3K pathway where IGF-II induces PTEN expression to modulate its physiologic effects.  相似文献   

14.
15.
One outcome of activation of the phosphatidylinositol 3-kinase (PI3K) pathway is increased aerobic glycolysis, but the upstream signaling events that regulate the PI3K pathway, and thus the Warburg effect, are elusive. Increasing evidence suggests that Plk1, a cell cycle regulator, is also involved in cellular events in addition to mitosis. To test whether Plk1 contributes to activation of the PI3K pathway, and thus aerobic glycolysis, we examined potential targets of Plk1 and identified PTEN as a Plk1 substrate. We hypothesize that Plk1 phosphorylation of PTEN leads to its inactivation, activation of the PI3K pathway, and the Warburg effect. Our data show that overexpression of Plk1 leads to activation of the PI3K pathway and enhanced aerobic glycolysis. In contrast, inhibition of Plk1 causes markedly reduced glucose metabolism in mice. Mechanistically, we show that Plk1 phosphorylation of PTEN and Nedd4-1, an E3 ubiquitin ligase of PTEN, results in PTEN inactivation. Finally, we show that Plk1 phosphorylation of PTEN promotes tumorigenesis in both its phosphatase-dependent and -independent pathways, revealing potentially new drug targets to arrest tumor cell growth.  相似文献   

16.
Phosphatase and tensin homolog (PTEN) is an important tumor-suppressor gene which constitutes an important PI3K/Akt pathway by regulating the signaling of multiple biological processes, including apoptosis, metabolism, cell proliferation, and cell growth has been gaining increasing attention. However, the role of PTEN in regulating apoptosis of canine mammary tumors cells still needs further investigation. In this experiment, the effect of PTEN on proliferation and apoptosis in canine mammary tumors (CMT) cells was analyzed. As a result, gene and protein expression levels of apoptosis-related genes were detected. Eukaryotic expression vector pcDNA3.1+-PTEN were successfully constructed and stably transferred into canine CMT cells after geneticin (G418) selection. After pcDNA3.1+-PTEN transfection, compared with control group, the cells proliferation was inhibited and the cell apoptosis was increased in CMT cells. The expression of p-Akt was decreased and the apoptosis-related genes, such as caspase-3, caspase-9, and Bax, were increased. These data serve to demonstrate the function of PTEN on apoptosis and gene regulatory in PI3K/Akt pathway in CMT cells. Collectively, our data link the tumor-suppressor activities of PTEN to the machinery controlling cell cycle through the modulation of signaling molecules whose signal target is the functional inactivation of the apoptosis gene product.  相似文献   

17.
An insulin-like signaling pathway regulates development and lifespan in Caenorhabditis elegans. Genetic screens that identified many components of the C. elegans insulin pathway did not identify homologs of insulin receptor substrates or the phosphoinositide 3-kinase (PI3K) adaptor/regulatory subunit, which are both required for signaling by mammalian insulin/insulin-like growth factor I pathways. The C. elegans genome contains one homolog of each protein. The C. elegans versions of insulin receptor substrate (IST-1) and PI3K p50/p55 (AAP-1) share moderate sequence similarity with their vertebrate and Drosophila counterparts. Genetic experiments show that ist-1 and aap-1 potentiate C. elegans insulin-like signaling, although they are not required for signaling in the pathway under most conditions. Worms lacking AAP-1 activity because of the mutation aap-1(m889) constitutively arrest development at the dauer larval stage when raised at high temperatures. aap-1 mutants also live longer than wild-type animals, a phenotype observed in other C. elegans mutants with defects in DAF-2 signaling. Interestingly, IST-1 appears to be required for signaling through a pathway that may act in parallel to AGE-1/PI3K.  相似文献   

18.
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid phosphatase. PTEN inhibits the action of phosphatidylinositol-3-kinase and reduces the levels of phosphatidylinositol triphosphate, a crucial second messenger for cell proliferation and survival, as well as insulin signaling. In this study, we deleted Pten specifically in the insulin producing beta cells during murine pancreatic development. Pten deletion leads to increased cell proliferation and decreased cell death, without significant alteration of beta-cell differentiation. Consequently, the mutant pancreas generates more and larger islets, with a significant increase in total beta-cell mass. PTEN loss also protects animals from developing streptozotocin-induced diabetes. Our data demonstrate that PTEN loss in beta cells is not tumorigenic but beneficial. This suggests that modulating the PTEN-controlled signaling pathway is a potential approach for beta-cell protection and regeneration therapies.  相似文献   

19.
Nanji M  Hopper NA  Gems D 《Aging cell》2005,4(5):235-245
The DAF-2 insulin/insulin-like growth factor 1 (IGF-1) receptor signals via a phosphatidylinositol 3-kinase (PI3K) pathway to control dauer larva formation and adult longevity in Caenorhabditis elegans. Yet epistasis analysis suggests signal bifurcation downstream of DAF-2. We have used epistasis analysis to test whether the Ras pathway (which plays a role in signaling from mammalian insulin receptors) acts downstream of DAF-2. We find that an activated Ras mutation, let-60(n1046gf), weakly suppresses constitutive dauer diapause in daf-2 and age-1 (PI3K) mutants. Moreover, increased Ras pathway signaling partially suppresses the daf-2 mutant feeding defect, while reduced Ras pathway signaling enhances it. By contrast, activated Ras extends the longevity induced by mutation of daf-2, while reduced Ras pathway signaling partially suppresses it. Thus, Ras pathway signaling appears to act with insulin/IGF-1 signaling during larval development, but against it during aging.  相似文献   

20.
Leptin and insulin have overlapping intracellular signaling mechanisms and exert anorexigenic actions in the hypothalamus. We aimed to determine how chronic exposure to increased leptin affects the hypothalamic response to a rise in insulin. We analyzed the activation and interactions of components of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in the hypothalamus of rats treated icv for 14 days with leptin followed by a central injection of insulin and killed 15 min later. Insulin increased glycemia and chronic leptin reduced this insulin induced rise in glucose. Leptin decreased the association between the insulin receptor beta chain (IRβ) and insulin receptor substrate 2 (IRS2), augmented the association between Janus kinase 2 and IRS2, increased levels of the catalytic subunit of PI3K and pAkt-Ser473 and decreased forkhead box O number 1 levels. Insulin reduced the association between suppressor of the cytokine signaling 3 and IRβ, increased IRβ-IRS2 association and pAkt-Thr308 levels, with chronic leptin exposure blunting these effects. In conclusion, chronic exposure to leptin decreases the central response to insulin by increasing suppressor of the cytokine signaling 3 association to IR, which inhibits insulin signaling at the level of interaction of its receptor with IRS2 and activates PI3K by promoting Janus kinase 2-IRS2 association. Thus, these results suggest that this mechanism could be a target for the treatment of insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号