首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of low temperatures, freezing and desiccation on a cyanobacterium (Phormidium) and an alga (Prasiola) from terrestrial Antarctic habitats were investigated. Net photosynthesis per unit dry weight, measured by gas exchange, and the vital stain Auramine O were used to monitor recovery from stress. Photosynthetic rates by Prasiola were an order of magnitude higher than those by Phormidium, although both continued photosynthesis at sub-zero temperatures. Prasiola survived freezing more readily, but in both cases survival was dependant upon the prevailing light conditions and the presence/absence of free water. Phormidium readily survived desiccation, whereas high mortality occurred in Prasiola, particularly at high light intensities. The results obtained are discussed in relation to the habitat and ecology of the organisms.  相似文献   

2.
Periods of desiccation and rewetting are regular, yet stressful events encountered by saltmarsh microbial communities. To examine the resistance and resilience of microbial biofilms to such stresses, sediments from saltmarsh creeks were allowed to desiccate for 23 days, followed by rewetting for 4 days, whereas control sediments were maintained under a natural tidal cycle. In the top 2 mm of the dry sediments, salinity increased steadily from 36 to 231 over 23 days, and returned to seawater salinity on rewetting. After 3 days, desiccated sediments had a lower chlorophyll a (Chl a) fluorescence signal as benthic diatoms ceased to migrate to the surface, with a recovery in cell migration and Chl a fluorescence on rewetting. Extracellular β-glucosidase and aminopeptidase activities decreased within the first week of drying, but increased sharply on rewetting. The bacterial community in the desiccating sediment changed significantly from the controls after 14 days of desiccation (salinity 144). Rewetting did not cause a return to the original community composition, but led to a further change. Pyrosequencing analysis of 16S rRNA genes amplified from the sediment revealed diverse microbial responses, for example desiccation enabled haloversatile Marinobacter species to increase their relative abundance, and thus take advantage of rewetting to grow rapidly and dominate the community. A temporal sequence of effects of desiccation and rewetting were thus observed, but the most notable feature was the overall resistance and resilience of the microbial community.  相似文献   

3.
Carbohydrate formation in rewetted terrestrial cyanobacteria   总被引:3,自引:0,他引:3  
A. Ernst  T. -W. Chen  P. Böger 《Oecologia》1987,72(4):574-576
Summary In the terrestrial cyanobacterium Nostoc commune Vauch. formation of carbohydrate polymers was measured upon rewetting the mats in a light-dark regime. To discriminate between carbohydrates of different physiological function, total carbohydrate was determined as anthrone-reactive material (ARM) and storage carbohydrate (glycogen) assayed by an enzymic test. In the dry thalli glycogen was found to represent less than one tenth of the ARM. After rewetting an increase of total carbohydrate was observed in illuminated samples. Only glycogen, however, showed a regular pattern of synthesis and degradation during a 12:12 h light-dark cycle. This indicates that most carbohydrates detected by anthrone belong to the metabolically inert sheath material.When illuminated colonies were kept submerged after rewetting glycogen was hydrolyzed indicative of being used in the rapid recovery of cellular functions as observed in rewetted colonies. Apparently, photosynthesis allowed for net glycogen synthesis only, provided the mats were sufficiently aerated. These findings give evidence that the (carbohydrate) sheath plays an important role in water retention in an organism bound to a terrestrial habitat.  相似文献   

4.
Summary Immobilised, desiccated cells ofNostoc commune UTEX 584 have the capacity to increase the size of their extractable intracellular ATP pool upon rewetting. The time taken to recover the pool size depends on the conditions of storage at a particular water potential and the duration of storage. Under the conditions employed, the rewetting of cells induced an increase in ATP pool size at the expense of photophosphorylation or electron transport (oxidative) phosphorylation. The rise in the ATP pool size was instantaneous and was shown to be due to ATP synthesis. This increase did not occur when cells were rewetted in the presence of sodium azide (10 mmol/l), while a partial inhibition was observed with CCCP (carbonyl cyanidem-chlorophenylhydrazone; 2 mol/l). For cells dried at more extreme water potentials, the lag ofc 48 h observed before the ATP pool reached control values is of similar duration to that observed in the recovery of nitrogenase upon rewetting. Chloramphenicol (10 mol/l) stimulated significantly the upshift in the size of the ATP pool ofNostoc cells upon rewetting, yet inhibited completely the rise in nitrogenase activity.  相似文献   

5.
Lyngbya mats in the intertidal of the Laguna Ojo de Liebre are metabolically active for only a few days every 2 weeks during spring tides, with environmental conditions varying greatly during these periods of hydration. Pulse amplitude modulated fluorometry (PAM) and oxygen measurements were used to measure photosynthetic activity during the first few hours after rehydration under various light intensities and salinities. Upon rehydration, a transitory maximum in respiratory activity (10–30 min) occurred before the resumption of photosynthesis, which could recover in about 2 h. Salinities outside the mats' natural range (35–50 psu) were detrimental to photosynthetic recovery. Both high (100 psu) and low (0–10 psu) salinities slowed recovery as well as lowered the overall photosynthetic yield. Photosynthesis was initiated earlier and recovered more rapidly with increasing light intensity. In addition, the positive effect of light on rates of recovery was disproportionately greater at lower salinities (10–25 psu) where high light (500 W·m?2) counteracted the negative effects of low‐salt stress early in recovery. However, higher light intensities became photoinhibitory later in recovery (>2 h). Photosynthesis did not recover uniformly within the mat. Filaments deeper in the mat most likely recovered later than those near the surface due to high light attenuation. The ability of the mats to tolerate desiccation and take advantage of hydration periods even when conditions are suboptimal enables these mats to predominate in the intertidal environment.  相似文献   

6.
Proliferations of the benthic mat-forming cyanobacteria Phormidium have been reported in rivers worldwide. Phormidium commonly produces natural toxins which pose a health risk to animal and humans. Recent field studies in New Zealand identified that sites with Phormidium proliferations consistently have low concentrations of water column dissolved reactive phosphorus (DRP). Unlike other river periphyton, Phormidium mats are thick and cohesive, with water and fine sediment trapped in a mucilaginous matrix. We hypothesized that daytime photosynthetic activity would elevate pH inside the mats, and/or night time respiration would reduce dissolved oxygen. Either condition could be sufficient to facilitate desorption of phosphates from sediment incorporated within mats, thus allowing Phormidium to utilize it for growth. Using microelectrodes, optodes and pulse amplitude modulation fluorometry we demonstrated that photosynthetic activity results in elevated pH (>9) during daytime, and that night-time respiration causes oxygen depletion (<4 mg L-1) within mats. Water trapped within the mucilaginous Phormidium mat matrix had on average 320-fold higher DRP concentrations than bulk river water and this, together with elevated concentrations of elements, including iron, suggest phosphorus release from entrapped sediment. Sequential extraction of phosphorus from trapped sediment was used to investigate the role of sediment at sites on the Mangatainoka River (New Zealand) with and without Phormidium proliferations. Deposition of fine sediment (<63 μm) was significantly higher at the site with the most extensive proliferations and concentrations of biological available phosphorus were two- to four- fold higher. Collectively these results provide evidence that fine sediment can provide a source of phosphorus to support Phormidium growth and proliferation.  相似文献   

7.
Han D  Hu Z 《Current microbiology》2007,54(4):254-259
The ribosomal RNA molecule is an ideal model for evaluating the stability of a gene product under desiccation stress. We isolated 8 Nostoc strains that had the capacity to withstand desiccation in habitats and sequenced their 16S rRNA genes. The stabilities of 16S rRNAs secondary structures, indicated by free energy change of folding, were compared among Nostoc and other related species. The results suggested that 16S rRNA secondary structures of the desiccation-tolerant Nostoc strains were more stable than that of planktonic Nostocaceae species. The stabilizing mutations were divided into two categories: (1) those causing GC to replace other types of base pairs in stems and (2) those causing extension of stems. By mapping stabilizing mutations onto the Nostoc phylogenetic tree based on 16S rRNA gene, it was shown that most of stabilizing mutations had evolved during adaptive radiation among Nostoc spp. The evolution of 16S rRNA along the Nostoc lineage is suggested to be selectively advantageous under desiccation stress. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   

8.
Desmonostoc salinum CCM-UFV059 (Desmonostoc) is a novel cyanobacterial strain of the order Nostocales isolated from a saline-alkaline lake. The acclimation towards salt and desiccation stress of Desmonostoc was compared to the related and well-characterized model strain Nostoc sp. PCC7120 (Nostoc). Salt–stressed cells of Desmonostoc maintained low cellular Na+ concentrations and accumulated high amounts of compatible solutes, mainly sucrose and to a lower extent trehalose. These features permitted Desmonostoc to grow and maintain photosynthesis at 2-fold higher salinities than Nostoc. Moreover, Desmonostoc also induced sucrose over-accumulation under desiccation, which allowed this strain to recover from this stress in contrast to Nostoc. Additional mechanisms such as the presence of highly unsaturated lipids in the membrane and an efficient ion transport system could also explain, at least partially, how Desmonostoc is able to acclimate to high salinities and to resist longer desiccation periods. Collectively, our results provide first insights into the physiological and metabolic adaptations explaining the remarkable high salt and desiccation tolerance, which qualify Desmonostoc as an attractive model for further analysis of stress acclimation among heterocystous N2–fixing cyanobacteria.  相似文献   

9.
《Aquatic Botany》2005,82(2):99-112
Responses of periphyton communities to different relevant durations of dry down were assessed. Long-hydroperiod sites within Everglades National Park remain wet for greater than 8 months of the year while short-hydroperiod mats are wet for fewer than 4 months of the year. Dry down duration of long and short-hydroperiod Everglades periphyton was manipulated from 0 to 1, 3, or 8 months after which periphyton was rewetted 1 month and examined for algal species composition. The effects of desiccation and rewetting on periphyton nutrient retention were also assessed. Relative abundance of diatoms declined from an average of 47% in the long-hydroperiod community at the start of the experiment to 24% after 1 month of desiccation and only 12% after 8 months of desiccation. Short-hydroperiod periphyton contained a lower proportion of diatoms at the outset (3%), which declined to less than 1% after the 8-month desiccation treatment. A significant increase in the filamentous cyanobacteria Schizothrix calcicola occurred in long-hydroperiod periphyton mats during this same period, but not in short-hydroperiod mats. Long-hydroperiod periphyton communities had a greater response to desiccation overall, but short-hydroperiod community structure responded to desiccation more rapidly. Because short-hydroperiod communities dry frequently, they appear to cope better to desiccating conditions than long-hydroperiod periphyton communities. This is indicated by the dominance of desiccation resistant algal taxa such as the cyanobacterial filaments S. calcicola and Scytonema hofmanni. Long-hydroperiod periphyton mat communities converge compositionally to short-hydroperiod periphyton communities after prolonged desiccation. Desiccation and rewetting caused long-hydroperiod periphyton to flux greater concentrations of nutrients than short-hydroperiod periphyton. Significant increases in efflux occurred from 1 to 8 months for total phosphorus (TP) and from 1 to 3 and 8 months for total nitrogen (TN) and total organic carbon (TOC). Thus, changes in periphyton mat community structure and function with altered hydroperiod may have long-term ecosystem effects.  相似文献   

10.
Sediments from an Australian reservoir were selected for varying degrees of in situ desiccation (i.e. non-desiccated, partially desiccated and desiccated). Sediment samples were then chemically amended with appropriate electron donors and acceptors to ascertain the effect of sediment desiccation on the potential for nitrification, denitrification, methanogenesis, and the interaction of these processes. There was no detectable nitrification in these sediments yet up to 75% of added nitrate was converted to dinitrogen. Denitrification was predominantly limited by nitrate although there was evidence of carbon co-limitation. None of the nitrogen cycle processes were notably affected by sediment desiccation. There was no flush of mineral nitrogen from desiccated sediments upon rewetting. Methanogenesis did not begin in these sediments until nitrate concentrations fell below 2.25 * 10-5 M. Methanogenesis was always carbon limited. Methanogens were affected by sediment desiccation but were capable of recovery over time upon rewetting of sediments.  相似文献   

11.
12.
Summary The response of the terrestrial blue-green algae Nostoc flagelliforme, Nostoc commune, and Nostoc spec. to water uptake has been investigated after a drought period of approximately 2 years. Rapid half-times of rewetting (0.6, 3.3, and 15.5 min, respectively) are found. The surfaceto-mass ratio of the three species is inversely correlated to the speed of water uptake and loss. The ecological relevance of these different time courses is discussed.Respiration starts immediately after a 30-min rewetting period, whereas photosynthetic oxygen evolution reaches its maximum activity after 6 and 8 h with N. commune and N. flagelliforme, respectively. In the dark, recovery of oxygen uptake by N. commune is somewhat impaired, while slightly stimulated with N. flagelliforme. With both species, recovery of photosynthesis is inhibited by darkness.Using colonies kept dry for two years, nitrogenase activity of N. commune attains its maximum 120 to 150 h after rewetting, while only 50 h were needed with algal mats kept dry for two days.Thus, after a 2-year drought period, the physiological sequence of reactivation is respiration—photosynthesis—nitrogen fixation. Respiration and photosynthesis precede growth and are exhibited by existing vegetative cells, whereas recovery of nitrogen fixation is dependent on newly differentiated heterocysts.  相似文献   

13.
14.
Desiccation-tolerant cells must either protect their cellular components from desiccation-induced damage and/or repair it upon rewetting. Subcellular damage to the anhydrobiotic cyanobacterium Chroococcidiopsis sp. CCMEE 029 stored in the desiccated state for 4 years was evaluated at the single-cell level using fluorescent DNA strand breakage labelling, membrane integrity and potential related molecular probes, oxidant-sensing fluorochrome and redox dye. Covalent modifications of dried genomes were assessed by testing their suitability as PCR template. Results suggest that desiccation survivors avoid/and or limit genome fragmentation and genome covalent modifications, preserve intact plasma membranes and phycobiliprotein autofluorescence, exhibit spatially-reduced ROS accumulation and dehydrogenase activity upon rewetting. Damaged cells undergo genome fragmentation, loss of plasma membrane potential and integrity, phycobiliprotein bleaching, whole-cell ROS accumulation and lack respiratory activity upon rewetting. The co-occurrence of live and dead cells within dried aggregates of Chroococcidiopsis confirms that desiccation resistance is not a simple process and that subtle modifications to the cellular milieu are required to dry without dying. It rises also intriguing questions about the triggers of dead cells in response to drying. The capability of desiccation survivors to avoid and/or reduce subcellular damage, shows that protection mechanisms are relevant in the desiccation tolerance of this cyanobacterium. This paper is dedicated to the memory of E. Imre Friedmann and his wife Roseli, who pioneered researches on Chroococcidiopsis and life in desert environments.  相似文献   

15.
Cyanobacterial mats developing in oil-contaminated sabkhas along the African coasts of the Gulf of Suez and in the pristine Solar Lake, Sinai, were collected for laboratory studies. Samples of both mats showed efficient degradation of crude oil in the light, followed by development of an intense bloom of Phormidium spp. and Oscillatoria spp. Isolated cyanobacterial strains, however, did not degrade crude oil in axenic cultures. Strains of sulfate-reducing bacteria and aerobic heterotrophs were capable of degrading model compounds of aliphatic and aromatic hydrocarbons. Results indicate that degradation of oil was done primarily by aerobic heterotrophic bacteria. The oxygenic photosynthesis of oil-insensitive cyanobacteria supplied the molecular oxygen for the efficient aerobic metabolism of organisms, such as Marinobacter sp. The diurnal shifts in environmental conditions at the mat surface, from highly oxic conditions in the light to anaerobic sulfide-rich habitat in the dark, may allow the combined aerobic and anaerobic degradation of crude oil at the mat surface. Hence, coastal cyanobacterial mats may be used for the degradation of coastline oil spills. Oxygen microelectrodes detected a significant inhibition of photosynthetic activity subsequent to oil addition. This prevailed for a few hours and then rapidly recovered. In addition, shifts in bacterial community structure following exposure to oil were determined by denaturing gradient gel electrophoresis of PCR-amplified fractions of 16S rRNA from eubacteria, cyanobacteria and sulfate-reducing bacteria. Since the mats used for the present study were obtained from oil-contaminated environments, they were believed to be preequilibrated for petroleum remediation. The mesocosm system at Eilat provided a unique opportunity to study petroleum degradation by mats formed under different salinities (up to 21%). These mats, dominated by cyanobacteria, can serve as close analogues to the sabkhas contaminated during the Gulf War in Kuwait and Saudi Arabia. Electronic Publication  相似文献   

16.
The PSII photochemical activity in a terrestrial cyanobacterium Nostoc commune Vaucher ex Bornet et Flahault during rewetting was undetectable in the dark but was immediately recognized in the light. The maximum quantum yield of PSII (Fv/Fm) during rewetting in the light rose to 85% of the maximum within ~30 min and slowly reached the maximum within 6 h, while with rewetting in the darkness for 6 h and then exposure to light the recovery of Fv/Fm required only ~3 min. These results suggested that recovery of photochemical activity might depend on two processes, light dependence and light independence, and the activation of photosynthetic recovery in the initial phase was severely light dependent. The inhibitor experiments showed that the recovery of Fv/Fm was not affected by chloramphenicol (CMP), but severely inhibited by 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU) in the light, suggesting that the light‐dependent recovery of photochemical activity did not require de novo protein synthesis but required activation of PSII associated with electron flow to plastoquinone. Furthermore, the test indicated that the lower light intensity and the red light were of benefit to its activation of photochemical activity. In an outdoor experiment of diurnal changes of photochemical activity, our results showed that PSII photochemical activity was sensitive to light fluctuation, and the nonphotochemical quenching (NPQ) was rapidly enhanced at noon. Furthermore, the test suggested that the repair of PSII by de novo protein synthesis played an important role in the acclimation of photosynthetic apparatus to high light, and the heavily cloudy day was more beneficial for maintaining high photochemical activity.  相似文献   

17.
Kumar D  Gaur JP 《Bioresource technology》2011,102(3):2529-2535
The pH-dependent metal sorption by Oscillatoria- and Phormidium-dominated mats was effectively expressed by the Hill function. The estimated Hill functions can fruitfully predict the amount of metal sorbed at a particular initial pH. Pretreatment of biomass with 0.1 mmol L−1 HCl was more effective than pretreatment with CaCl2, HNO3, NaOH, and SDS in enhancing metal sorption ability of the biomass. Desorption of metal ions in the presence of 100 mmol L−1 HCl from metal-loaded mat biomass was completed within 1 h. After six cycles of metal sorption/desorption, sorption decreased by 6-15%. Only 6% and 11% of the biomass derived from the Oscillatoria sp.- and Phormidium sp.-dominated mats was lost during the cycling. The cyanobacterial mats seem to have better potential than several biomass types for use in metal sorption from wastewaters as they are ubiquitous, self-immobilized, and have good reusability.  相似文献   

18.
Stekoll  Michael S.  Deysher  Lawrence 《Hydrobiologia》1996,326(1):311-316
The Exxon Valdez oil spill in March 1989 and subsequent cleanup caused injury to intertidal Fucus gardneri populations especially in the upper intertidal. A survey in 1994 in Prince William Sound, Alaska showed that the upper boundary of Fucus populations at oiled sites was still an average of 0.4 m lower than the upper boundary at unoiled sites.Restoration of severely damaged Fucus populations was started on a small-scale at a heavily oiled rocky site in Herring Bay, Prince William Sound. Experiments employed mats of biodegradable erosion control fabric to act as a substratum for Fucus germlings and to protect germlings from heat and desiccation stress. A series of plots was covered with mats made from a resilient coconut-fiber fabric in June 1993. Half of the mats were inoculated with Fucus zygotes. A series of uncovered control plots was also monitored. There was no enhancement of Fucus recruitment on the rock surfaces under the mats. Dense populations of Fucus developed on the surface of all of the mats by the summer of 1994. The natural rock surfaces in the control plots, both inoculated and not, were barren of macroscopic algal cover. By September 1994, the juvenile thalli on the mats were approximately 2 cm in length. Inoculating the mats had an effect only in the upper region of the intertidal. It is expected that the thalli will become fertile during the 1995 season. These thalli may serve as a source of embryos to enhance the recovery of new Fucus populations in this high intertidal area.  相似文献   

19.
Microbialites are mineral formations formed by microbial communities that are often dominated by cyanobacteria. Carbonate microbialites, known from Proterozoic times through the present, are recognized for sequestering globally significant amounts of inorganic carbon. Recent ecological work has focused on microbial communities dominated by cyanobacteria that produce microbial mats and laminate microbialites (stromatolites). However, the taxonomic composition and functions of microbial communities that generate distinctive clotted microbialites (thrombolites) are less well understood. Here, microscopy and deep shotgun sequencing were used to characterize the microbiome (microbial taxa and their genomes) associated with a single cyanobacterial host linked by 16S sequences to Nostoc commune Vaucher ex Bornet & Flahault, which dominates abundant littoral clotted microbialites in shallow, subpolar, freshwater Laguna Larga in southern Chile. Microscopy and energy‐dispersive X‐ray spectroscopy suggested the hypothesis that adherent hollow carbonate spheres typical of the clotted microbialite begin development on the rigid curved outer surfaces of the Nostoc balls. A surface biofilm included >50 nonoxygenic bacterial genera (taxa other than Nostoc) that indicate diverse ecological functions. The Laguna Larga Nostoc microbiome included the sulfate reducers Desulfomicrobium and Sulfospirillum and genes encoding all known proteins specific to sulfate reduction, a process known to facilitate carbonate deposition by increasing pH. Sequences indicating presence of nostocalean and other types of nifH, nostocalean sulfide:ferredoxin oxidoreductase (indicating anoxygenic photosynthesis), and biosynthetic pathways for the secondary products scytonemin, mycosporine, and microviridin toxin were identified. These results allow comparisons with microbiota and microbiomes of other algae and illuminate biogeochemical roles of ancient microbialites.  相似文献   

20.
Most community molecular studies of thermophilic cyanobacterial mats to date have focused on Synechococcus occurring at temperatures of ~50–65°C. These reveal that molecular diversity exceeds that indicated by morphology, and that phylogeographic lineages exist. The moderately thermophilic and generally filamentous cyanobacterial mat communities occurring at lower temperatures have not previously been investigated at the community molecular level. Here we report community diversity in mats of 42–53°C recovered from previously unstudied geothermal locations. Separation of 16S rRNA gene-defined genotypes from community DNA was achieved by DGGE. Genotypic diversity was greater than morphotype diversity in all mats sampled, although genotypes generally corresponded to observed morphotypes. Thirty-six sequences were recovered from DGGE bands. Phylogenetic analyses revealed these to form novel thermophilic lineages distinct from their mesophilic counterparts, within Calothrix, Cyanothece, Fischerella, Phormidium, Pleurocapsa, Oscillatoria and Synechococcus. Where filamentous cyanobacterial sequences belonging to the same genus were recovered from the same site, these were generally closely affiliated. Location-specific sequences were observed for some genotypes recovered from geochemically similar yet spatially separated sites, thus providing evidence for phylogeographic lineages that evolve in isolation. Other genotypes were more closely affiliated to geographically remote counterparts from similar habitats suggesting that adaptation to certain niches is also important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号